]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/auxtrace.c
perf tools: Add signal.h to places using its definitions
[karo-tx-linux.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "auxtrace.h"
50
51 #include <linux/hash.h>
52
53 #include "event.h"
54 #include "session.h"
55 #include "debug.h"
56 #include <subcmd/parse-options.h>
57
58 #include "intel-pt.h"
59 #include "intel-bts.h"
60
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63
64 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
65                         struct auxtrace_mmap_params *mp,
66                         void *userpg, int fd)
67 {
68         struct perf_event_mmap_page *pc = userpg;
69
70         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
71
72         mm->userpg = userpg;
73         mm->mask = mp->mask;
74         mm->len = mp->len;
75         mm->prev = 0;
76         mm->idx = mp->idx;
77         mm->tid = mp->tid;
78         mm->cpu = mp->cpu;
79
80         if (!mp->len) {
81                 mm->base = NULL;
82                 return 0;
83         }
84
85 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
86         pr_err("Cannot use AUX area tracing mmaps\n");
87         return -1;
88 #endif
89
90         pc->aux_offset = mp->offset;
91         pc->aux_size = mp->len;
92
93         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
94         if (mm->base == MAP_FAILED) {
95                 pr_debug2("failed to mmap AUX area\n");
96                 mm->base = NULL;
97                 return -1;
98         }
99
100         return 0;
101 }
102
103 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
104 {
105         if (mm->base) {
106                 munmap(mm->base, mm->len);
107                 mm->base = NULL;
108         }
109 }
110
111 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
112                                 off_t auxtrace_offset,
113                                 unsigned int auxtrace_pages,
114                                 bool auxtrace_overwrite)
115 {
116         if (auxtrace_pages) {
117                 mp->offset = auxtrace_offset;
118                 mp->len = auxtrace_pages * (size_t)page_size;
119                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
120                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
121                 pr_debug2("AUX area mmap length %zu\n", mp->len);
122         } else {
123                 mp->len = 0;
124         }
125 }
126
127 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
128                                    struct perf_evlist *evlist, int idx,
129                                    bool per_cpu)
130 {
131         mp->idx = idx;
132
133         if (per_cpu) {
134                 mp->cpu = evlist->cpus->map[idx];
135                 if (evlist->threads)
136                         mp->tid = thread_map__pid(evlist->threads, 0);
137                 else
138                         mp->tid = -1;
139         } else {
140                 mp->cpu = -1;
141                 mp->tid = thread_map__pid(evlist->threads, idx);
142         }
143 }
144
145 #define AUXTRACE_INIT_NR_QUEUES 32
146
147 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
148 {
149         struct auxtrace_queue *queue_array;
150         unsigned int max_nr_queues, i;
151
152         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
153         if (nr_queues > max_nr_queues)
154                 return NULL;
155
156         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
157         if (!queue_array)
158                 return NULL;
159
160         for (i = 0; i < nr_queues; i++) {
161                 INIT_LIST_HEAD(&queue_array[i].head);
162                 queue_array[i].priv = NULL;
163         }
164
165         return queue_array;
166 }
167
168 int auxtrace_queues__init(struct auxtrace_queues *queues)
169 {
170         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
171         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
172         if (!queues->queue_array)
173                 return -ENOMEM;
174         return 0;
175 }
176
177 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
178                                  unsigned int new_nr_queues)
179 {
180         unsigned int nr_queues = queues->nr_queues;
181         struct auxtrace_queue *queue_array;
182         unsigned int i;
183
184         if (!nr_queues)
185                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
186
187         while (nr_queues && nr_queues < new_nr_queues)
188                 nr_queues <<= 1;
189
190         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
191                 return -EINVAL;
192
193         queue_array = auxtrace_alloc_queue_array(nr_queues);
194         if (!queue_array)
195                 return -ENOMEM;
196
197         for (i = 0; i < queues->nr_queues; i++) {
198                 list_splice_tail(&queues->queue_array[i].head,
199                                  &queue_array[i].head);
200                 queue_array[i].priv = queues->queue_array[i].priv;
201         }
202
203         queues->nr_queues = nr_queues;
204         queues->queue_array = queue_array;
205
206         return 0;
207 }
208
209 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
210 {
211         int fd = perf_data_file__fd(session->file);
212         void *p;
213         ssize_t ret;
214
215         if (size > SSIZE_MAX)
216                 return NULL;
217
218         p = malloc(size);
219         if (!p)
220                 return NULL;
221
222         ret = readn(fd, p, size);
223         if (ret != (ssize_t)size) {
224                 free(p);
225                 return NULL;
226         }
227
228         return p;
229 }
230
231 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
232                                        unsigned int idx,
233                                        struct auxtrace_buffer *buffer)
234 {
235         struct auxtrace_queue *queue;
236         int err;
237
238         if (idx >= queues->nr_queues) {
239                 err = auxtrace_queues__grow(queues, idx + 1);
240                 if (err)
241                         return err;
242         }
243
244         queue = &queues->queue_array[idx];
245
246         if (!queue->set) {
247                 queue->set = true;
248                 queue->tid = buffer->tid;
249                 queue->cpu = buffer->cpu;
250         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
251                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
252                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
253                 return -EINVAL;
254         }
255
256         buffer->buffer_nr = queues->next_buffer_nr++;
257
258         list_add_tail(&buffer->list, &queue->head);
259
260         queues->new_data = true;
261         queues->populated = true;
262
263         return 0;
264 }
265
266 /* Limit buffers to 32MiB on 32-bit */
267 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
268
269 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
270                                          unsigned int idx,
271                                          struct auxtrace_buffer *buffer)
272 {
273         u64 sz = buffer->size;
274         bool consecutive = false;
275         struct auxtrace_buffer *b;
276         int err;
277
278         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
279                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
280                 if (!b)
281                         return -ENOMEM;
282                 b->size = BUFFER_LIMIT_FOR_32_BIT;
283                 b->consecutive = consecutive;
284                 err = auxtrace_queues__add_buffer(queues, idx, b);
285                 if (err) {
286                         auxtrace_buffer__free(b);
287                         return err;
288                 }
289                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
290                 sz -= BUFFER_LIMIT_FOR_32_BIT;
291                 consecutive = true;
292         }
293
294         buffer->size = sz;
295         buffer->consecutive = consecutive;
296
297         return 0;
298 }
299
300 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
301                                              struct perf_session *session,
302                                              unsigned int idx,
303                                              struct auxtrace_buffer *buffer)
304 {
305         if (session->one_mmap) {
306                 buffer->data = buffer->data_offset - session->one_mmap_offset +
307                                session->one_mmap_addr;
308         } else if (perf_data_file__is_pipe(session->file)) {
309                 buffer->data = auxtrace_copy_data(buffer->size, session);
310                 if (!buffer->data)
311                         return -ENOMEM;
312                 buffer->data_needs_freeing = true;
313         } else if (BITS_PER_LONG == 32 &&
