]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/builtin-stat.c
Merge branch 'perf/rename' into perf/core
[karo-tx-linux.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47 #include "util/header.h"
48 #include "util/cpumap.h"
49 #include "util/thread.h"
50
51 #include <sys/prctl.h>
52 #include <math.h>
53 #include <locale.h>
54
55 static struct perf_event_attr default_attrs[] = {
56
57   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK              },
58   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES        },
59   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS          },
60   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS             },
61
62   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES              },
63   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS            },
64   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS     },
65   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES           },
66   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES        },
67   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES            },
68
69 };
70
71 static bool                     system_wide                     =  false;
72 static int                      nr_cpus                         =  0;
73 static int                      run_idx                         =  0;
74
75 static int                      run_count                       =  1;
76 static bool                     no_inherit                      = false;
77 static bool                     scale                           =  true;
78 static bool                     no_aggr                         = false;
79 static pid_t                    target_pid                      = -1;
80 static pid_t                    target_tid                      = -1;
81 static pid_t                    *all_tids                       =  NULL;
82 static int                      thread_num                      =  0;
83 static pid_t                    child_pid                       = -1;
84 static bool                     null_run                        =  false;
85 static bool                     big_num                         =  false;
86 static const char               *cpu_list;
87
88
89 static int                      *fd[MAX_NR_CPUS][MAX_COUNTERS];
90
91 static int                      event_scaled[MAX_COUNTERS];
92
93 static struct {
94         u64 val;
95         u64 ena;
96         u64 run;
97 } cpu_counts[MAX_NR_CPUS][MAX_COUNTERS];
98
99 static volatile int done = 0;
100
101 struct stats
102 {
103         double n, mean, M2;
104 };
105
106 static void update_stats(struct stats *stats, u64 val)
107 {
108         double delta;
109
110         stats->n++;
111         delta = val - stats->mean;
112         stats->mean += delta / stats->n;
113         stats->M2 += delta*(val - stats->mean);
114 }
115
116 static double avg_stats(struct stats *stats)
117 {
118         return stats->mean;
119 }
120
121 /*
122  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
123  *
124  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
125  * s^2 = -------------------------------
126  *                  n - 1
127  *
128  * http://en.wikipedia.org/wiki/Stddev
129  *
130  * The std dev of the mean is related to the std dev by:
131  *
132  *             s
133  * s_mean = -------
134  *          sqrt(n)
135  *
136  */
137 static double stddev_stats(struct stats *stats)
138 {
139         double variance = stats->M2 / (stats->n - 1);
140         double variance_mean = variance / stats->n;
141
142         return sqrt(variance_mean);
143 }
144
145 struct stats                    event_res_stats[MAX_COUNTERS][3];
146 struct stats                    runtime_nsecs_stats[MAX_NR_CPUS];
147 struct stats                    runtime_cycles_stats[MAX_NR_CPUS];
148 struct stats                    runtime_branches_stats[MAX_NR_CPUS];
149 struct stats                    walltime_nsecs_stats;
150
151 #define MATCH_EVENT(t, c, counter)                      \
152         (attrs[counter].type == PERF_TYPE_##t &&        \
153          attrs[counter].config == PERF_COUNT_##c)
154
155 #define ERR_PERF_OPEN \
156 "counter %d, sys_perf_event_open() syscall returned with %d (%s).  /bin/dmesg may provide additional information."
157
158 static int create_perf_stat_counter(int counter, bool *perm_err)
159 {
160         struct perf_event_attr *attr = attrs + counter;
161         int thread;
162         int ncreated = 0;
163
164         if (scale)
165                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
166                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
167
168         if (system_wide) {
169                 int cpu;
170
171                 for (cpu = 0; cpu < nr_cpus; cpu++) {
172                         fd[cpu][counter][0] = sys_perf_event_open(attr,
173                                         -1, cpumap[cpu], -1, 0);
174                         if (fd[cpu][counter][0] < 0) {
175                                 if (errno == EPERM || errno == EACCES)
176                                         *perm_err = true;
177                                 error(ERR_PERF_OPEN, counter,
178                                          fd[cpu][counter][0], strerror(errno));
179                         } else {
180                                 ++ncreated;
181                         }
182                 }
183         } else {
184                 attr->inherit = !no_inherit;
185                 if (target_pid == -1 && target_tid == -1) {
186                         attr->disabled = 1;
187                         attr->enable_on_exec = 1;
188                 }
189                 for (thread = 0; thread < thread_num; thread++) {
190                         fd[0][counter][thread] = sys_perf_event_open(attr,
191                                 all_tids[thread], -1, -1, 0);
192                         if (fd[0][counter][thread] < 0) {
193                                 if (errno == EPERM || errno == EACCES)
194                                         *perm_err = true;
195                                 error(ERR_PERF_OPEN, counter,
196                                          fd[0][counter][thread],
197                                          strerror(errno));
198                         } else {
199                                 ++ncreated;
200                         }
201                 }
202         }
203
204         return ncreated;
205 }
206
207 /*
208  * Does the counter have nsecs as a unit?
