]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/include/linux/compiler.h
e33fc1df3935e3164280fab29ca0a34908ae5b16
[karo-tx-linux.git] / tools / include / linux / compiler.h
1 #ifndef _TOOLS_LINUX_COMPILER_H_
2 #define _TOOLS_LINUX_COMPILER_H_
3
4 /* Optimization barrier */
5 /* The "volatile" is due to gcc bugs */
6 #define barrier() __asm__ __volatile__("": : :"memory")
7
8 #ifndef __always_inline
9 # define __always_inline        inline __attribute__((always_inline))
10 #endif
11
12 #ifdef __ANDROID__
13 /*
14  * FIXME: Big hammer to get rid of tons of:
15  *   "warning: always_inline function might not be inlinable"
16  *
17  * At least on android-ndk-r12/platforms/android-24/arch-arm
18  */
19 #undef __always_inline
20 #define __always_inline inline
21 #endif
22
23 #define __user
24
25 #ifndef __attribute_const__
26 # define __attribute_const__
27 #endif
28
29 #ifndef __maybe_unused
30 # define __maybe_unused         __attribute__((unused))
31 #endif
32
33 #ifndef __packed
34 # define __packed               __attribute__((__packed__))
35 #endif
36
37 #ifndef __force
38 # define __force
39 #endif
40
41 #ifndef __weak
42 # define __weak                 __attribute__((weak))
43 #endif
44
45 #ifndef likely
46 # define likely(x)              __builtin_expect(!!(x), 1)
47 #endif
48
49 #ifndef unlikely
50 # define unlikely(x)            __builtin_expect(!!(x), 0)
51 #endif
52
53 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
54
55 #include <linux/types.h>
56
57 /*
58  * Following functions are taken from kernel sources and
59  * break aliasing rules in their original form.
60  *
61  * While kernel is compiled with -fno-strict-aliasing,
62  * perf uses -Wstrict-aliasing=3 which makes build fail
63  * under gcc 4.4.
64  *
65  * Using extra __may_alias__ type to allow aliasing
66  * in this case.
67  */
68 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
69 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
70 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
71 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
72
73 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
74 {
75         switch (size) {
76         case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
77         case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
78         case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
79         case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
80         default:
81                 barrier();
82                 __builtin_memcpy((void *)res, (const void *)p, size);
83                 barrier();
84         }
85 }
86
87 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
88 {
89         switch (size) {
90         case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
91         case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
92         case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
93         case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
94         default:
95                 barrier();
96                 __builtin_memcpy((void *)p, (const void *)res, size);
97                 barrier();
98         }
99 }
100
101 /*
102  * Prevent the compiler from merging or refetching reads or writes. The
103  * compiler is also forbidden from reordering successive instances of
104  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
105  * compiler is aware of some particular ordering.  One way to make the
106  * compiler aware of ordering is to put the two invocations of READ_ONCE,
107  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
108  *
109  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
110  * data types like structs or unions. If the size of the accessed data
111  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
112  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
113  * compile-time warning.
114  *
115  * Their two major use cases are: (1) Mediating communication between
116  * process-level code and irq/NMI handlers, all running on the same CPU,
117  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
118  * mutilate accesses that either do not require ordering or that interact
119  * with an explicit memory barrier or atomic instruction that provides the
120  * required ordering.
121  */
122
123 #define READ_ONCE(x) \
124         ({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
125
126 #define WRITE_ONCE(x, val) \
127         ({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
128
129 #endif /* _TOOLS_LINUX_COMPILER_H */