]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/evsel.c
jfs: fix error path in ialloc
[karo-tx-linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28         bool sample_id_all;
29         bool exclude_guest;
30 } perf_missing_features;
31
32 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
33
34 int __perf_evsel__sample_size(u64 sample_type)
35 {
36         u64 mask = sample_type & PERF_SAMPLE_MASK;
37         int size = 0;
38         int i;
39
40         for (i = 0; i < 64; i++) {
41                 if (mask & (1ULL << i))
42                         size++;
43         }
44
45         size *= sizeof(u64);
46
47         return size;
48 }
49
50 /**
51  * __perf_evsel__calc_id_pos - calculate id_pos.
52  * @sample_type: sample type
53  *
54  * This function returns the position of the event id (PERF_SAMPLE_ID or
55  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
56  * sample_event.
57  */
58 static int __perf_evsel__calc_id_pos(u64 sample_type)
59 {
60         int idx = 0;
61
62         if (sample_type & PERF_SAMPLE_IDENTIFIER)
63                 return 0;
64
65         if (!(sample_type & PERF_SAMPLE_ID))
66                 return -1;
67
68         if (sample_type & PERF_SAMPLE_IP)
69                 idx += 1;
70
71         if (sample_type & PERF_SAMPLE_TID)
72                 idx += 1;
73
74         if (sample_type & PERF_SAMPLE_TIME)
75                 idx += 1;
76
77         if (sample_type & PERF_SAMPLE_ADDR)
78                 idx += 1;
79
80         return idx;
81 }
82
83 /**
84  * __perf_evsel__calc_is_pos - calculate is_pos.
85  * @sample_type: sample type
86  *
87  * This function returns the position (counting backwards) of the event id
88  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
89  * sample_id_all is used there is an id sample appended to non-sample events.
90  */
91 static int __perf_evsel__calc_is_pos(u64 sample_type)
92 {
93         int idx = 1;
94
95         if (sample_type & PERF_SAMPLE_IDENTIFIER)
96                 return 1;
97
98         if (!(sample_type & PERF_SAMPLE_ID))
99                 return -1;
100
101         if (sample_type & PERF_SAMPLE_CPU)
102                 idx += 1;
103
104         if (sample_type & PERF_SAMPLE_STREAM_ID)
105                 idx += 1;
106
107         return idx;
108 }
109
110 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
111 {
112         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
113         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
114 }
115
116 void hists__init(struct hists *hists)
117 {
118         memset(hists, 0, sizeof(*hists));
119         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
120         hists->entries_in = &hists->entries_in_array[0];
121         hists->entries_collapsed = RB_ROOT;
122         hists->entries = RB_ROOT;
123         pthread_mutex_init(&hists->lock, NULL);
124 }
125
126 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
127                                   enum perf_event_sample_format bit)
128 {
129         if (!(evsel->attr.sample_type & bit)) {
130                 evsel->attr.sample_type |= bit;
131                 evsel->sample_size += sizeof(u64);
132                 perf_evsel__calc_id_pos(evsel);
133         }
134 }
135
136 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
137                                     enum perf_event_sample_format bit)
138 {
139         if (evsel->attr.sample_type & bit) {
140                 evsel->attr.sample_type &= ~bit;
141                 evsel->sample_size -= sizeof(u64);
142                 perf_evsel__calc_id_pos(evsel);
143         }
144 }
145
146 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
147                                bool can_sample_identifier)
148 {
149         if (can_sample_identifier) {
150                 perf_evsel__reset_sample_bit(evsel, ID);
151                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
152         } else {
153                 perf_evsel__set_sample_bit(evsel, ID);
154         }
155         evsel->attr.read_format |= PERF_FORMAT_ID;
156 }
157
158 void perf_evsel__init(struct perf_evsel *evsel,
159                       struct perf_event_attr *attr, int idx)
160 {
161         evsel->idx         = idx;
162         evsel->attr        = *attr;
163         evsel->leader      = evsel;
164         INIT_LIST_HEAD(&evsel->node);
165         hists__init(&evsel->hists);
166         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
167         perf_evsel__calc_id_pos(evsel);
168 }
169
170 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
171 {
172         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
173
174         if (evsel != NULL)
175                 perf_evsel__init(evsel, attr, idx);
176
177         return evsel;
178 }
179
180 struct event_format *event_format__new(const char *sys, const char *name)
181 {
182         int fd, n;
183         char *filename;
184         void *bf = NULL, *nbf;
185         size_t size = 0, alloc_size = 0;
186         struct event_format *format = NULL;
187
188         if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
189                 goto out;
190
191         fd = open(filename, O_RDONLY);
192         if (fd < 0)
193                 goto out_free_filename;
194
195         do {
196                 if (size == alloc_size) {
197                         alloc_size += BUFSIZ;
198                         nbf = realloc(bf, alloc_size);
199                         if (nbf == NULL)
200                                 goto out_free_bf;
201                         bf = nbf;
202                 }
203
204                 n = read(fd, bf + size, alloc_size - size);
205                 if (n < 0)
206                         goto out_free_bf;
207                 size += n;
208         } while (n > 0);
209
210         pevent_parse_format(&format, bf, size, sys);
211
212 out_free_bf:
213         free(bf);
214         close(fd);
215 out_free_filename:
216         free(filename);
217 out:
218         return format;
219 }
220
221 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
222 {
223         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
224
225         if (evsel != NULL) {
226                 struct perf_event_attr attr = {
227                         .type          = PERF_TYPE_TRACEPOINT,
228                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
229                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
230                 };
231
232                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
233                         goto out_free;
234
235                 evsel->tp_format = event_format__new(sys, name);
236                 if (evsel->tp_format == NULL)
237                         goto out_free;
238
239                 event_attr_init(&attr);
240                 attr.config = evsel->tp_format->id;
241                 attr.sample_period = 1;
242                 perf_evsel__init(evsel, &attr, idx);
243         }
244
245         return evsel;
246
247 out_free:
248         free(evsel->name);
249         free(evsel);
250         return NULL;
251 }
252
253 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
254         "cycles",
255         "instructions",
256         "cache-references",
257         "cache-misses",
258         "branches",
259         "branch-misses",
260         "bus-cycles",
261         "stalled-cycles-frontend",
262         "stalled-cycles-backend",
263         "ref-cycles",
264 };
265
266 static const char *__perf_evsel__hw_name(u64 config)
267 {
268         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
269                 return perf_evsel__hw_names[config];
270
271         return "unknown-hardware";
272 }
273
274 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
275 {
276         int colon = 0, r = 0;
277         struct perf_event_attr *attr = &evsel->attr;
278         bool exclude_guest_default = false;
279
280 #define MOD_PRINT(context, mod) do {                                    \
281                 if (!attr->exclude_##context) {                         \
282                         if (!colon) colon = ++r;                        \
283                         r += scnprintf(bf + r, size - r, "%c", mod);    \
284                 } } while(0)
285
286         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
287                 MOD_PRINT(kernel, 'k');
288                 MOD_PRINT(user, 'u');
289                 MOD_PRINT(hv, 'h');
290                 exclude_guest_default = true;
291         }
292
293         if (attr->precise_ip) {
294                 if (!colon)
295                         colon = ++r;
296                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