209  */
210 static inline int nsec_counter(int counter)
211 {
212         if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
213             MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
214                 return 1;
215
216         return 0;
217 }
218
219 /*
220  * Read out the results of a single counter:
221  * aggregate counts across CPUs in system-wide mode
222  */
223 static void read_counter_aggr(int counter)
224 {
225         u64 count[3], single_count[3];
226         int cpu;
227         size_t res, nv;
228         int scaled;
229         int i, thread;
230
231         count[0] = count[1] = count[2] = 0;
232
233         nv = scale ? 3 : 1;
234         for (cpu = 0; cpu < nr_cpus; cpu++) {
235                 for (thread = 0; thread < thread_num; thread++) {
236                         if (fd[cpu][counter][thread] < 0)
237                                 continue;
238
239                         res = read(fd[cpu][counter][thread],
240                                         single_count, nv * sizeof(u64));
241                         assert(res == nv * sizeof(u64));
242
243                         close(fd[cpu][counter][thread]);
244                         fd[cpu][counter][thread] = -1;
245
246                         count[0] += single_count[0];
247                         if (scale) {
248                                 count[1] += single_count[1];
249                                 count[2] += single_count[2];
250                         }
251                 }
252         }
253
254         scaled = 0;
255         if (scale) {
256                 if (count[2] == 0) {
257                         event_scaled[counter] = -1;
258                         count[0] = 0;
259                         return;
260                 }
261
262                 if (count[2] < count[1]) {
263                         event_scaled[counter] = 1;
264                         count[0] = (unsigned long long)
265                                 ((double)count[0] * count[1] / count[2] + 0.5);
266                 }
267         }
268
269         for (i = 0; i < 3; i++)
270                 update_stats(&event_res_stats[counter][i], count[i]);
271
272         if (verbose) {
273                 fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
274                                 count[0], count[1], count[2]);
275         }
276
277         /*
278          * Save the full runtime - to allow normalization during printout:
279          */
280         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
281                 update_stats(&runtime_nsecs_stats[0], count[0]);
282         if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
283                 update_stats(&runtime_cycles_stats[0], count[0]);
284         if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
285                 update_stats(&runtime_branches_stats[0], count[0]);
286 }
287
288 /*
289  * Read out the results of a single counter:
290  * do not aggregate counts across CPUs in system-wide mode
291  */
292 static void read_counter(int counter)
293 {
294         u64 count[3];
295         int cpu;
296         size_t res, nv;
297
298         count[0] = count[1] = count[2] = 0;
299
300         nv = scale ? 3 : 1;
301
302         for (cpu = 0; cpu < nr_cpus; cpu++) {
303
304                 if (fd[cpu][counter][0] < 0)
305                         continue;
306
307                 res = read(fd[cpu][counter][0], count, nv * sizeof(u64));
308
309                 assert(res == nv * sizeof(u64));
310
311                 close(fd[cpu][counter][0]);
312                 fd[cpu][counter][0] = -1;
313
314                 if (scale) {
315                         if (count[2] == 0) {
316                                 count[0] = 0;
317                         } else if (count[2] < count[1]) {
318                                 count[0] = (unsigned long long)
319                                 ((double)count[0] * count[1] / count[2] + 0.5);
320                         }
321                 }
322                 cpu_counts[cpu][counter].val = count[0]; /* scaled count */
323                 cpu_counts[cpu][counter].ena = count[1];
324                 cpu_counts[cpu][counter].run = count[2];
325
326                 if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
327                         update_stats(&runtime_nsecs_stats[cpu], count[0]);
328                 if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
329                         update_stats(&runtime_cycles_stats[cpu], count[0]);
330                 if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
331                         update_stats(&runtime_branches_stats[cpu], count[0]);
332         }
333 }
334
335 static int run_perf_stat(int argc __used, const char **argv)
336 {
337         unsigned long long t0, t1;
338         int status = 0;
339         int counter, ncreated = 0;
340         int child_ready_pipe[2], go_pipe[2];
341         bool perm_err = false;
342         const bool forks = (argc > 0);
343         char buf;
344
345         if (!system_wide)
346                 nr_cpus = 1;
347
348         if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
349                 perror("failed to create pipes");
350                 exit(1);
351         }
352
353         if (forks) {
354                 if ((child_pid = fork()) < 0)
355                         perror("failed to fork");
356
357                 if (!child_pid) {
358                         close(child_ready_pipe[0]);
359                         close(go_pipe[1]);
360                         fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
361
362                         /*
363                          * Do a dummy execvp to get the PLT entry resolved,
364                          * so we avoid the resolver overhead on the real
365                          * execvp call.
