]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/callchain.c
Merge git://git.infradead.org/~dwmw2/mtd-2.6.35
[karo-tx-linux.git] / tools / perf / util / callchain.c
1 /*
2  * Copyright (C) 2009-2010, Frederic Weisbecker <fweisbec@gmail.com>
3  *
4  * Handle the callchains from the stream in an ad-hoc radix tree and then
5  * sort them in an rbtree.
6  *
7  * Using a radix for code path provides a fast retrieval and factorizes
8  * memory use. Also that lets us use the paths in a hierarchical graph view.
9  *
10  */
11
12 #include <stdlib.h>
13 #include <stdio.h>
14 #include <stdbool.h>
15 #include <errno.h>
16 #include <math.h>
17
18 #include "util.h"
19 #include "callchain.h"
20
21 bool ip_callchain__valid(struct ip_callchain *chain, event_t *event)
22 {
23         unsigned int chain_size = event->header.size;
24         chain_size -= (unsigned long)&event->ip.__more_data - (unsigned long)event;
25         return chain->nr * sizeof(u64) <= chain_size;
26 }
27
28 #define chain_for_each_child(child, parent)     \
29         list_for_each_entry(child, &parent->children, brothers)
30
31 static void
32 rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
33                     enum chain_mode mode)
34 {
35         struct rb_node **p = &root->rb_node;
36         struct rb_node *parent = NULL;
37         struct callchain_node *rnode;
38         u64 chain_cumul = cumul_hits(chain);
39
40         while (*p) {
41                 u64 rnode_cumul;
42
43                 parent = *p;
44                 rnode = rb_entry(parent, struct callchain_node, rb_node);
45                 rnode_cumul = cumul_hits(rnode);
46
47                 switch (mode) {
48                 case CHAIN_FLAT:
49                         if (rnode->hit < chain->hit)
50                                 p = &(*p)->rb_left;
51                         else
52                                 p = &(*p)->rb_right;
53                         break;
54                 case CHAIN_GRAPH_ABS: /* Falldown */
55                 case CHAIN_GRAPH_REL:
56                         if (rnode_cumul < chain_cumul)
57                                 p = &(*p)->rb_left;
58                         else
59                                 p = &(*p)->rb_right;
60                         break;
61                 case CHAIN_NONE:
62                 default:
63                         break;
64                 }
65         }
66
67         rb_link_node(&chain->rb_node, parent, p);
68         rb_insert_color(&chain->rb_node, root);
69 }
70
71 static void
72 __sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
73                   u64 min_hit)
74 {
75         struct callchain_node *child;
76
77         chain_for_each_child(child, node)
78                 __sort_chain_flat(rb_root, child, min_hit);
79
80         if (node->hit && node->hit >= min_hit)
81                 rb_insert_callchain(rb_root, node, CHAIN_FLAT);
82 }
83
84 /*
85  * Once we get every callchains from the stream, we can now
86  * sort them by hit
87  */
88 static void
89 sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
90                 u64 min_hit, struct callchain_param *param __used)
91 {
92         __sort_chain_flat(rb_root, node, min_hit);
93 }
94
95 static void __sort_chain_graph_abs(struct callchain_node *node,
96                                    u64 min_hit)
97 {
98         struct callchain_node *child;
99
100         node->rb_root = RB_ROOT;
101
102         chain_for_each_child(child, node) {
103                 __sort_chain_graph_abs(child, min_hit);
104                 if (cumul_hits(child) >= min_hit)
105                         rb_insert_callchain(&node->rb_root, child,
106                                             CHAIN_GRAPH_ABS);
107         }
108 }
109
110 static void
111 sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_node *chain_root,
112                      u64 min_hit, struct callchain_param *param __used)
113 {
114         __sort_chain_graph_abs(chain_root, min_hit);
115         rb_root->rb_node = chain_root->rb_root.rb_node;
116 }
117
118 static void __sort_chain_graph_rel(struct callchain_node *node,