297                 exclude_guest_default = true;
298         }
299
300         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
301                 MOD_PRINT(host, 'H');
302                 MOD_PRINT(guest, 'G');
303         }
304 #undef MOD_PRINT
305         if (colon)
306                 bf[colon - 1] = ':';
307         return r;
308 }
309
310 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
311 {
312         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
313         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
314 }
315
316 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
317         "cpu-clock",
318         "task-clock",
319         "page-faults",
320         "context-switches",
321         "cpu-migrations",
322         "minor-faults",
323         "major-faults",
324         "alignment-faults",
325         "emulation-faults",
326         "dummy",
327 };
328
329 static const char *__perf_evsel__sw_name(u64 config)
330 {
331         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
332                 return perf_evsel__sw_names[config];
333         return "unknown-software";
334 }
335
336 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
337 {
338         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
339         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
340 }
341
342 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
343 {
344         int r;
345
346         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
347
348         if (type & HW_BREAKPOINT_R)
349                 r += scnprintf(bf + r, size - r, "r");
350
351         if (type & HW_BREAKPOINT_W)
352                 r += scnprintf(bf + r, size - r, "w");
353
354         if (type & HW_BREAKPOINT_X)
355                 r += scnprintf(bf + r, size - r, "x");
356
357         return r;
358 }
359
360 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
361 {
362         struct perf_event_attr *attr = &evsel->attr;
363         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
364         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
365 }
366
367 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
368                                 [PERF_EVSEL__MAX_ALIASES] = {
369  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
370  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
371  { "LLC",       "L2",                                                   },
372  { "dTLB",      "d-tlb",        "Data-TLB",                             },
373  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
374  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
375  { "node",                                                              },
376 };
377
378 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
379                                    [PERF_EVSEL__MAX_ALIASES] = {
380  { "load",      "loads",        "read",                                 },
381  { "store",     "stores",       "write",                                },
382  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
383 };
384
385 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
386                                        [PERF_EVSEL__MAX_ALIASES] = {
387  { "refs",      "Reference",    "ops",          "access",               },
388  { "misses",    "miss",                                                 },
389 };
390
391 #define C(x)            PERF_COUNT_HW_CACHE_##x
392 #define CACHE_READ      (1 << C(OP_READ))
393 #define CACHE_WRITE     (1 << C(OP_WRITE))
394 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
395 #define COP(x)          (1 << x)
396
397 /*
398  * cache operartion stat
399  * L1I : Read and prefetch only
400  * ITLB and BPU : Read-only
401  */
402 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
403  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
404  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
405  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(ITLB)]      = (CACHE_READ),
408  [C(BPU)]       = (CACHE_READ),
409  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410 };
411
412 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
413 {
414         if (perf_evsel__hw_cache_stat[type] & COP(op))
415                 return true;    /* valid */
416         else
417                 return false;   /* invalid */
418 }
419
420 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
421                                             char *bf, size_t size)
422 {
423         if (result) {
424                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
425                                  perf_evsel__hw_cache_op[op][0],
426                                  perf_evsel__hw_cache_result[result][0]);
427         }
428
429         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
430                          perf_evsel__hw_cache_op[op][1]);
431 }
432
433 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
434 {
435         u8 op, result, type = (config >>  0) & 0xff;
436         const char *err = "unknown-ext-hardware-cache-type";
437
438         if (type > PERF_COUNT_HW_CACHE_MAX)
439                 goto out_err;
440
441         op = (config >>  8) & 0xff;
442         err = "unknown-ext-hardware-cache-op";
443         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
444                 goto out_err;
445
446         result = (config >> 16) & 0xff;
447         err = "unknown-ext-hardware-cache-result";
448         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
449                 goto out_err;
450
451         err = "invalid-cache";
452         if (!perf_evsel__is_cache_op_valid(type, op))
453                 goto out_err;
454
455         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
456 out_err:
457         return scnprintf(bf, size, "%s", err);
458 }
459
460 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
461 {
462         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
463         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
464 }
465
466 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
467 {
468         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
469         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
470 }
471
472 const char *perf_evsel__name(struct perf_evsel *evsel)
473 {
474         char bf[128];
475
476         if (evsel->name)
477                 return evsel->name;
478
479         switch (evsel->attr.type) {
480         case PERF_TYPE_RAW:
481                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
482                 break;
483
484         case PERF_TYPE_HARDWARE:
485                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
486                 break;
487
488         case PERF_TYPE_HW_CACHE:
489                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
490                 break;
491
492         case PERF_TYPE_SOFTWARE:
493                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
494                 break;
495
496         case PERF_TYPE_TRACEPOINT:
497                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
498                 break;
499
500         case PERF_TYPE_BREAKPOINT:
501                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
502                 break;
503
504         default:
505                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
506                           evsel->attr.type);
507                 break;
508         }
509
510         evsel->name = strdup(bf);
511
512         return evsel->name ?: "unknown";
513 }
514
515 const char *perf_evsel__group_name(struct perf_evsel *evsel)
516 {
517         return evsel->group_name ?: "anon group";
518 }
519
520 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
521 {
522         int ret;
523         struct perf_evsel *pos;
524         const char *group_name = perf_evsel__group_name(evsel);
525
526         ret = scnprintf(buf, size, "%s", group_name);
527
528         ret += scnprintf(buf + ret, size - ret, " { %s",
529                          perf_evsel__name(evsel));
530
531         for_each_group_member(pos, evsel)
532                 ret += scnprintf(buf + ret, size - ret, ", %s",
533                                  perf_evsel__name(pos));
534
535         ret += scnprintf(buf + ret, size - ret, " }");
536
537         return ret;
538 }
539
540 /*
541  * The enable_on_exec/disabled value strategy:
542  *
543  *  1) For any type of traced program:
544  *    - all independent events and group leaders are disabled
545  *    - all group members are enabled
546  *
547  *     Group members are ruled by group leaders. They need to
548  *     be enabled, because the group scheduling relies on that.