314                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
315                 int err;
316
317                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
318                 if (err)
319                         return err;
320         }
321
322         return auxtrace_queues__add_buffer(queues, idx, buffer);
323 }
324
325 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
326                                struct perf_session *session,
327                                union perf_event *event, off_t data_offset,
328                                struct auxtrace_buffer **buffer_ptr)
329 {
330         struct auxtrace_buffer *buffer;
331         unsigned int idx;
332         int err;
333
334         buffer = zalloc(sizeof(struct auxtrace_buffer));
335         if (!buffer)
336                 return -ENOMEM;
337
338         buffer->pid = -1;
339         buffer->tid = event->auxtrace.tid;
340         buffer->cpu = event->auxtrace.cpu;
341         buffer->data_offset = data_offset;
342         buffer->offset = event->auxtrace.offset;
343         buffer->reference = event->auxtrace.reference;
344         buffer->size = event->auxtrace.size;
345         idx = event->auxtrace.idx;
346
347         err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
348         if (err)
349                 goto out_err;
350
351         if (buffer_ptr)
352                 *buffer_ptr = buffer;
353
354         return 0;
355
356 out_err:
357         auxtrace_buffer__free(buffer);
358         return err;
359 }
360
361 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
362                                               struct perf_session *session,
363                                               off_t file_offset, size_t sz)
364 {
365         union perf_event *event;
366         int err;
367         char buf[PERF_SAMPLE_MAX_SIZE];
368
369         err = perf_session__peek_event(session, file_offset, buf,
370                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
371         if (err)
372                 return err;
373
374         if (event->header.type == PERF_RECORD_AUXTRACE) {
375                 if (event->header.size < sizeof(struct auxtrace_event) ||
376                     event->header.size != sz) {
377                         err = -EINVAL;
378                         goto out;
379                 }
380                 file_offset += event->header.size;
381                 err = auxtrace_queues__add_event(queues, session, event,
382                                                  file_offset, NULL);
383         }
384 out:
385         return err;
386 }
387
388 void auxtrace_queues__free(struct auxtrace_queues *queues)
389 {
390         unsigned int i;
391
392         for (i = 0; i < queues->nr_queues; i++) {
393                 while (!list_empty(&queues->queue_array[i].head)) {
394                         struct auxtrace_buffer *buffer;
395
396                         buffer = list_entry(queues->queue_array[i].head.next,
397                                             struct auxtrace_buffer, list);
398                         list_del(&buffer->list);
399                         auxtrace_buffer__free(buffer);
400                 }
401         }
402
403         zfree(&queues->queue_array);
404         queues->nr_queues = 0;
405 }
406
407 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
408                              unsigned int pos, unsigned int queue_nr,
409                              u64 ordinal)
410 {
411         unsigned int parent;
412
413         while (pos) {
414                 parent = (pos - 1) >> 1;
415                 if (heap_array[parent].ordinal <= ordinal)
416                         break;
417                 heap_array[pos] = heap_array[parent];
418                 pos = parent;
419         }
420         heap_array[pos].queue_nr = queue_nr;
421         heap_array[pos].ordinal = ordinal;
422 }
423
424 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
425                        u64 ordinal)
426 {
427         struct auxtrace_heap_item *heap_array;
428
429         if (queue_nr >= heap->heap_sz) {
430                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
431
432                 while (heap_sz <= queue_nr)
433                         heap_sz <<= 1;
434                 heap_array = realloc(heap->heap_array,
435                                      heap_sz * sizeof(struct auxtrace_heap_item));
436                 if (!heap_array)
437                         return -ENOMEM;
438                 heap->heap_array = heap_array;
439                 heap->heap_sz = heap_sz;
440         }
441
442         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
443
444         return 0;
445 }
446
447 void auxtrace_heap__free(struct auxtrace_heap *heap)
448 {
449         zfree(&heap->heap_array);
450         heap->heap_cnt = 0;
451         heap->heap_sz = 0;
452 }
453
454 void auxtrace_heap__pop(struct auxtrace_heap *heap)
455 {
456         unsigned int pos, last, heap_cnt = heap->heap_cnt;
457         struct auxtrace_heap_item *heap_array;
458
459         if (!heap_cnt)
460                 return;
461
462         heap->heap_cnt -= 1;
463
464         heap_array = heap->heap_array;
465
466         pos = 0;
467         while (1) {
468                 unsigned int left, right;
469
470                 left = (pos << 1) + 1;
471                 if (left >= heap_cnt)
472                         break;
473                 right = left + 1;
474                 if (right >= heap_cnt) {
475                         heap_array[pos] = heap_array[left];
476                         return;
477                 }
478                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
479                         heap_array[pos] = heap_array[left];
480                         pos = left;
481                 } else {
482                         heap_array[pos] = heap_array[right];
483                         pos = right;
484                 }
485         }
486
487         last = heap_cnt - 1;
488         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
489                          heap_array[last].ordinal);
490 }
491
492 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
493                                        struct perf_evlist *evlist)
494 {
495         if (itr)
496                 return itr->info_priv_size(itr, evlist);
497         return 0;
498 }
499
500 static int auxtrace_not_supported(void)
501 {
502         pr_err("AUX area tracing is not supported on this architecture\n");
503         return -EINVAL;
504 }
505
506 int auxtrace_record__info_fill(struct auxtrace_record *itr,
507                                struct perf_session *session,
508                                struct auxtrace_info_event *auxtrace_info,
509                                size_t priv_size)
510 {
511         if (itr)
512                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
513         return auxtrace_not_supported();
514 }
515
516 void auxtrace_record__free(struct auxtrace_record *itr)
517 {
518         if (itr)
519                 itr->free(itr);
520 }
521
522 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
523 {
524         if (itr && itr->snapshot_start)
525                 return itr->snapshot_start(itr);
526         return 0;
527 }
528
529 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
530 {
531         if (itr && itr->snapshot_finish)
532                 return itr->snapshot_finish(itr);
533         return 0;
534 }
535
536 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
537                                    struct auxtrace_mmap *mm,
538                                    unsigned char *data, u64 *head, u64 *old)
539 {
540         if (itr && itr->find_snapshot)
541                 return itr->find_snapshot(itr, idx, mm, data, head, old);
542         return 0;
543 }
544
545 int auxtrace_record__options(struct auxtrace_record *itr,
546                              struct perf_evlist *evlist,
547                              struct record_opts *opts)
548 {
549         if (itr)
550                 return itr->recording_options(itr, evlist, opts);
551         return 0;
552 }
553
554 u64 auxtrace_record__reference(struct auxtrace_record *itr)
555 {
556         if (itr)
557                 return itr->reference(itr);
558         return 0;
559 }
560
561 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
562                                     struct record_opts *opts, const char *str)
563 {
564         if (!str)
565                 return 0;
566
567         if (itr)
568                 return itr->parse_snapshot_options(itr, opts, str);
569
570         pr_err("No AUX area tracing to snapshot\n");
571         return -EINVAL;
572 }
573
574 struct auxtrace_record *__weak
575 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
576 {
577         *err = 0;
578         return NULL;
579 }
580
581 static int auxtrace_index__alloc(struct list_head *head)
582 {
583         struct auxtrace_index *auxtrace_index;