366                          */
367                         execvp("", (char **)argv);
368
369                         /*
370                          * Tell the parent we're ready to go
371                          */
372                         close(child_ready_pipe[1]);
373
374                         /*
375                          * Wait until the parent tells us to go.
376                          */
377                         if (read(go_pipe[0], &buf, 1) == -1)
378                                 perror("unable to read pipe");
379
380                         execvp(argv[0], (char **)argv);
381
382                         perror(argv[0]);
383                         exit(-1);
384                 }
385
386                 if (target_tid == -1 && target_pid == -1 && !system_wide)
387                         all_tids[0] = child_pid;
388
389                 /*
390                  * Wait for the child to be ready to exec.
391                  */
392                 close(child_ready_pipe[1]);
393                 close(go_pipe[0]);
394                 if (read(child_ready_pipe[0], &buf, 1) == -1)
395                         perror("unable to read pipe");
396                 close(child_ready_pipe[0]);
397         }
398
399         for (counter = 0; counter < nr_counters; counter++)
400                 ncreated += create_perf_stat_counter(counter, &perm_err);
401
402         if (ncreated < nr_counters) {
403                 if (perm_err)
404                         error("You may not have permission to collect %sstats.\n"
405                               "\t Consider tweaking"
406                               " /proc/sys/kernel/perf_event_paranoid or running as root.",
407                               system_wide ? "system-wide " : "");
408                 die("Not all events could be opened.\n");
409                 if (child_pid != -1)
410                         kill(child_pid, SIGTERM);
411                 return -1;
412         }
413
414         /*
415          * Enable counters and exec the command:
416          */
417         t0 = rdclock();
418
419         if (forks) {
420                 close(go_pipe[1]);
421                 wait(&status);
422         } else {
423                 while(!done) sleep(1);
424         }
425
426         t1 = rdclock();
427
428         update_stats(&walltime_nsecs_stats, t1 - t0);
429
430         if (no_aggr) {
431                 for (counter = 0; counter < nr_counters; counter++)
432                         read_counter(counter);
433         } else {
434                 for (counter = 0; counter < nr_counters; counter++)
435                         read_counter_aggr(counter);
436         }
437         return WEXITSTATUS(status);
438 }
439
440 static void print_noise(int counter, double avg)
441 {
442         if (run_count == 1)
443                 return;
444
445         fprintf(stderr, "   ( +- %7.3f%% )",
446                         100 * stddev_stats(&event_res_stats[counter][0]) / avg);
447 }
448
449 static void nsec_printout(int cpu, int counter, double avg)
450 {
451         double msecs = avg / 1e6;
452
453         if (no_aggr)
454                 fprintf(stderr, "CPU%-4d %18.6f  %-24s",
455                         cpumap[cpu], msecs, event_name(counter));
456         else
457                 fprintf(stderr, " %18.6f  %-24s", msecs, event_name(counter));
458
459         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
460                 fprintf(stderr, " # %10.3f CPUs ",
461                                 avg / avg_stats(&walltime_nsecs_stats));
462         }
463 }
464
465 static void abs_printout(int cpu, int counter, double avg)
466 {
467         double total, ratio = 0.0;
468         char cpustr[16] = { '\0', };
469
470         if (no_aggr)
471                 sprintf(cpustr, "CPU%-4d", cpumap[cpu]);
472         else
473                 cpu = 0;
474
475         if (big_num)
476                 fprintf(stderr, "%s %'18.0f  %-24s",
477                         cpustr, avg, event_name(counter));
478         else
479                 fprintf(stderr, "%s %18.0f  %-24s",
480                         cpustr, avg, event_name(counter));
481
482         if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
483                 total = avg_stats(&runtime_cycles_stats[cpu]);
484
485                 if (total)
486                         ratio = avg / total;
487
488                 fprintf(stderr, " # %10.3f IPC  ", ratio);
489         } else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
490                         runtime_branches_stats[cpu].n != 0) {
491                 total = avg_stats(&runtime_branches_stats[cpu]);
492
493                 if (total)
494                         ratio = avg * 100 / total;