549  *
550  *  2) For traced programs executed by perf:
551  *     - all independent events and group leaders have
552  *       enable_on_exec set
553  *     - we don't specifically enable or disable any event during
554  *       the record command
555  *
556  *     Independent events and group leaders are initially disabled
557  *     and get enabled by exec. Group members are ruled by group
558  *     leaders as stated in 1).
559  *
560  *  3) For traced programs attached by perf (pid/tid):
561  *     - we specifically enable or disable all events during
562  *       the record command
563  *
564  *     When attaching events to already running traced we
565  *     enable/disable events specifically, as there's no
566  *     initial traced exec call.
567  */
568 void perf_evsel__config(struct perf_evsel *evsel,
569                         struct perf_record_opts *opts)
570 {
571         struct perf_evsel *leader = evsel->leader;
572         struct perf_event_attr *attr = &evsel->attr;
573         int track = !evsel->idx; /* only the first counter needs these */
574
575         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
576         attr->inherit       = !opts->no_inherit;
577
578         perf_evsel__set_sample_bit(evsel, IP);
579         perf_evsel__set_sample_bit(evsel, TID);
580
581         if (evsel->sample_read) {
582                 perf_evsel__set_sample_bit(evsel, READ);
583
584                 /*
585                  * We need ID even in case of single event, because
586                  * PERF_SAMPLE_READ process ID specific data.
587                  */
588                 perf_evsel__set_sample_id(evsel, false);
589
590                 /*
591                  * Apply group format only if we belong to group
592                  * with more than one members.
593                  */
594                 if (leader->nr_members > 1) {
595                         attr->read_format |= PERF_FORMAT_GROUP;
596                         attr->inherit = 0;
597                 }
598         }
599
600         /*
601          * We default some events to a 1 default interval. But keep
602          * it a weak assumption overridable by the user.
603          */
604         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
605                                      opts->user_interval != ULLONG_MAX)) {
606                 if (opts->freq) {
607                         perf_evsel__set_sample_bit(evsel, PERIOD);
608                         attr->freq              = 1;
609                         attr->sample_freq       = opts->freq;
610                 } else {
611                         attr->sample_period = opts->default_interval;
612                 }
613         }
614
615         /*
616          * Disable sampling for all group members other
617          * than leader in case leader 'leads' the sampling.
618          */
619         if ((leader != evsel) && leader->sample_read) {
620                 attr->sample_freq   = 0;
621                 attr->sample_period = 0;
622         }
623
624         if (opts->no_samples)
625                 attr->sample_freq = 0;
626
627         if (opts->inherit_stat)
628                 attr->inherit_stat = 1;
629
630         if (opts->sample_address) {
631                 perf_evsel__set_sample_bit(evsel, ADDR);
632                 attr->mmap_data = track;
633         }
634
635         if (opts->call_graph) {
636                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
637
638                 if (opts->call_graph == CALLCHAIN_DWARF) {
639                         perf_evsel__set_sample_bit(evsel, REGS_USER);
640                         perf_evsel__set_sample_bit(evsel, STACK_USER);
641                         attr->sample_regs_user = PERF_REGS_MASK;
642                         attr->sample_stack_user = opts->stack_dump_size;
643                         attr->exclude_callchain_user = 1;
644                 }
645         }
646
647         if (perf_target__has_cpu(&opts->target))
648                 perf_evsel__set_sample_bit(evsel, CPU);
649
650         if (opts->period)
651                 perf_evsel__set_sample_bit(evsel, PERIOD);
652
653         if (!perf_missing_features.sample_id_all &&
654             (opts->sample_time || !opts->no_inherit ||
655              perf_target__has_cpu(&opts->target)))
656                 perf_evsel__set_sample_bit(evsel, TIME);
657
658         if (opts->raw_samples) {
659                 perf_evsel__set_sample_bit(evsel, TIME);
660                 perf_evsel__set_sample_bit(evsel, RAW);
661                 perf_evsel__set_sample_bit(evsel, CPU);
662         }
663
664         if (opts->sample_address)
665                 attr->sample_type       |= PERF_SAMPLE_DATA_SRC;
666
667         if (opts->no_delay) {
668                 attr->watermark = 0;
669                 attr->wakeup_events = 1;
670         }
671         if (opts->branch_stack) {
672                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673                 attr->branch_sample_type = opts->branch_stack;
674         }
675
676         if (opts->sample_weight)
677                 attr->sample_type       |= PERF_SAMPLE_WEIGHT;
678
679         attr->mmap = track;
680         attr->comm = track;
681
682         /*
683          * XXX see the function comment above
684          *
685          * Disabling only independent events or group leaders,
686          * keeping group members enabled.
687          */
688         if (perf_evsel__is_group_leader(evsel))
689                 attr->disabled = 1;
690
691         /*
692          * Setting enable_on_exec for independent events and
693          * group leaders for traced executed by perf.