584
585         auxtrace_index = malloc(sizeof(struct auxtrace_index));
586         if (!auxtrace_index)
587                 return -ENOMEM;
588
589         auxtrace_index->nr = 0;
590         INIT_LIST_HEAD(&auxtrace_index->list);
591
592         list_add_tail(&auxtrace_index->list, head);
593
594         return 0;
595 }
596
597 void auxtrace_index__free(struct list_head *head)
598 {
599         struct auxtrace_index *auxtrace_index, *n;
600
601         list_for_each_entry_safe(auxtrace_index, n, head, list) {
602                 list_del(&auxtrace_index->list);
603                 free(auxtrace_index);
604         }
605 }
606
607 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
608 {
609         struct auxtrace_index *auxtrace_index;
610         int err;
611
612         if (list_empty(head)) {
613                 err = auxtrace_index__alloc(head);
614                 if (err)
615                         return NULL;
616         }
617
618         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
619
620         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
621                 err = auxtrace_index__alloc(head);
622                 if (err)
623                         return NULL;
624                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
625                                             list);
626         }
627
628         return auxtrace_index;
629 }
630
631 int auxtrace_index__auxtrace_event(struct list_head *head,
632                                    union perf_event *event, off_t file_offset)
633 {
634         struct auxtrace_index *auxtrace_index;
635         size_t nr;
636
637         auxtrace_index = auxtrace_index__last(head);
638         if (!auxtrace_index)
639                 return -ENOMEM;
640
641         nr = auxtrace_index->nr;
642         auxtrace_index->entries[nr].file_offset = file_offset;
643         auxtrace_index->entries[nr].sz = event->header.size;
644         auxtrace_index->nr += 1;
645
646         return 0;
647 }
648
649 static int auxtrace_index__do_write(int fd,
650                                     struct auxtrace_index *auxtrace_index)
651 {
652         struct auxtrace_index_entry ent;
653         size_t i;
654
655         for (i = 0; i < auxtrace_index->nr; i++) {
656                 ent.file_offset = auxtrace_index->entries[i].file_offset;
657                 ent.sz = auxtrace_index->entries[i].sz;
658                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
659                         return -errno;
660         }
661         return 0;
662 }
663
664 int auxtrace_index__write(int fd, struct list_head *head)
665 {
666         struct auxtrace_index *auxtrace_index;
667         u64 total = 0;
668         int err;
669
670         list_for_each_entry(auxtrace_index, head, list)
671                 total += auxtrace_index->nr;
672
673         if (writen(fd, &total, sizeof(total)) != sizeof(total))
674                 return -errno;
675
676         list_for_each_entry(auxtrace_index, head, list) {
677                 err = auxtrace_index__do_write(fd, auxtrace_index);
678                 if (err)
679                         return err;
680         }
681
682         return 0;
683 }
684
685 static int auxtrace_index__process_entry(int fd, struct list_head *head,
686                                          bool needs_swap)
687 {
688         struct auxtrace_index *auxtrace_index;
689         struct auxtrace_index_entry ent;
690         size_t nr;
691
692         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
693                 return -1;
694
695         auxtrace_index = auxtrace_index__last(head);
696         if (!auxtrace_index)
697                 return -1;
698
699         nr = auxtrace_index->nr;
700         if (needs_swap) {
701                 auxtrace_index->entries[nr].file_offset =
702                                                 bswap_64(ent.file_offset);
703                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
704         } else {
705                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
706                 auxtrace_index->entries[nr].sz = ent.sz;
707         }
708
709         auxtrace_index->nr = nr + 1;
710
711         return 0;
712 }
713
714 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
715                             bool needs_swap)
716 {
717         struct list_head *head = &session->auxtrace_index;
718         u64 nr;
719
720         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
721                 return -1;
722
723         if (needs_swap)
724                 nr = bswap_64(nr);
725
726         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
727                 return -1;
728
729         while (nr--) {
730                 int err;
731
732                 err = auxtrace_index__process_entry(fd, head, needs_swap);
733                 if (err)
734                         return -1;
735         }
736
737         return 0;
738 }
739
740 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
741                                                 struct perf_session *session,
742                                                 struct auxtrace_index_entry *ent)
743 {
744         return auxtrace_queues__add_indexed_event(queues, session,
745                                                   ent->file_offset, ent->sz);
746 }
747
748 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
749                                    struct perf_session *session)
750 {
751         struct auxtrace_index *auxtrace_index;
752         struct auxtrace_index_entry *ent;
753         size_t i;
754         int err;
755
756         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
757                 for (i = 0; i < auxtrace_index->nr; i++) {
758                         ent = &auxtrace_index->entries[i];
759                         err = auxtrace_queues__process_index_entry(queues,
760                                                                    session,
761                                                                    ent);
762                         if (err)
763                                 return err;
764                 }
765         }
766         return 0;
767 }
768
769 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
770                                               struct auxtrace_buffer *buffer)
771 {
772         if (buffer) {
773                 if (list_is_last(&buffer->list, &queue->head))
774                         return NULL;
775                 return list_entry(buffer->list.next, struct auxtrace_buffer,
776                                   list);
777         } else {
778                 if (list_empty(&queue->head))
779                         return NULL;
780                 return list_entry(queue->head.next, struct auxtrace_buffer,
781                                   list);
782         }
783 }
784
785 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
786 {
787         size_t adj = buffer->data_offset & (page_size - 1);
788         size_t size = buffer->size + adj;
789         off_t file_offset = buffer->data_offset - adj;
790         void *addr;
791
792         if (buffer->data)
793                 return buffer->data;
794
795         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
796         if (addr == MAP_FAILED)
797                 return NULL;
798
799         buffer->mmap_addr = addr;
800         buffer->mmap_size = size;
801
802         buffer->data = addr + adj;
803
804         return buffer->data;
805 }
806
807 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
808 {
809         if (!buffer->data || !buffer->mmap_addr)
810                 return;
811         munmap(buffer->mmap_addr, buffer->mmap_size);
812         buffer->mmap_addr = NULL;
813         buffer->mmap_size = 0;
814         buffer->data = NULL;
815         buffer->use_data = NULL;
816 }
817
818 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
819 {
820         auxtrace_buffer__put_data(buffer);
821         if (buffer->data_needs_freeing) {
822                 buffer->data_needs_freeing = false;
823                 zfree(&buffer->data);
824                 buffer->use_data = NULL;
825                 buffer->size = 0;
826         }
827 }
828
829 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
830 {
831         auxtrace_buffer__drop_data(buffer);
832         free(buffer);
833 }
834
835 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
836                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
837                           const char *msg)
838 {
839         size_t size;
840
841         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
842
843         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
844         auxtrace_error->type = type;
845         auxtrace_error->code = code;
846         auxtrace_error->cpu = cpu;
847         auxtrace_error->pid = pid;
848         auxtrace_error->tid = tid;
849         auxtrace_error->ip = ip;