119                                    double min_percent)
120 {
121         struct callchain_node *child;
122         u64 min_hit;
123
124         node->rb_root = RB_ROOT;
125         min_hit = ceil(node->children_hit * min_percent);
126
127         chain_for_each_child(child, node) {
128                 __sort_chain_graph_rel(child, min_percent);
129                 if (cumul_hits(child) >= min_hit)
130                         rb_insert_callchain(&node->rb_root, child,
131                                             CHAIN_GRAPH_REL);
132         }
133 }
134
135 static void
136 sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_node *chain_root,
137                      u64 min_hit __used, struct callchain_param *param)
138 {
139         __sort_chain_graph_rel(chain_root, param->min_percent / 100.0);
140         rb_root->rb_node = chain_root->rb_root.rb_node;
141 }
142
143 int register_callchain_param(struct callchain_param *param)
144 {
145         switch (param->mode) {
146         case CHAIN_GRAPH_ABS:
147                 param->sort = sort_chain_graph_abs;
148                 break;
149         case CHAIN_GRAPH_REL:
150                 param->sort = sort_chain_graph_rel;
151                 break;
152         case CHAIN_FLAT:
153                 param->sort = sort_chain_flat;
154                 break;
155         case CHAIN_NONE:
156         default:
157                 return -1;
158         }
159         return 0;
160 }
161
162 /*
163  * Create a child for a parent. If inherit_children, then the new child
164  * will become the new parent of it's parent children
165  */
166 static struct callchain_node *
167 create_child(struct callchain_node *parent, bool inherit_children)
168 {
169         struct callchain_node *new;
170
171         new = zalloc(sizeof(*new));
172         if (!new) {
173                 perror("not enough memory to create child for code path tree");
174                 return NULL;
175         }
176         new->parent = parent;
177         INIT_LIST_HEAD(&new->children);
178         INIT_LIST_HEAD(&new->val);
179
180         if (inherit_children) {
181                 struct callchain_node *next;
182
183                 list_splice(&parent->children, &new->children);
184                 INIT_LIST_HEAD(&parent->children);
185
186                 chain_for_each_child(next, new)
187                         next->parent = new;
188         }
189         list_add_tail(&new->brothers, &parent->children);
190
191         return new;
192 }
193
194
195 struct resolved_ip {
196         u64               ip;
197         struct map_symbol ms;
198 };
199
200 struct resolved_chain {
201         u64                     nr;
202         struct resolved_ip      ips[0];
203 };
204
205
206 /*
207  * Fill the node with callchain values
208  */
209 static void
210 fill_node(struct callchain_node *node, struct resolved_chain *chain, int start)
211 {
212         unsigned int i;
213
214         for (i = start; i < chain->nr; i++) {
215                 struct callchain_list *call;
216
217                 call = zalloc(sizeof(*call));
218                 if (!call) {
219                         perror("not enough memory for the code path tree");
220                         return;
221                 }
222                 call->ip = chain->ips[i].ip;
223                 call->ms = chain->ips[i].ms;
224                 list_add_tail(&call->list, &node->val);
225         }
226         node->val_nr = chain->nr - start;
227         if (!node->val_nr)
228                 pr_warning("Warning: empty node in callchain tree\n");
229 }
230
231 static void
232 add_child(struct callchain_node *parent, struct resolved_chain *chain,
233           int start)
234 {
235         struct callchain_node *new;
236
237         new = create_child(parent, false);
238         fill_node(new, chain, start);
239
240         new->children_hit = 0;
241         new->hit = 1;
242 }
243
244 /*
245  * Split the parent in two parts (a new child is created) and
246  * give a part of its callchain to the created child.