694          */
695         if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
696                 attr->enable_on_exec = 1;
697 }
698
699 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
700 {
701         int cpu, thread;
702         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
703
704         if (evsel->fd) {
705                 for (cpu = 0; cpu < ncpus; cpu++) {
706                         for (thread = 0; thread < nthreads; thread++) {
707                                 FD(evsel, cpu, thread) = -1;
708                         }
709                 }
710         }
711
712         return evsel->fd != NULL ? 0 : -ENOMEM;
713 }
714
715 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
716                           int ioc,  void *arg)
717 {
718         int cpu, thread;
719
720         for (cpu = 0; cpu < ncpus; cpu++) {
721                 for (thread = 0; thread < nthreads; thread++) {
722                         int fd = FD(evsel, cpu, thread),
723                             err = ioctl(fd, ioc, arg);
724
725                         if (err)
726                                 return err;
727                 }
728         }
729
730         return 0;
731 }
732
733 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
734                            const char *filter)
735 {
736         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
737                                      PERF_EVENT_IOC_SET_FILTER,
738                                      (void *)filter);
739 }
740
741 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
742 {
743         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
744                                      PERF_EVENT_IOC_ENABLE,
745                                      0);
746 }
747
748 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
749 {
750         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
751         if (evsel->sample_id == NULL)
752                 return -ENOMEM;
753
754         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
755         if (evsel->id == NULL) {
756                 xyarray__delete(evsel->sample_id);
757                 evsel->sample_id = NULL;
758                 return -ENOMEM;
759         }
760
761         return 0;
762 }
763
764 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
765 {
766         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
767                                  (ncpus * sizeof(struct perf_counts_values))));
768 }
769
770 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
771 {
772         evsel->counts = zalloc((sizeof(*evsel->counts) +
773                                 (ncpus * sizeof(struct perf_counts_values))));
774         return evsel->counts != NULL ? 0 : -ENOMEM;
775 }
776
777 void perf_evsel__free_fd(struct perf_evsel *evsel)
778 {
779         xyarray__delete(evsel->fd);
780         evsel->fd = NULL;
781 }
782
783 void perf_evsel__free_id(struct perf_evsel *evsel)
784 {
785         xyarray__delete(evsel->sample_id);
786         evsel->sample_id = NULL;
787         free(evsel->id);
788         evsel->id = NULL;
789 }
790
791 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
792 {
793         int cpu, thread;
794
795         for (cpu = 0; cpu < ncpus; cpu++)
796                 for (thread = 0; thread < nthreads; ++thread) {
797                         close(FD(evsel, cpu, thread));
798                         FD(evsel, cpu, thread) = -1;
799                 }
800 }
801
802 void perf_evsel__free_counts(struct perf_evsel *evsel)
803 {
804         free(evsel->counts);
805 }
806
807 void perf_evsel__exit(struct perf_evsel *evsel)
808 {
809         assert(list_empty(&evsel->node));
810         perf_evsel__free_fd(evsel);
811         perf_evsel__free_id(evsel);
812 }
813
814 void perf_evsel__delete(struct perf_evsel *evsel)
815 {
816         perf_evsel__exit(evsel);
817         close_cgroup(evsel->cgrp);
818         free(evsel->group_name);
819         if (evsel->tp_format)
820                 pevent_free_format(evsel->tp_format);
821         free(evsel->name);
822         free(evsel);
823 }
824
825 static inline void compute_deltas(struct perf_evsel *evsel,
826                                   int cpu,
827                                   struct perf_counts_values *count)
828 {
829         struct perf_counts_values tmp;
830
831         if (!evsel->prev_raw_counts)
832                 return;
833
834         if (cpu == -1) {
835                 tmp = evsel->prev_raw_counts->aggr;
836                 evsel->prev_raw_counts->aggr = *count;
837         } else {
838                 tmp = evsel->prev_raw_counts->cpu[cpu];
839                 evsel->prev_raw_counts->cpu[cpu] = *count;
840         }
841
842         count->val = count->val - tmp.val;
843         count->ena = count->ena - tmp.ena;
844         count->run = count->run - tmp.run;
845 }
846
847 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
848                               int cpu, int thread, bool scale)
849 {
850         struct perf_counts_values count;
851         size_t nv = scale ? 3 : 1;
852
853         if (FD(evsel, cpu, thread) < 0)
854                 return -EINVAL;
855
856         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
857                 return -ENOMEM;
858
859         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
860                 return -errno;
861
862         compute_deltas(evsel, cpu, &count);
863
864         if (scale) {
865                 if (count.run == 0)
866                         count.val = 0;
867                 else if (count.run < count.ena)
868                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
869         } else
870                 count.ena = count.run = 0;
871
872         evsel->counts->cpu[cpu] = count;
873         return 0;
874 }
875
876 int __perf_evsel__read(struct perf_evsel *evsel,
877                        int ncpus, int nthreads, bool scale)
878 {
879         size_t nv = scale ? 3 : 1;
880         int cpu, thread;
881         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
882
883         aggr->val = aggr->ena = aggr->run = 0;
884
885         for (cpu = 0; cpu < ncpus; cpu++) {
886                 for (thread = 0; thread < nthreads; thread++) {
887                         if (FD(evsel, cpu, thread) < 0)
888                                 continue;
889
890                         if (readn(FD(evsel, cpu, thread),
891                                   &count, nv * sizeof(u64)) < 0)
892                                 return -errno;
893
894                         aggr->val += count.val;
895                         if (scale) {
896                                 aggr->ena += count.ena;
897                                 aggr->run += count.run;
898                         }
899                 }
900         }
901
902         compute_deltas(evsel, -1, aggr);
903
904         evsel->counts->scaled = 0;
905         if (scale) {
906                 if (aggr->run == 0) {
907                         evsel->counts->scaled = -1;
908                         aggr->val = 0;
909                         return 0;
910                 }
911
912                 if (aggr->run < aggr->ena) {
913                         evsel->counts->scaled = 1;
914                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
915                 }
916         } else
917                 aggr->ena = aggr->run = 0;
918
919         return 0;
920 }
921
922 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
923 {
924         struct perf_evsel *leader = evsel->leader;
925         int fd;
926
927         if (perf_evsel__is_group_leader(evsel))
928                 return -1;
929
930         /*
931          * Leader must be already processed/open,
932          * if not it's a bug.