850         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
851
852         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
853                strlen(auxtrace_error->msg) + 1;
854         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
855 }
856
857 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
858                                          struct perf_tool *tool,
859                                          struct perf_session *session,
860                                          perf_event__handler_t process)
861 {
862         union perf_event *ev;
863         size_t priv_size;
864         int err;
865
866         pr_debug2("Synthesizing auxtrace information\n");
867         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
868         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
869         if (!ev)
870                 return -ENOMEM;
871
872         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
873         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
874                                         priv_size;
875         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
876                                          priv_size);
877         if (err)
878                 goto out_free;
879
880         err = process(tool, ev, NULL, NULL);
881 out_free:
882         free(ev);
883         return err;
884 }
885
886 static bool auxtrace__dont_decode(struct perf_session *session)
887 {
888         return !session->itrace_synth_opts ||
889                session->itrace_synth_opts->dont_decode;
890 }
891
892 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
893                                       union perf_event *event,
894                                       struct perf_session *session)
895 {
896         enum auxtrace_type type = event->auxtrace_info.type;
897
898         if (dump_trace)
899                 fprintf(stdout, " type: %u\n", type);
900
901         switch (type) {
902         case PERF_AUXTRACE_INTEL_PT:
903                 return intel_pt_process_auxtrace_info(event, session);
904         case PERF_AUXTRACE_INTEL_BTS:
905                 return intel_bts_process_auxtrace_info(event, session);
906         case PERF_AUXTRACE_CS_ETM:
907         case PERF_AUXTRACE_UNKNOWN:
908         default:
909                 return -EINVAL;
910         }
911 }
912
913 s64 perf_event__process_auxtrace(struct perf_tool *tool,
914                                  union perf_event *event,
915                                  struct perf_session *session)
916 {
917         s64 err;
918
919         if (dump_trace)
920                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
921                         event->auxtrace.size, event->auxtrace.offset,
922                         event->auxtrace.reference, event->auxtrace.idx,
923                         event->auxtrace.tid, event->auxtrace.cpu);
924
925         if (auxtrace__dont_decode(session))
926                 return event->auxtrace.size;
927
928         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
929                 return -EINVAL;
930
931         err = session->auxtrace->process_auxtrace_event(session, event, tool);
932         if (err < 0)
933                 return err;
934
935         return event->auxtrace.size;
936 }
937
938 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
939 #define PERF_ITRACE_DEFAULT_PERIOD              100000
940 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
941 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
942 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
943 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
944
945 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
946 {
947         synth_opts->instructions = true;
948         synth_opts->branches = true;
949         synth_opts->transactions = true;
950         synth_opts->errors = true;
951         synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
952         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
953         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
954         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
955         synth_opts->initial_skip = 0;
956 }
957
958 /*
959  * Please check tools/perf/Documentation/perf-script.txt for information
960  * about the options parsed here, which is introduced after this cset,
961  * when support in 'perf script' for these options is introduced.
962  */
963 int itrace_parse_synth_opts(const struct option *opt, const char *str,
964                             int unset)
965 {
966         struct itrace_synth_opts *synth_opts = opt->value;
967         const char *p;
968         char *endptr;
969         bool period_type_set = false;
970         bool period_set = false;
971
972         synth_opts->set = true;
973
974         if (unset) {
975                 synth_opts->dont_decode = true;
976                 return 0;
977         }
978
979         if (!str) {
980                 itrace_synth_opts__set_default(synth_opts);
981                 return 0;
982         }
983
984         for (p = str; *p;) {
985                 switch (*p++) {
986                 case 'i':
987                         synth_opts->instructions = true;
988                         while (*p == ' ' || *p == ',')
989                                 p += 1;
990                         if (isdigit(*p)) {
991                                 synth_opts->period = strtoull(p, &endptr, 10);
992                                 period_set = true;
993                                 p = endptr;
994                                 while (*p == ' ' || *p == ',')
995                                         p += 1;
996                                 switch (*p++) {
997                                 case 'i':
998                                         synth_opts->period_type =
999                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1000                                         period_type_set = true;
1001                                         break;
1002                                 case 't':
1003                                         synth_opts->period_type =
1004                                                 PERF_ITRACE_PERIOD_TICKS;
1005                                         period_type_set = true;
1006                                         break;
1007                                 case 'm':
1008                                         synth_opts->period *= 1000;
1009                                         /* Fall through */
1010                                 case 'u':
1011                                         synth_opts->period *= 1000;
1012                                         /* Fall through */
1013                                 case 'n':
1014                                         if (*p++ != 's')
1015                                                 goto out_err;
1016                                         synth_opts->period_type =
1017                                                 PERF_ITRACE_PERIOD_NANOSECS;
1018                                         period_type_set = true;
1019                                         break;
1020                                 case '\0':
1021                                         goto out;
1022                                 default:
1023                                         goto out_err;
1024                                 }
1025                         }
1026                         break;
1027                 case 'b':
1028                         synth_opts->branches = true;
1029                         break;
1030                 case 'x':
1031                         synth_opts->transactions = true;
1032                         break;
1033                 case 'e':
1034                         synth_opts->errors = true;
1035                         break;
1036                 case 'd':
1037                         synth_opts->log = true;
1038                         break;
1039                 case 'c':
1040                         synth_opts->branches = true;
1041                         synth_opts->calls = true;
1042                         break;
1043                 case 'r':
1044                         synth_opts->branches = true;
1045                         synth_opts->returns = true;
1046                         break;
1047                 case 'g':
1048                         synth_opts->callchain = true;
1049                         synth_opts->callchain_sz =
1050                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1051                         while (*p == ' ' || *p == ',')
1052                                 p += 1;
1053                         if (isdigit(*p)) {
1054                                 unsigned int val;
1055
1056                                 val = strtoul(p, &endptr, 10);
1057                                 p = endptr;
1058                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1059                                         goto out_err;