495
496                 fprintf(stderr, " # %10.3f %%    ", ratio);
497
498         } else if (runtime_nsecs_stats[cpu].n != 0) {
499                 total = avg_stats(&runtime_nsecs_stats[cpu]);
500
501                 if (total)
502                         ratio = 1000.0 * avg / total;
503
504                 fprintf(stderr, " # %10.3f M/sec", ratio);
505         }
506 }
507
508 /*
509  * Print out the results of a single counter:
510  * aggregated counts in system-wide mode
511  */
512 static void print_counter_aggr(int counter)
513 {
514         double avg = avg_stats(&event_res_stats[counter][0]);
515         int scaled = event_scaled[counter];
516
517         if (scaled == -1) {
518                 fprintf(stderr, " %18s  %-24s\n",
519                         "<not counted>", event_name(counter));
520                 return;
521         }
522
523         if (nsec_counter(counter))
524                 nsec_printout(-1, counter, avg);
525         else
526                 abs_printout(-1, counter, avg);
527
528         print_noise(counter, avg);
529
530         if (scaled) {
531                 double avg_enabled, avg_running;
532
533                 avg_enabled = avg_stats(&event_res_stats[counter][1]);
534                 avg_running = avg_stats(&event_res_stats[counter][2]);
535
536                 fprintf(stderr, "  (scaled from %.2f%%)",
537                                 100 * avg_running / avg_enabled);
538         }
539
540         fprintf(stderr, "\n");
541 }
542
543 /*
544  * Print out the results of a single counter:
545  * does not use aggregated count in system-wide
546  */
547 static void print_counter(int counter)
548 {
549         u64 ena, run, val;
550         int cpu;
551
552         for (cpu = 0; cpu < nr_cpus; cpu++) {
553                 val = cpu_counts[cpu][counter].val;
554                 ena = cpu_counts[cpu][counter].ena;
555                 run = cpu_counts[cpu][counter].run;
556                 if (run == 0 || ena == 0) {
557                         fprintf(stderr, "CPU%-4d %18s  %-24s", cpumap[cpu],
558                                         "<not counted>", event_name(counter));
559
560                         fprintf(stderr, "\n");
561                         continue;
562                 }
563
564                 if (nsec_counter(counter))
565                         nsec_printout(cpu, counter, val);
566                 else
567                         abs_printout(cpu, counter, val);
568
569                 print_noise(counter, 1.0);
570
571                 if (run != ena) {
572                         fprintf(stderr, "  (scaled from %.2f%%)",
573                                         100.0 * run / ena);
574                 }
575                 fprintf(stderr, "\n");
576         }
577 }
578
579 static void print_stat(int argc, const char **argv)
580 {
581         int i, counter;
582
583         fflush(stdout);
584
585         fprintf(stderr, "\n");
586         fprintf(stderr, " Performance counter stats for ");
587         if(target_pid == -1 && target_tid == -1) {
588                 fprintf(stderr, "\'%s", argv[0]);
589                 for (i = 1; i < argc; i++)
590                         fprintf(stderr, " %s", argv[i]);
591         } else if (target_pid != -1)
592                 fprintf(stderr, "process id \'%d", target_pid);
593         else
594                 fprintf(stderr, "thread id \'%d", target_tid);
595
596         fprintf(stderr, "\'");
597         if (run_count > 1)
598                 fprintf(stderr, " (%d runs)", run_count);
599         fprintf(stderr, ":\n\n");
600
601         if (no_aggr) {
602                 for (counter = 0; counter < nr_counters; counter++)
603                         print_counter(counter);
604         } else {
605                 for (counter = 0; counter < nr_counters; counter++)
606                         print_counter_aggr(counter);
607         }
608
609         fprintf(stderr, "\n");
610         fprintf(stderr, " %18.9f  seconds time elapsed",
611                         avg_stats(&walltime_nsecs_stats)/1e9);
612         if (run_count > 1) {
613                 fprintf(stderr, "   ( +- %7.3f%% )",
614                                 100*stddev_stats(&walltime_nsecs_stats) /
615                                 avg_stats(&walltime_nsecs_stats));
616         }
617         fprintf(stderr, "\n\n");
618 }
619
620 static volatile int signr = -1;
621
622 static void skip_signal(int signo)
623 {
624         if(child_pid == -1)
625                 done = 1;
626
627         signr = signo;
628 }
629
630 static void sig_atexit(void)
631 {
632         if (child_pid != -1)
633                 kill(child_pid, SIGTERM);
634
635         if (signr == -1)
636                 return;
637