933          */
934         BUG_ON(!leader->fd);
935
936         fd = FD(leader, cpu, thread);
937         BUG_ON(fd == -1);
938
939         return fd;
940 }
941
942 #define __PRINT_ATTR(fmt, cast, field)  \
943         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
944
945 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
946 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
947 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
948 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
949
950 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
951         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
952         name1, attr->field1, name2, attr->field2)
953
954 #define PRINT_ATTR2(field1, field2) \
955         PRINT_ATTR2N(#field1, field1, #field2, field2)
956
957 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
958 {
959         size_t ret = 0;
960
961         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
962         ret += fprintf(fp, "perf_event_attr:\n");
963
964         ret += PRINT_ATTR_U32(type);
965         ret += PRINT_ATTR_U32(size);
966         ret += PRINT_ATTR_X64(config);
967         ret += PRINT_ATTR_U64(sample_period);
968         ret += PRINT_ATTR_U64(sample_freq);
969         ret += PRINT_ATTR_X64(sample_type);
970         ret += PRINT_ATTR_X64(read_format);
971
972         ret += PRINT_ATTR2(disabled, inherit);
973         ret += PRINT_ATTR2(pinned, exclusive);
974         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
975         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
976         ret += PRINT_ATTR2(mmap, comm);
977         ret += PRINT_ATTR2(freq, inherit_stat);
978         ret += PRINT_ATTR2(enable_on_exec, task);
979         ret += PRINT_ATTR2(watermark, precise_ip);
980         ret += PRINT_ATTR2(mmap_data, sample_id_all);
981         ret += PRINT_ATTR2(exclude_host, exclude_guest);
982         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
983                             "excl.callchain_user", exclude_callchain_user);
984
985         ret += PRINT_ATTR_U32(wakeup_events);
986         ret += PRINT_ATTR_U32(wakeup_watermark);
987         ret += PRINT_ATTR_X32(bp_type);
988         ret += PRINT_ATTR_X64(bp_addr);
989         ret += PRINT_ATTR_X64(config1);
990         ret += PRINT_ATTR_U64(bp_len);
991         ret += PRINT_ATTR_X64(config2);
992         ret += PRINT_ATTR_X64(branch_sample_type);
993         ret += PRINT_ATTR_X64(sample_regs_user);
994         ret += PRINT_ATTR_U32(sample_stack_user);
995
996         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
997
998         return ret;
999 }
1000
1001 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1002                               struct thread_map *threads)
1003 {
1004         int cpu, thread;
1005         unsigned long flags = 0;
1006         int pid = -1, err;
1007         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1008
1009         if (evsel->fd == NULL &&
1010             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1011                 return -ENOMEM;
1012
1013         if (evsel->cgrp) {
1014                 flags = PERF_FLAG_PID_CGROUP;
1015                 pid = evsel->cgrp->fd;
1016         }
1017
1018 fallback_missing_features:
1019         if (perf_missing_features.exclude_guest)
1020                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1021 retry_sample_id:
1022         if (perf_missing_features.sample_id_all)
1023                 evsel->attr.sample_id_all = 0;
1024
1025         if (verbose >= 2)
1026                 perf_event_attr__fprintf(&evsel->attr, stderr);
1027
1028         for (cpu = 0; cpu < cpus->nr; cpu++) {
1029
1030                 for (thread = 0; thread < threads->nr; thread++) {
1031                         int group_fd;
1032
1033                         if (!evsel->cgrp)
1034                                 pid = threads->map[thread];
1035
1036                         group_fd = get_group_fd(evsel, cpu, thread);
1037 retry_open:
1038                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1039                                   pid, cpus->map[cpu], group_fd, flags);
1040
1041                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1042                                                                      pid,
1043                                                                      cpus->map[cpu],
1044                                                                      group_fd, flags);
1045                         if (FD(evsel, cpu, thread) < 0) {
1046                                 err = -errno;
1047                                 goto try_fallback;
1048                         }
1049                         set_rlimit = NO_CHANGE;
1050                 }
1051         }
1052
1053         return 0;
1054
1055 try_fallback:
1056         /*
1057          * perf stat needs between 5 and 22 fds per CPU. When we run out
1058          * of them try to increase the limits.
1059          */
1060         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1061                 struct rlimit l;
1062                 int old_errno = errno;
1063
1064                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1065                         if (set_rlimit == NO_CHANGE)
1066                                 l.rlim_cur = l.rlim_max;
1067                         else {
1068                                 l.rlim_cur = l.rlim_max + 1000;
1069                                 l.rlim_max = l.rlim_cur;
1070                         }
1071                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1072                                 set_rlimit++;
1073                                 errno = old_errno;
1074                                 goto retry_open;
1075                         }
1076                 }
1077                 errno = old_errno;
1078         }
1079
1080         if (err != -EINVAL || cpu > 0 || thread > 0)
1081                 goto out_close;
1082
1083         if (!perf_missing_features.exclude_guest &&
1084             (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1085                 perf_missing_features.exclude_guest = true;
1086                 goto fallback_missing_features;
1087         } else if (!perf_missing_features.sample_id_all) {
1088                 perf_missing_features.sample_id_all = true;
1089                 goto retry_sample_id;
1090         }
1091
1092 out_close:
1093         do {
1094                 while (--thread >= 0) {
1095                         close(FD(evsel, cpu, thread));
1096                         FD(evsel, cpu, thread) = -1;
1097                 }
1098                 thread = threads->nr;
1099         } while (--cpu >= 0);
1100         return err;
1101 }
1102
1103 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1104 {
1105         if (evsel->fd == NULL)
1106                 return;
1107
1108         perf_evsel__close_fd(evsel, ncpus, nthreads);
1109         perf_evsel__free_fd(evsel);
1110         evsel->fd = NULL;
1111 }
1112
1113 static struct {
1114         struct cpu_map map;
1115         int cpus[1];
1116 } empty_cpu_map = {
1117         .map.nr = 1,
1118         .cpus   = { -1, },
1119 };
1120
1121 static struct {
1122         struct thread_map map;
1123         int threads[1];
1124 } empty_thread_map = {
1125         .map.nr  = 1,
1126         .threads = { -1, },
1127 };
1128
1129 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1130                      struct thread_map *threads)
1131 {
1132         if (cpus == NULL) {
1133                 /* Work around old compiler warnings about strict aliasing */
1134                 cpus = &empty_cpu_map.map;
1135         }
1136
1137         if (threads == NULL)
1138                 threads = &empty_thread_map.map;
1139
1140         return __perf_evsel__open(evsel, cpus, threads);
1141 }
1142
1143 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1144                              struct cpu_map *cpus)
1145 {
1146         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1147 }
1148
1149 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1150                                 struct thread_map *threads)
1151 {
1152         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1153 }
1154
1155 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1156                                        const union perf_event *event,
1157                                        struct perf_sample *sample)
1158 {
1159         u64 type = evsel->attr.sample_type;
1160         const u64 *array = event->sample.array;
1161         bool swapped = evsel->needs_swap;
1162         union u64_swap u;
1163
1164         array += ((event->header.size -
1165                    sizeof(event->header)) / sizeof(u64)) - 1;
1166
1167         if (type & PERF_SAMPLE_IDENTIFIER) {
1168                 sample->id = *array;
1169                 array--;
1170         }
1171
1172         if (type & PERF_SAMPLE_CPU) {
1173                 u.val64 = *array;
1174                 if (swapped) {
1175                         /* undo swap of u64, then swap on individual u32s */
1176                         u.val64 = bswap_64(u.val64);
1177                         u.val32[0] = bswap_32(u.val32[0]);
1178                 }
1179
1180                 sample->cpu = u.val32[0];
1181                 array--;
1182         }
1183
1184         if (type & PERF_SAMPLE_STREAM_ID) {
1185                 sample->stream_id = *array;
1186                 array--;
1187         }
1188
1189         if (type & PERF_SAMPLE_ID) {
1190                 sample->id = *array;
1191                 array--;
1192         }
1193
1194         if (type & PERF_SAMPLE_TIME) {
1195                 sample->time = *array;
1196                 array--;
1197         }
1198
1199         if (type & PERF_SAMPLE_TID) {
1200                 u.val64 = *array;
1201                 if (swapped) {
1202                         /* undo swap of u64, then swap on individual u32s */
1203                         u.val64 = bswap_64(u.val64);
1204                         u.val32[0] = bswap_32(u.val32[0]);
1205                         u.val32[1] = bswap_32(u.val32[1]);
1206                 }
1207
1208                 sample->pid = u.val32[0];
1209                 sample->tid = u.val32[1];
1210         }
1211
1212         return 0;
1213 }
1214
1215 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1216                             u64 size)
1217 {
1218         return size > max_size || offset + size > endp;
1219 }
1220
1221 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1222         do {                                                            \
1223                 if (overflow(endp, (max_size), (offset), (size)))       \
1224                         return -EFAULT;                                 \
1225         } while (0)
1226
1227 #define OVERFLOW_CHECK_u64(offset) \
1228         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1229
1230 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1231                              struct perf_sample *data)
1232 {
1233         u64 type = evsel->attr.sample_type;
1234         bool swapped = evsel->needs_swap;
1235         const u64 *array;
1236         u16 max_size = event->header.size;
1237         const void *endp = (void *)event + max_size;
1238         u64 sz;
1239
1240         /*
1241          * used for cross-endian analysis. See git commit 65014ab3
1242          * for why this goofiness is needed.