1060                                 synth_opts->callchain_sz = val;
1061                         }
1062                         break;
1063                 case 'l':
1064                         synth_opts->last_branch = true;
1065                         synth_opts->last_branch_sz =
1066                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1067                         while (*p == ' ' || *p == ',')
1068                                 p += 1;
1069                         if (isdigit(*p)) {
1070                                 unsigned int val;
1071
1072                                 val = strtoul(p, &endptr, 10);
1073                                 p = endptr;
1074                                 if (!val ||
1075                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1076                                         goto out_err;
1077                                 synth_opts->last_branch_sz = val;
1078                         }
1079                         break;
1080                 case 's':
1081                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1082                         if (p == endptr)
1083                                 goto out_err;
1084                         p = endptr;
1085                         break;
1086                 case ' ':
1087                 case ',':
1088                         break;
1089                 default:
1090                         goto out_err;
1091                 }
1092         }
1093 out:
1094         if (synth_opts->instructions) {
1095                 if (!period_type_set)
1096                         synth_opts->period_type =
1097                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1098                 if (!period_set)
1099                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1100         }
1101
1102         return 0;
1103
1104 out_err:
1105         pr_err("Bad Instruction Tracing options '%s'\n", str);
1106         return -EINVAL;
1107 }
1108
1109 static const char * const auxtrace_error_type_name[] = {
1110         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1111 };
1112
1113 static const char *auxtrace_error_name(int type)
1114 {
1115         const char *error_type_name = NULL;
1116
1117         if (type < PERF_AUXTRACE_ERROR_MAX)
1118                 error_type_name = auxtrace_error_type_name[type];
1119         if (!error_type_name)
1120                 error_type_name = "unknown AUX";
1121         return error_type_name;
1122 }
1123
1124 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1125 {
1126         struct auxtrace_error_event *e = &event->auxtrace_error;
1127         int ret;
1128
1129         ret = fprintf(fp, " %s error type %u",
1130                       auxtrace_error_name(e->type), e->type);
1131         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1132                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1133         return ret;
1134 }
1135
1136 void perf_session__auxtrace_error_inc(struct perf_session *session,
1137                                       union perf_event *event)
1138 {
1139         struct auxtrace_error_event *e = &event->auxtrace_error;
1140
1141         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1142                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1143 }
1144
1145 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1146 {
1147         int i;
1148
1149         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1150                 if (!stats->nr_auxtrace_errors[i])
1151                         continue;
1152                 ui__warning("%u %s errors\n",
1153                             stats->nr_auxtrace_errors[i],
1154                             auxtrace_error_name(i));
1155         }
1156 }
1157
1158 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1159                                        union perf_event *event,
1160                                        struct perf_session *session)
1161 {
1162         if (auxtrace__dont_decode(session))
1163                 return 0;
1164
1165         perf_event__fprintf_auxtrace_error(event, stdout);
1166         return 0;
1167 }
1168
1169 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1170                                  struct auxtrace_record *itr,
1171                                  struct perf_tool *tool, process_auxtrace_t fn,
1172                                  bool snapshot, size_t snapshot_size)
1173 {
1174         u64 head, old = mm->prev, offset, ref;
1175         unsigned char *data = mm->base;
1176         size_t size, head_off, old_off, len1, len2, padding;
1177         union perf_event ev;
1178         void *data1, *data2;
1179
1180         if (snapshot) {
1181                 head = auxtrace_mmap__read_snapshot_head(mm);
1182                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1183                                                    &head, &old))
1184                         return -1;
1185         } else {
1186                 head = auxtrace_mmap__read_head(mm);
1187         }
1188
1189         if (old == head)
1190                 return 0;
1191
1192         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1193                   mm->idx, old, head, head - old);
1194
1195         if (mm->mask) {
1196                 head_off = head & mm->mask;
1197                 old_off = old & mm->mask;
1198         } else {
1199                 head_off = head % mm->len;
1200                 old_off = old % mm->len;
1201         }
1202
1203         if (head_off > old_off)
1204                 size = head_off - old_off;
1205         else
1206                 size = mm->len - (old_off - head_off);
1207
1208         if (snapshot && size > snapshot_size)
1209                 size = snapshot_size;
1210
1211         ref = auxtrace_record__reference(itr);
1212
1213         if (head > old || size <= head || mm->mask) {
1214                 offset = head - size;
1215         } else {
1216                 /*
1217                  * When the buffer size is not a power of 2, 'head' wraps at the
1218                  * highest multiple of the buffer size, so we have to subtract
1219                  * the remainder here.
1220                  */
1221                 u64 rem = (0ULL - mm->len) % mm->len;
1222
1223                 offset = head - size - rem;
1224         }
1225
1226         if (size > head_off) {
1227                 len1 = size - head_off;
1228                 data1 = &data[mm->len - len1];
1229                 len2 = head_off;
1230                 data2 = &data[0];
1231         } else {
1232                 len1 = size;
1233                 data1 = &data[head_off - len1];
1234                 len2 = 0;
1235                 data2 = NULL;
1236         }
1237
1238         if (itr->alignment) {
1239                 unsigned int unwanted = len1 % itr->alignment;
1240
1241                 len1 -= unwanted;
1242                 size -= unwanted;
1243         }
1244
1245         /* padding must be written by fn() e.g. record__process_auxtrace() */
1246         padding = size & 7;
1247         if (padding)
1248                 padding = 8 - padding;
1249
1250         memset(&ev, 0, sizeof(ev));
1251         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1252         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1253         ev.auxtrace.size = size + padding;
1254         ev.auxtrace.offset = offset;
1255         ev.auxtrace.reference = ref;
1256         ev.auxtrace.idx = mm->idx;
1257         ev.auxtrace.tid = mm->tid;
1258         ev.auxtrace.cpu = mm->cpu;
1259
1260         if (fn(tool, &ev, data1, len1, data2, len2))
1261                 return -1;
1262
1263         mm->prev = head;
1264
1265         if (!snapshot) {
1266                 auxtrace_mmap__write_tail(mm, head);
1267                 if (itr->read_finish) {
1268                         int err;
1269
1270                         err = itr->read_finish(itr, mm->idx);
1271                         if (err < 0)
1272                                 return err;
1273                 }
1274         }
1275
1276         return 1;
1277 }
1278
1279 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1280                         struct perf_tool *tool, process_auxtrace_t fn)
1281 {
1282         return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1283 }
1284
1285 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1286                                  struct auxtrace_record *itr,
1287                                  struct perf_tool *tool, process_auxtrace_t fn,
1288                                  size_t snapshot_size)
1289 {
1290         return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1291 }
1292
1293 /**
1294  * struct auxtrace_cache - hash table to implement a cache
1295  * @hashtable: the hashtable
1296  * @sz: hashtable size (number of hlists)
1297  * @entry_size: size of an entry