247  * Then create another child to host the given callchain of new branch
248  */
249 static void
250 split_add_child(struct callchain_node *parent, struct resolved_chain *chain,
251                 struct callchain_list *to_split, int idx_parents, int idx_local)
252 {
253         struct callchain_node *new;
254         struct list_head *old_tail;
255         unsigned int idx_total = idx_parents + idx_local;
256
257         /* split */
258         new = create_child(parent, true);
259
260         /* split the callchain and move a part to the new child */
261         old_tail = parent->val.prev;
262         list_del_range(&to_split->list, old_tail);
263         new->val.next = &to_split->list;
264         new->val.prev = old_tail;
265         to_split->list.prev = &new->val;
266         old_tail->next = &new->val;
267
268         /* split the hits */
269         new->hit = parent->hit;
270         new->children_hit = parent->children_hit;
271         parent->children_hit = cumul_hits(new);
272         new->val_nr = parent->val_nr - idx_local;
273         parent->val_nr = idx_local;
274
275         /* create a new child for the new branch if any */
276         if (idx_total < chain->nr) {
277                 parent->hit = 0;
278                 add_child(parent, chain, idx_total);
279                 parent->children_hit++;
280         } else {
281                 parent->hit = 1;
282         }
283 }
284
285 static int
286 __append_chain(struct callchain_node *root, struct resolved_chain *chain,
287                unsigned int start);
288
289 static void
290 __append_chain_children(struct callchain_node *root,
291                         struct resolved_chain *chain,
292                         unsigned int start)
293 {
294         struct callchain_node *rnode;
295
296         /* lookup in childrens */
297         chain_for_each_child(rnode, root) {
298                 unsigned int ret = __append_chain(rnode, chain, start);
299
300                 if (!ret)
301                         goto inc_children_hit;
302         }
303         /* nothing in children, add to the current node */
304         add_child(root, chain, start);
305
306 inc_children_hit:
307         root->children_hit++;
308 }
309
310 static int
311 __append_chain(struct callchain_node *root, struct resolved_chain *chain,
312                unsigned int start)
313 {
314         struct callchain_list *cnode;
315         unsigned int i = start;
316         bool found = false;
317
318         /*
319          * Lookup in the current node
320          * If we have a symbol, then compare the start to match
321          * anywhere inside a function.
322          */
323         list_for_each_entry(cnode, &root->val, list) {
324                 struct symbol *sym;
325
326                 if (i == chain->nr)
327                         break;
328
329                 sym = chain->ips[i].ms.sym;
330
331                 if (cnode->ms.sym && sym) {
332                         if (cnode->ms.sym->start != sym->start)
333                                 break;
334                 } else if (cnode->ip != chain->ips[i].ip)
335                         break;
336
337                 if (!found)
338                         found = true;
339                 i++;
340         }
341
342         /* matches not, relay on the parent */
343         if (!found)
344                 return -1;
345
346         /* we match only a part of the node. Split it and add the new chain */
347         if (i - start < root->val_nr) {
348                 split_add_child(root, chain, cnode, start, i - start);
349                 return 0;
350         }
351
352         /* we match 100% of the path, increment the hit */
353         if (i - start == root->val_nr && i == chain->nr) {
354                 root->hit++;
355                 return 0;
356         }
357
358         /* We match the node and still have a part remaining */
359         __append_chain_children(root, chain, i);
360
361         return 0;
362 }
363
364 static void filter_context(struct ip_callchain *old, struct resolved_chain *new,
365                            struct map_symbol *syms)
366 {
367         int i, j = 0;
368
369         for (i = 0; i < (int)old->nr; i++) {
370                 if (old->ips[i] >= PERF_CONTEXT_MAX)
371                         continue;
372
373                 new->ips[j].ip = old->ips[i];
374                 new->ips[j].ms = syms[i];
375                 j++;
376         }
377
378         new->nr = j;
379 }
380
381
382 int append_chain(struct callchain_node *root, struct ip_callchain *chain,
383                  struct map_symbol *syms)
384 {
385         struct resolved_chain *filtered;
386
387         if (!chain->nr)
388                 return 0;
389
390         filtered = zalloc(sizeof(*filtered) +
391                           chain->nr * sizeof(struct resolved_ip));
392         if (!filtered)
393                 return -ENOMEM;
394
395         filter_context(chain, filtered, syms);
396
397         if (!filtered->nr)
398                 goto end;
399
400         __append_chain_children(root, filtered, 0);
401 end:
402         free(filtered);
403
404         return 0;
405 }