1243          */
1244         union u64_swap u;
1245
1246         memset(data, 0, sizeof(*data));
1247         data->cpu = data->pid = data->tid = -1;
1248         data->stream_id = data->id = data->time = -1ULL;
1249         data->period = 1;
1250         data->weight = 0;
1251
1252         if (event->header.type != PERF_RECORD_SAMPLE) {
1253                 if (!evsel->attr.sample_id_all)
1254                         return 0;
1255                 return perf_evsel__parse_id_sample(evsel, event, data);
1256         }
1257
1258         array = event->sample.array;
1259
1260         /*
1261          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1262          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1263          * check the format does not go past the end of the event.
1264          */
1265         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1266                 return -EFAULT;
1267
1268         data->id = -1ULL;
1269         if (type & PERF_SAMPLE_IDENTIFIER) {
1270                 data->id = *array;
1271                 array++;
1272         }
1273
1274         if (type & PERF_SAMPLE_IP) {
1275                 data->ip = *array;
1276                 array++;
1277         }
1278
1279         if (type & PERF_SAMPLE_TID) {
1280                 u.val64 = *array;
1281                 if (swapped) {
1282                         /* undo swap of u64, then swap on individual u32s */
1283                         u.val64 = bswap_64(u.val64);
1284                         u.val32[0] = bswap_32(u.val32[0]);
1285                         u.val32[1] = bswap_32(u.val32[1]);
1286                 }
1287
1288                 data->pid = u.val32[0];
1289                 data->tid = u.val32[1];
1290                 array++;
1291         }
1292
1293         if (type & PERF_SAMPLE_TIME) {
1294                 data->time = *array;
1295                 array++;
1296         }
1297
1298         data->addr = 0;
1299         if (type & PERF_SAMPLE_ADDR) {
1300                 data->addr = *array;
1301                 array++;
1302         }
1303
1304         if (type & PERF_SAMPLE_ID) {
1305                 data->id = *array;
1306                 array++;
1307         }
1308
1309         if (type & PERF_SAMPLE_STREAM_ID) {
1310                 data->stream_id = *array;
1311                 array++;
1312         }
1313
1314         if (type & PERF_SAMPLE_CPU) {
1315
1316                 u.val64 = *array;
1317                 if (swapped) {
1318                         /* undo swap of u64, then swap on individual u32s */
1319                         u.val64 = bswap_64(u.val64);
1320                         u.val32[0] = bswap_32(u.val32[0]);
1321                 }
1322
1323                 data->cpu = u.val32[0];
1324                 array++;
1325         }
1326
1327         if (type & PERF_SAMPLE_PERIOD) {
1328                 data->period = *array;
1329                 array++;
1330         }
1331
1332         if (type & PERF_SAMPLE_READ) {
1333                 u64 read_format = evsel->attr.read_format;
1334
1335                 OVERFLOW_CHECK_u64(array);
1336                 if (read_format & PERF_FORMAT_GROUP)
1337                         data->read.group.nr = *array;
1338                 else
1339                         data->read.one.value = *array;
1340
1341                 array++;
1342
1343                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1344                         OVERFLOW_CHECK_u64(array);
1345                         data->read.time_enabled = *array;
1346                         array++;
1347                 }
1348
1349                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1350                         OVERFLOW_CHECK_u64(array);
1351                         data->read.time_running = *array;
1352                         array++;
1353                 }
1354
1355                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1356                 if (read_format & PERF_FORMAT_GROUP) {
1357                         const u64 max_group_nr = UINT64_MAX /
1358                                         sizeof(struct sample_read_value);
1359
1360                         if (data->read.group.nr > max_group_nr)
1361                                 return -EFAULT;
1362                         sz = data->read.group.nr *
1363                              sizeof(struct sample_read_value);
1364                         OVERFLOW_CHECK(array, sz, max_size);
1365                         data->read.group.values =
1366                                         (struct sample_read_value *)array;
1367                         array = (void *)array + sz;
1368                 } else {
1369                         OVERFLOW_CHECK_u64(array);
1370                         data->read.one.id = *array;
1371                         array++;
1372                 }
1373         }
1374
1375         if (type & PERF_SAMPLE_CALLCHAIN) {
1376                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1377
1378                 OVERFLOW_CHECK_u64(array);
1379                 data->callchain = (struct ip_callchain *)array++;
1380                 if (data->callchain->nr > max_callchain_nr)
1381                         return -EFAULT;
1382                 sz = data->callchain->nr * sizeof(u64);
1383                 OVERFLOW_CHECK(array, sz, max_size);
1384                 array = (void *)array + sz;
1385         }
1386
1387         if (type & PERF_SAMPLE_RAW) {
1388                 OVERFLOW_CHECK_u64(array);
1389                 u.val64 = *array;
1390                 if (WARN_ONCE(swapped,
1391                               "Endianness of raw data not corrected!\n")) {
1392                         /* undo swap of u64, then swap on individual u32s */
1393                         u.val64 = bswap_64(u.val64);
1394                         u.val32[0] = bswap_32(u.val32[0]);
1395                         u.val32[1] = bswap_32(u.val32[1]);
1396                 }
1397                 data->raw_size = u.val32[0];
1398                 array = (void *)array + sizeof(u32);
1399
1400                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1401                 data->raw_data = (void *)array;
1402                 array = (void *)array + data->raw_size;