1298  * @limit: limit the number of entries to this maximum, when reached the cache
1299  *         is dropped and caching begins again with an empty cache
1300  * @cnt: current number of entries
1301  * @bits: hashtable size (@sz = 2^@bits)
1302  */
1303 struct auxtrace_cache {
1304         struct hlist_head *hashtable;
1305         size_t sz;
1306         size_t entry_size;
1307         size_t limit;
1308         size_t cnt;
1309         unsigned int bits;
1310 };
1311
1312 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1313                                            unsigned int limit_percent)
1314 {
1315         struct auxtrace_cache *c;
1316         struct hlist_head *ht;
1317         size_t sz, i;
1318
1319         c = zalloc(sizeof(struct auxtrace_cache));
1320         if (!c)
1321                 return NULL;
1322
1323         sz = 1UL << bits;
1324
1325         ht = calloc(sz, sizeof(struct hlist_head));
1326         if (!ht)
1327                 goto out_free;
1328
1329         for (i = 0; i < sz; i++)
1330                 INIT_HLIST_HEAD(&ht[i]);
1331
1332         c->hashtable = ht;
1333         c->sz = sz;
1334         c->entry_size = entry_size;
1335         c->limit = (c->sz * limit_percent) / 100;
1336         c->bits = bits;
1337
1338         return c;
1339
1340 out_free:
1341         free(c);
1342         return NULL;
1343 }
1344
1345 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1346 {
1347         struct auxtrace_cache_entry *entry;
1348         struct hlist_node *tmp;
1349         size_t i;
1350
1351         if (!c)
1352                 return;
1353
1354         for (i = 0; i < c->sz; i++) {
1355                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1356                         hlist_del(&entry->hash);
1357                         auxtrace_cache__free_entry(c, entry);
1358                 }
1359         }
1360
1361         c->cnt = 0;
1362 }
1363
1364 void auxtrace_cache__free(struct auxtrace_cache *c)
1365 {
1366         if (!c)
1367                 return;
1368
1369         auxtrace_cache__drop(c);
1370         free(c->hashtable);
1371         free(c);
1372 }
1373
1374 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1375 {
1376         return malloc(c->entry_size);
1377 }
1378
1379 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1380                                 void *entry)
1381 {
1382         free(entry);
1383 }
1384
1385 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1386                         struct auxtrace_cache_entry *entry)
1387 {
1388         if (c->limit && ++c->cnt > c->limit)
1389                 auxtrace_cache__drop(c);
1390
1391         entry->key = key;
1392         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1393
1394         return 0;
1395 }
1396
1397 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1398 {
1399         struct auxtrace_cache_entry *entry;
1400         struct hlist_head *hlist;
1401
1402         if (!c)
1403                 return NULL;
1404
1405         hlist = &c->hashtable[hash_32(key, c->bits)];
1406         hlist_for_each_entry(entry, hlist, hash) {
1407                 if (entry->key == key)
1408                         return entry;
1409         }
1410
1411         return NULL;
1412 }
1413
1414 static void addr_filter__free_str(struct addr_filter *filt)
1415 {
1416         free(filt->str);
1417         filt->action   = NULL;
1418         filt->sym_from = NULL;
1419         filt->sym_to   = NULL;
1420         filt->filename = NULL;
1421         filt->str      = NULL;
1422 }
1423
1424 static struct addr_filter *addr_filter__new(void)
1425 {
1426         struct addr_filter *filt = zalloc(sizeof(*filt));
1427
1428         if (filt)
1429                 INIT_LIST_HEAD(&filt->list);
1430
1431         return filt;
1432 }
1433
1434 static void addr_filter__free(struct addr_filter *filt)
1435 {
1436         if (filt)
1437                 addr_filter__free_str(filt);
1438         free(filt);
1439 }
1440
1441 static void addr_filters__add(struct addr_filters *filts,
1442                               struct addr_filter *filt)
1443 {
1444         list_add_tail(&filt->list, &filts->head);
1445         filts->cnt += 1;
1446 }
1447
1448 static void addr_filters__del(struct addr_filters *filts,
1449                               struct addr_filter *filt)
1450 {
1451         list_del_init(&filt->list);
1452         filts->cnt -= 1;
1453 }
1454
1455 void addr_filters__init(struct addr_filters *filts)
1456 {
1457         INIT_LIST_HEAD(&filts->head);
1458         filts->cnt = 0;
1459 }
1460
1461 void addr_filters__exit(struct addr_filters *filts)
1462 {
1463         struct addr_filter *filt, *n;
1464
1465         list_for_each_entry_safe(filt, n, &filts->head, list) {
1466                 addr_filters__del(filts, filt);
1467                 addr_filter__free(filt);
1468         }
1469 }
1470
1471 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1472                             const char *str_delim)
1473 {
1474         *inp += strspn(*inp, " ");
1475
1476         if (isdigit(**inp)) {
1477                 char *endptr;
1478
1479                 if (!num)
1480                         return -EINVAL;
1481                 errno = 0;
1482                 *num = strtoull(*inp, &endptr, 0);
1483                 if (errno)
1484                         return -errno;
1485                 if (endptr == *inp)
1486                         return -EINVAL;
1487                 *inp = endptr;
1488         } else {
1489                 size_t n;
1490
1491                 if (!str)
1492                         return -EINVAL;
1493                 *inp += strspn(*inp, " ");
1494                 *str = *inp;
1495                 n = strcspn(*inp, str_delim);
1496                 if (!n)
1497                         return -EINVAL;
1498                 *inp += n;
1499                 if (**inp) {
1500                         **inp = '\0';
1501                         *inp += 1;
1502                 }
1503         }
1504         return 0;
1505 }
1506
1507 static int parse_action(struct addr_filter *filt)
1508 {
1509         if (!strcmp(filt->action, "filter")) {
1510                 filt->start = true;
1511                 filt->range = true;
1512         } else if (!strcmp(filt->action, "start")) {
1513                 filt->start = true;
1514         } else if (!strcmp(filt->action, "stop")) {
1515                 filt->start = false;
1516         } else if (!strcmp(filt->action, "tracestop")) {
1517                 filt->start = false;
1518                 filt->range = true;
1519                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1520         } else {
1521                 return -EINVAL;
1522         }
1523         return 0;
1524 }
1525
1526 static int parse_sym_idx(char **inp, int *idx)
1527 {
1528         *idx = -1;
1529
1530         *inp += strspn(*inp, " ");
1531
1532         if (**inp != '#')
1533                 return 0;
1534
1535         *inp += 1;
1536
1537         if (**inp == 'g' || **inp == 'G') {
1538                 *inp += 1;
1539                 *idx = 0;
1540         } else {
1541                 unsigned long num;
1542                 char *endptr;
1543
1544                 errno = 0;
1545                 num = strtoul(*inp, &endptr, 0);
1546                 if (errno)
1547                         return -errno;
1548                 if (endptr == *inp || num > INT_MAX)
1549                         return -EINVAL;
1550                 *inp = endptr;
1551                 *idx = num;
1552         }
1553
1554         return 0;
1555 }
1556
1557 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1558 {
1559         int err = parse_num_or_str(inp, num, str, " ");
1560
1561         if (!err && *str)
1562                 err = parse_sym_idx(inp, idx);
1563
1564         return err;
1565 }
1566
1567 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1568 {
1569         char *fstr;
1570         int err;
1571
1572         filt->str = fstr = strdup(*filter_inp);
1573         if (!fstr)
1574                 return -ENOMEM;
1575
1576         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1577         if (err)
1578                 goto out_err;
1579
1580         err = parse_action(filt);
1581         if (err)
1582                 goto out_err;
1583
1584         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1585                               &filt->sym_from_idx);
1586         if (err)
1587                 goto out_err;
1588
1589         fstr += strspn(fstr, " ");
1590
1591         if (*fstr == '/') {
1592                 fstr += 1;
1593                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1594                                       &filt->sym_to_idx);
1595                 if (err)
1596                         goto out_err;
1597                 filt->range = true;
1598         }
1599
1600         fstr += strspn(fstr, " ");
1601
1602         if (*fstr == '@') {
1603                 fstr += 1;