638         signal(signr, SIG_DFL);
639         kill(getpid(), signr);
640 }
641
642 static const char * const stat_usage[] = {
643         "perf stat [<options>] [<command>]",
644         NULL
645 };
646
647 static const struct option options[] = {
648         OPT_CALLBACK('e', "event", NULL, "event",
649                      "event selector. use 'perf list' to list available events",
650                      parse_events),
651         OPT_BOOLEAN('i', "no-inherit", &no_inherit,
652                     "child tasks do not inherit counters"),
653         OPT_INTEGER('p', "pid", &target_pid,
654                     "stat events on existing process id"),
655         OPT_INTEGER('t', "tid", &target_tid,
656                     "stat events on existing thread id"),
657         OPT_BOOLEAN('a', "all-cpus", &system_wide,
658                     "system-wide collection from all CPUs"),
659         OPT_BOOLEAN('c', "scale", &scale,
660                     "scale/normalize counters"),
661         OPT_INCR('v', "verbose", &verbose,
662                     "be more verbose (show counter open errors, etc)"),
663         OPT_INTEGER('r', "repeat", &run_count,
664                     "repeat command and print average + stddev (max: 100)"),
665         OPT_BOOLEAN('n', "null", &null_run,
666                     "null run - dont start any counters"),
667         OPT_BOOLEAN('B', "big-num", &big_num,
668                     "print large numbers with thousands\' separators"),
669         OPT_STRING('C', "cpu", &cpu_list, "cpu",
670                     "list of cpus to monitor in system-wide"),
671         OPT_BOOLEAN('A', "no-aggr", &no_aggr,
672                     "disable CPU count aggregation"),
673         OPT_END()
674 };
675
676 int cmd_stat(int argc, const char **argv, const char *prefix __used)
677 {
678         int status;
679         int i,j;
680
681         setlocale(LC_ALL, "");
682
683         argc = parse_options(argc, argv, options, stat_usage,
684                 PARSE_OPT_STOP_AT_NON_OPTION);
685         if (!argc && target_pid == -1 && target_tid == -1)
686                 usage_with_options(stat_usage, options);
687         if (run_count <= 0)
688                 usage_with_options(stat_usage, options);
689
690         /* no_aggr is for system-wide only */
691         if (no_aggr && !system_wide)
692                 usage_with_options(stat_usage, options);
693
694         /* Set attrs and nr_counters if no event is selected and !null_run */
695         if (!null_run && !nr_counters) {
696                 memcpy(attrs, default_attrs, sizeof(default_attrs));
697                 nr_counters = ARRAY_SIZE(default_attrs);
698         }
699
700         if (system_wide)
701                 nr_cpus = read_cpu_map(cpu_list);
702         else
703                 nr_cpus = 1;
704
705         if (nr_cpus < 1)
706                 usage_with_options(stat_usage, options);
707
708         if (target_pid != -1) {
709                 target_tid = target_pid;
710                 thread_num = find_all_tid(target_pid, &all_tids);
711                 if (thread_num <= 0) {
712                         fprintf(stderr, "Can't find all threads of pid %d\n",
713                                         target_pid);
714                         usage_with_options(stat_usage, options);
715                 }
716         } else {
717                 all_tids=malloc(sizeof(pid_t));
718                 if (!all_tids)
719                         return -ENOMEM;
720
721                 all_tids[0] = target_tid;
722                 thread_num = 1;
723         }
724
725         for (i = 0; i < MAX_NR_CPUS; i++) {
726                 for (j = 0; j < MAX_COUNTERS; j++) {
727                         fd[i][j] = malloc(sizeof(int)*thread_num);
728                         if (!fd[i][j])
729                                 return -ENOMEM;
730                 }
731         }
732
733         /*
734          * We dont want to block the signals - that would cause
735          * child tasks to inherit that and Ctrl-C would not work.
736          * What we want is for Ctrl-C to work in the exec()-ed
737          * task, but being ignored by perf stat itself:
738          */
739         atexit(sig_atexit);
740         signal(SIGINT,  skip_signal);
741         signal(SIGALRM, skip_signal);
742         signal(SIGABRT, skip_signal);
743
744         status = 0;
745         for (run_idx = 0; run_idx < run_count; run_idx++) {
746                 if (run_count != 1 && verbose)
747                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
748                 status = run_perf_stat(argc, argv);
749         }
750
751         if (status != -1)
752                 print_stat(argc, argv);
753
754         return status;
755 }