1403         }
1404
1405         if (type & PERF_SAMPLE_BRANCH_STACK) {
1406                 const u64 max_branch_nr = UINT64_MAX /
1407                                           sizeof(struct branch_entry);
1408
1409                 OVERFLOW_CHECK_u64(array);
1410                 data->branch_stack = (struct branch_stack *)array++;
1411
1412                 if (data->branch_stack->nr > max_branch_nr)
1413                         return -EFAULT;
1414                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1415                 OVERFLOW_CHECK(array, sz, max_size);
1416                 array = (void *)array + sz;
1417         }
1418
1419         if (type & PERF_SAMPLE_REGS_USER) {
1420                 OVERFLOW_CHECK_u64(array);
1421                 data->user_regs.abi = *array;
1422                 array++;
1423
1424                 if (data->user_regs.abi) {
1425                         u64 regs_user = evsel->attr.sample_regs_user;
1426
1427                         sz = hweight_long(regs_user) * sizeof(u64);
1428                         OVERFLOW_CHECK(array, sz, max_size);
1429                         data->user_regs.regs = (u64 *)array;
1430                         array = (void *)array + sz;
1431                 }
1432         }
1433
1434         if (type & PERF_SAMPLE_STACK_USER) {
1435                 OVERFLOW_CHECK_u64(array);
1436                 sz = *array++;
1437
1438                 data->user_stack.offset = ((char *)(array - 1)
1439                                           - (char *) event);
1440
1441                 if (!sz) {
1442                         data->user_stack.size = 0;
1443                 } else {
1444                         OVERFLOW_CHECK(array, sz, max_size);
1445                         data->user_stack.data = (char *)array;
1446                         array = (void *)array + sz;
1447                         OVERFLOW_CHECK_u64(array);
1448                         data->user_stack.size = *array++;
1449                 }
1450         }
1451
1452         data->weight = 0;
1453         if (type & PERF_SAMPLE_WEIGHT) {
1454                 OVERFLOW_CHECK_u64(array);
1455                 data->weight = *array;
1456                 array++;
1457         }
1458
1459         data->data_src = PERF_MEM_DATA_SRC_NONE;
1460         if (type & PERF_SAMPLE_DATA_SRC) {
1461                 OVERFLOW_CHECK_u64(array);
1462                 data->data_src = *array;
1463                 array++;
1464         }
1465
1466         return 0;
1467 }
1468
1469 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1470                                      u64 sample_regs_user, u64 read_format)
1471 {
1472         size_t sz, result = sizeof(struct sample_event);
1473
1474         if (type & PERF_SAMPLE_IDENTIFIER)
1475                 result += sizeof(u64);
1476
1477         if (type & PERF_SAMPLE_IP)
1478                 result += sizeof(u64);
1479
1480         if (type & PERF_SAMPLE_TID)
1481                 result += sizeof(u64);
1482
1483         if (type & PERF_SAMPLE_TIME)
1484                 result += sizeof(u64);
1485
1486         if (type & PERF_SAMPLE_ADDR)
1487                 result += sizeof(u64);
1488
1489         if (type & PERF_SAMPLE_ID)
1490                 result += sizeof(u64);
1491
1492         if (type & PERF_SAMPLE_STREAM_ID)
1493                 result += sizeof(u64);
1494
1495         if (type & PERF_SAMPLE_CPU)
1496                 result += sizeof(u64);
1497
1498         if (type & PERF_SAMPLE_PERIOD)
1499                 result += sizeof(u64);
1500
1501         if (type & PERF_SAMPLE_READ) {
1502                 result += sizeof(u64);
1503                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1504                         result += sizeof(u64);
1505                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1506                         result += sizeof(u64);
1507                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1508                 if (read_format & PERF_FORMAT_GROUP) {
1509                         sz = sample->read.group.nr *
1510                              sizeof(struct sample_read_value);
1511                         result += sz;
1512                 } else {
1513                         result += sizeof(u64);
1514                 }
1515         }
1516
1517         if (type & PERF_SAMPLE_CALLCHAIN) {
1518                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1519                 result += sz;
1520         }
1521
1522         if (type & PERF_SAMPLE_RAW) {
1523                 result += sizeof(u32);
1524                 result += sample->raw_size;
1525         }
1526
1527         if (type & PERF_SAMPLE_BRANCH_STACK) {
1528                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1529                 sz += sizeof(u64);
1530                 result += sz;
1531         }
1532
1533         if (type & PERF_SAMPLE_REGS_USER) {
1534                 if (sample->user_regs.abi) {
1535                         result += sizeof(u64);
1536                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1537                         result += sz;
1538                 } else {
1539                         result += sizeof(u64);
1540                 }
1541         }
1542
1543         if (type & PERF_SAMPLE_STACK_USER) {
1544                 sz = sample->user_stack.size;
1545                 result += sizeof(u64);
1546                 if (sz) {
1547                         result += sz;
1548                         result += sizeof(u64);
1549                 }
1550         }
1551
1552         if (type & PERF_SAMPLE_WEIGHT)
1553                 result += sizeof(u64);
1554
1555         if (type & PERF_SAMPLE_DATA_SRC)
1556                 result += sizeof(u64);
1557
1558         return result;
1559 }
1560
1561 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1562                                   u64 sample_regs_user, u64 read_format,
1563                                   const struct perf_sample *sample,
1564                                   bool swapped)
1565 {
1566         u64 *array;
1567         size_t sz;
1568         /*
1569          * used for cross-endian analysis. See git commit 65014ab3
1570          * for why this goofiness is needed.