1604                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1605                 if (err)
1606                         goto out_err;
1607         }
1608
1609         fstr += strspn(fstr, " ,");
1610
1611         *filter_inp += fstr - filt->str;
1612
1613         return 0;
1614
1615 out_err:
1616         addr_filter__free_str(filt);
1617
1618         return err;
1619 }
1620
1621 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1622                                     const char *filter)
1623 {
1624         struct addr_filter *filt;
1625         const char *fstr = filter;
1626         int err;
1627
1628         while (*fstr) {
1629                 filt = addr_filter__new();
1630                 err = parse_one_filter(filt, &fstr);
1631                 if (err) {
1632                         addr_filter__free(filt);
1633                         addr_filters__exit(filts);
1634                         return err;
1635                 }
1636                 addr_filters__add(filts, filt);
1637         }
1638
1639         return 0;
1640 }
1641
1642 struct sym_args {
1643         const char      *name;
1644         u64             start;
1645         u64             size;
1646         int             idx;
1647         int             cnt;
1648         bool            started;
1649         bool            global;
1650         bool            selected;
1651         bool            duplicate;
1652         bool            near;
1653 };
1654
1655 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1656 {
1657         /* A function with the same name, and global or the n'th found or any */
1658         return symbol_type__is_a(type, MAP__FUNCTION) &&
1659                !strcmp(name, args->name) &&
1660                ((args->global && isupper(type)) ||
1661                 (args->selected && ++(args->cnt) == args->idx) ||
1662                 (!args->global && !args->selected));
1663 }
1664
1665 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1666 {
1667         struct sym_args *args = arg;
1668
1669         if (args->started) {
1670                 if (!args->size)
1671                         args->size = start - args->start;
1672                 if (args->selected) {
1673                         if (args->size)
1674                                 return 1;
1675                 } else if (kern_sym_match(args, name, type)) {
1676                         args->duplicate = true;
1677                         return 1;
1678                 }
1679         } else if (kern_sym_match(args, name, type)) {
1680                 args->started = true;
1681                 args->start = start;
1682         }
1683
1684         return 0;
1685 }
1686
1687 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1688 {
1689         struct sym_args *args = arg;
1690
1691         if (kern_sym_match(args, name, type)) {
1692                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1693                        ++args->cnt, start, type, name);
1694                 args->near = true;
1695         } else if (args->near) {
1696                 args->near = false;
1697                 pr_err("\t\twhich is near\t\t%s\n", name);
1698         }
1699
1700         return 0;
1701 }
1702
1703 static int sym_not_found_error(const char *sym_name, int idx)
1704 {
1705         if (idx > 0) {
1706                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1707                        idx, sym_name);
1708         } else if (!idx) {
1709                 pr_err("Global symbol '%s' not found.\n", sym_name);
1710         } else {
1711                 pr_err("Symbol '%s' not found.\n", sym_name);
1712         }
1713         pr_err("Note that symbols must be functions.\n");
1714
1715         return -EINVAL;
1716 }
1717
1718 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1719 {
1720         struct sym_args args = {
1721                 .name = sym_name,
1722                 .idx = idx,
1723                 .global = !idx,
1724                 .selected = idx > 0,
1725         };
1726         int err;
1727
1728         *start = 0;
1729         *size = 0;
1730
1731         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1732         if (err < 0) {
1733                 pr_err("Failed to parse /proc/kallsyms\n");
1734                 return err;
1735         }
1736
1737         if (args.duplicate) {
1738                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1739                 args.cnt = 0;
1740                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1741                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1742                        sym_name);
1743                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1744                 return -EINVAL;
1745         }
1746
1747         if (!args.started) {
1748                 pr_err("Kernel symbol lookup: ");
1749                 return sym_not_found_error(sym_name, idx);
1750         }
1751
1752         *start = args.start;
1753         *size = args.size;
1754
1755         return 0;
1756 }
1757
1758 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1759                                char type, u64 start)
1760 {
1761         struct sym_args *args = arg;
1762
1763         if (!symbol_type__is_a(type, MAP__FUNCTION))
1764                 return 0;
1765
1766         if (!args->started) {
1767                 args->started = true;
1768                 args->start = start;
1769         }
1770         /* Don't know exactly where the kernel ends, so we add a page */
1771         args->size = round_up(start, page_size) + page_size - args->start;
1772
1773         return 0;
1774 }
1775
1776 static int addr_filter__entire_kernel(struct addr_filter *filt)
1777 {
1778         struct sym_args args = { .started = false };
1779         int err;
1780
1781         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1782         if (err < 0 || !args.started) {
1783                 pr_err("Failed to parse /proc/kallsyms\n");
1784                 return err;
1785         }
1786
1787         filt->addr = args.start;
1788         filt->size = args.size;
1789
1790         return 0;
1791 }
1792
1793 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1794 {
1795         if (start + size >= filt->addr)
1796                 return 0;
1797
1798         if (filt->sym_from) {
1799                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1800                        filt->sym_to, start, filt->sym_from, filt->addr);
1801         } else {
1802                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1803                        filt->sym_to, start, filt->addr);
1804         }
1805
1806         return -EINVAL;
1807 }
1808
1809 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1810 {
1811         bool no_size = false;
1812         u64 start, size;
1813         int err;
1814
1815         if (symbol_conf.kptr_restrict) {
1816                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1817                 return -EINVAL;
1818         }
1819
1820         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1821                 return addr_filter__entire_kernel(filt);
1822
1823         if (filt->sym_from) {
1824                 err = find_kern_sym(filt->sym_from, &start, &size,
1825                                     filt->sym_from_idx);
1826                 if (err)
1827                         return err;
1828                 filt->addr = start;
1829                 if (filt->range && !filt->size && !filt->sym_to) {
1830                         filt->size = size;
1831                         no_size = !size;
1832                 }
1833         }
1834
1835         if (filt->sym_to) {
1836                 err = find_kern_sym(filt->sym_to, &start, &size,
1837                                     filt->sym_to_idx);
1838                 if (err)
1839                         return err;
1840
1841                 err = check_end_after_start(filt, start, size);
1842                 if (err)
1843                         return err;
1844                 filt->size = start + size - filt->addr;
1845                 no_size = !size;
1846         }
1847
1848         /* The very last symbol in kallsyms does not imply a particular size */
1849         if (no_size) {
1850                 pr_err("Cannot determine size of symbol '%s'\n",
1851                        filt->sym_to ? filt->sym_to : filt->sym_from);
1852                 return -EINVAL;
1853         }
1854
1855         return 0;
1856 }
1857
1858 static struct dso *load_dso(const char *name)
1859 {
1860         struct map *map;
1861         struct dso *dso;
1862
1863         map = dso__new_map(name);
1864         if (!map)
1865                 return NULL;
1866
1867         map__load(map);
1868
1869         dso = dso__get(map->dso);
1870
1871         map__put(map);
1872
1873         return dso;
1874 }
1875
1876 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1877                           int idx)
1878 {
1879         /* Same name, and global or the n'th found or any */
1880         return !arch__compare_symbol_names(name, sym->name) &&
1881                ((!idx && sym->binding == STB_GLOBAL) ||
1882                 (idx > 0 && ++*cnt == idx) ||
1883                 idx < 0);
1884 }
1885
1886 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1887 {
1888         struct symbol *sym;
1889         bool near = false;
1890         int cnt = 0;
1891
1892         pr_err("Multiple symbols with name '%s'\n", sym_name);
1893
1894         sym = dso__first_symbol(dso, MAP__FUNCTION);
1895         while (sym) {
1896                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1897                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1898                                ++cnt, sym->start,
1899                                sym->binding == STB_GLOBAL ? 'g' :
1900                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1901                                sym->name);
1902                         near = true;
1903                 } else if (near) {
1904                         near = false;
1905                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1906                 }
1907                 sym = dso__next_symbol(sym);
1908         }
1909
1910         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1911                sym_name);
1912         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1913 }
1914
1915 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1916                         u64 *size, int idx)
1917 {
1918         struct symbol *sym;
1919         int cnt = 0;
1920
1921         *start = 0;
1922         *size = 0;
1923
1924         sym = dso__first_symbol(dso, MAP__FUNCTION);
1925         while (sym) {
1926                 if (*start) {
1927                         if (!*size)
1928                                 *size = sym->start - *start;
1929                         if (idx > 0) {
1930                                 if (*size)
1931                                         return 1;
1932                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1933                                 print_duplicate_syms(dso, sym_name);
1934                                 return -EINVAL;
1935                         }
1936                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1937                         *start = sym->start;
1938                         *size = sym->end - sym->start;
1939                 }
1940                 sym = dso__next_symbol(sym);
1941         }
1942
1943         if (!*start)
1944                 return sym_not_found_error(sym_name, idx);
1945
1946         return 0;
1947 }
1948
1949 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1950 {
1951         struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1952         struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1953
1954         if (!first_sym || !last_sym) {
1955                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1956                        filt->filename);
1957                 return -EINVAL;
1958         }
1959
1960         filt->addr = first_sym->start;
1961         filt->size = last_sym->end - first_sym->start;
1962
1963         return 0;
1964 }
1965
1966 static int addr_filter__resolve_syms(struct addr_filter *filt)
1967 {
1968         u64 start, size;
1969         struct dso *dso;
1970         int err = 0;
1971
1972         if (!filt->sym_from && !filt->sym_to)
1973                 return 0;
1974
1975         if (!filt->filename)
1976                 return addr_filter__resolve_kernel_syms(filt);
1977
1978         dso = load_dso(filt->filename);
1979         if (!dso) {
1980                 pr_err("Failed to load symbols from: %s\n", filt->filename);
1981                 return -EINVAL;
1982         }
1983
1984         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1985                 err = addr_filter__entire_dso(filt, dso);
1986                 goto put_dso;
1987         }
1988
1989         if (filt->sym_from) {
1990                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
1991                                    filt->sym_from_idx);
1992                 if (err)
1993                         goto put_dso;
1994                 filt->addr = start;
1995                 if (filt->range && !filt->size && !filt->sym_to)
1996                         filt->size = size;
1997         }
1998
1999         if (filt->sym_to) {
2000                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2001                                    filt->sym_to_idx);
2002                 if (err)
2003                         goto put_dso;
2004
2005                 err = check_end_after_start(filt, start, size);
2006                 if (err)
2007                         return err;
2008
2009                 filt->size = start + size - filt->addr;
2010         }
2011
2012 put_dso:
2013         dso__put(dso);
2014
2015         return err;
2016 }
2017
2018 static char *addr_filter__to_str(struct addr_filter *filt)
2019 {
2020         char filename_buf[PATH_MAX];
2021         const char *at = "";
2022         const char *fn = "";
2023         char *filter;
2024         int err;
2025
2026         if (filt->filename) {
2027                 at = "@";
2028                 fn = realpath(filt->filename, filename_buf);
2029                 if (!fn)
2030                         return NULL;
2031         }
2032
2033         if (filt->range) {
2034                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2035                                filt->action, filt->addr, filt->size, at, fn);
2036         } else {
2037                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2038                                filt->action, filt->addr, at, fn);
2039         }
2040
2041         return err < 0 ? NULL : filter;
2042 }
2043
2044 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2045                              int max_nr)
2046 {
2047         struct addr_filters filts;
2048         struct addr_filter *filt;
2049         int err;
2050
2051         addr_filters__init(&filts);
2052
2053         err = addr_filters__parse_bare_filter(&filts, filter);
2054         if (err)
2055                 goto out_exit;
2056
2057         if (filts.cnt > max_nr) {
2058                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2059                        filts.cnt, max_nr);
2060                 err = -EINVAL;
2061                 goto out_exit;
2062         }
2063
2064         list_for_each_entry(filt, &filts.head, list) {
2065                 char *new_filter;
2066
2067                 err = addr_filter__resolve_syms(filt);
2068                 if (err)
2069                         goto out_exit;
2070
2071                 new_filter = addr_filter__to_str(filt);
2072                 if (!new_filter) {
2073                         err = -ENOMEM;
2074                         goto out_exit;
2075                 }
2076
2077                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2078                         err = -ENOMEM;
2079                         goto out_exit;
2080                 }
2081         }
2082
2083 out_exit:
2084         addr_filters__exit(&filts);
2085
2086         if (err) {
2087                 pr_err("Failed to parse address filter: '%s'\n", filter);
2088                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2089                 pr_err("Where multiple filters are separated by space or comma.\n");
2090         }
2091
2092         return err;
2093 }
2094
2095 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2096 {
2097         struct perf_pmu *pmu = NULL;
2098
2099         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2100                 if (pmu->type == evsel->attr.type)
2101                         break;
2102         }
2103
2104         return pmu;
2105 }
2106
2107 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2108 {
2109         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2110         int nr_addr_filters = 0;
2111
2112         if (!pmu)
2113                 return 0;
2114
2115         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2116
2117         return nr_addr_filters;
2118 }
2119
2120 int auxtrace_parse_filters(struct perf_evlist *evlist)
2121 {
2122         struct perf_evsel *evsel;
2123         char *filter;
2124         int err, max_nr;
2125
2126         evlist__for_each_entry(evlist, evsel) {
2127                 filter = evsel->filter;
2128                 max_nr = perf_evsel__nr_addr_filter(evsel);
2129                 if (!filter || !max_nr)
2130                         continue;
2131                 evsel->filter = NULL;
2132                 err = parse_addr_filter(evsel, filter, max_nr);
2133                 free(filter);
2134                 if (err)
2135                         return err;
2136                 pr_debug("Address filter: %s\n", evsel->filter);
2137         }
2138
2139         return 0;
2140 }