1571          */
1572         union u64_swap u;
1573
1574         array = event->sample.array;
1575
1576         if (type & PERF_SAMPLE_IDENTIFIER) {
1577                 *array = sample->id;
1578                 array++;
1579         }
1580
1581         if (type & PERF_SAMPLE_IP) {
1582                 *array = sample->ip;
1583                 array++;
1584         }
1585
1586         if (type & PERF_SAMPLE_TID) {
1587                 u.val32[0] = sample->pid;
1588                 u.val32[1] = sample->tid;
1589                 if (swapped) {
1590                         /*
1591                          * Inverse of what is done in perf_evsel__parse_sample
1592                          */
1593                         u.val32[0] = bswap_32(u.val32[0]);
1594                         u.val32[1] = bswap_32(u.val32[1]);
1595                         u.val64 = bswap_64(u.val64);
1596                 }
1597
1598                 *array = u.val64;
1599                 array++;
1600         }
1601
1602         if (type & PERF_SAMPLE_TIME) {
1603                 *array = sample->time;
1604                 array++;
1605         }
1606
1607         if (type & PERF_SAMPLE_ADDR) {
1608                 *array = sample->addr;
1609                 array++;
1610         }
1611
1612         if (type & PERF_SAMPLE_ID) {
1613                 *array = sample->id;
1614                 array++;
1615         }
1616
1617         if (type & PERF_SAMPLE_STREAM_ID) {
1618                 *array = sample->stream_id;
1619                 array++;
1620         }
1621
1622         if (type & PERF_SAMPLE_CPU) {
1623                 u.val32[0] = sample->cpu;
1624                 if (swapped) {
1625                         /*
1626                          * Inverse of what is done in perf_evsel__parse_sample
1627                          */
1628                         u.val32[0] = bswap_32(u.val32[0]);
1629                         u.val64 = bswap_64(u.val64);
1630                 }
1631                 *array = u.val64;
1632                 array++;
1633         }
1634
1635         if (type & PERF_SAMPLE_PERIOD) {
1636                 *array = sample->period;
1637                 array++;
1638         }
1639
1640         if (type & PERF_SAMPLE_READ) {
1641                 if (read_format & PERF_FORMAT_GROUP)
1642                         *array = sample->read.group.nr;
1643                 else
1644                         *array = sample->read.one.value;
1645                 array++;
1646
1647                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1648                         *array = sample->read.time_enabled;
1649                         array++;
1650                 }
1651
1652                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1653                         *array = sample->read.time_running;
1654                         array++;
1655                 }
1656
1657                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1658                 if (read_format & PERF_FORMAT_GROUP) {
1659                         sz = sample->read.group.nr *
1660                              sizeof(struct sample_read_value);
1661                         memcpy(array, sample->read.group.values, sz);
1662                         array = (void *)array + sz;
1663                 } else {
1664                         *array = sample->read.one.id;
1665                         array++;
1666                 }
1667         }
1668
1669         if (type & PERF_SAMPLE_CALLCHAIN) {
1670                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1671                 memcpy(array, sample->callchain, sz);
1672                 array = (void *)array + sz;
1673         }
1674
1675         if (type & PERF_SAMPLE_RAW) {
1676                 u.val32[0] = sample->raw_size;
1677                 if (WARN_ONCE(swapped,
1678                               "Endianness of raw data not corrected!\n")) {
1679                         /*
1680                          * Inverse of what is done in perf_evsel__parse_sample
1681                          */
1682                         u.val32[0] = bswap_32(u.val32[0]);
1683                         u.val32[1] = bswap_32(u.val32[1]);
1684                         u.val64 = bswap_64(u.val64);
1685                 }
1686                 *array = u.val64;
1687                 array = (void *)array + sizeof(u32);
1688
1689                 memcpy(array, sample->raw_data, sample->raw_size);
1690                 array = (void *)array + sample->raw_size;
1691         }
1692
1693         if (type & PERF_SAMPLE_BRANCH_STACK) {
1694                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1695                 sz += sizeof(u64);
1696                 memcpy(array, sample->branch_stack, sz);
1697                 array = (void *)array + sz;
1698         }
1699
1700         if (type & PERF_SAMPLE_REGS_USER) {
1701                 if (sample->user_regs.abi) {
1702                         *array++ = sample->user_regs.abi;
1703                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1704                         memcpy(array, sample->user_regs.regs, sz);
1705                         array = (void *)array + sz;
1706                 } else {
1707                         *array++ = 0;
1708                 }
1709         }
1710
1711         if (type & PERF_SAMPLE_STACK_USER) {
1712                 sz = sample->user_stack.size;
1713                 *array++ = sz;
1714                 if (sz) {
1715                         memcpy(array, sample->user_stack.data, sz);
1716                         array = (void *)array + sz;
1717                         *array++ = sz;
1718                 }
1719         }
1720
1721         if (type & PERF_SAMPLE_WEIGHT) {
1722                 *array = sample->weight;
1723                 array++;
1724         }
1725
1726         if (type & PERF_SAMPLE_DATA_SRC) {
1727                 *array = sample->data_src;
1728                 array++;
1729         }
1730
1731         return 0;
1732 }
1733
1734 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1735 {
1736         return pevent_find_field(evsel->tp_format, name);
1737 }
1738
1739 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1740                          const char *name)
1741 {
1742         struct format_field *field = perf_evsel__field(evsel, name);
1743         int offset;
1744
1745         if (!field)
1746                 return NULL;
1747
1748         offset = field->offset;
1749
1750         if (field->flags & FIELD_IS_DYNAMIC) {
1751                 offset = *(int *)(sample->raw_data + field->offset);
1752                 offset &= 0xffff;
1753         }
1754
1755         return sample->raw_data + offset;
1756 }
1757
1758 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1759                        const char *name)
1760 {
1761         struct format_field *field = perf_evsel__field(evsel, name);
1762         void *ptr;
1763         u64 value;
1764
1765         if (!field)
1766                 return 0;
1767
1768         ptr = sample->raw_data + field->offset;
1769
1770         switch (field->size) {
1771         case 1:
1772                 return *(u8 *)ptr;
1773         case 2:
1774                 value = *(u16 *)ptr;
1775                 break;
1776         case 4:
1777                 value = *(u32 *)ptr;
1778                 break;
1779         case 8:
1780                 value = *(u64 *)ptr;
1781                 break;
1782         default:
1783                 return 0;
1784         }
1785
1786         if (!evsel->needs_swap)
1787                 return value;
1788
1789         switch (field->size) {
1790         case 2:
1791                 return bswap_16(value);
1792         case 4:
1793                 return bswap_32(value);
1794         case 8:
1795                 return bswap_64(value);
1796         default:
1797                 return 0;
1798         }
1799
1800         return 0;
1801 }
1802
1803 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1804 {
1805         va_list args;
1806         int ret = 0;
1807
1808         if (!*first) {
1809                 ret += fprintf(fp, ",");
1810         } else {
1811                 ret += fprintf(fp, ":");
1812                 *first = false;
1813         }
1814
1815         va_start(args, fmt);
1816         ret += vfprintf(fp, fmt, args);
1817         va_end(args);
1818         return ret;
1819 }
1820
1821 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1822 {
1823         if (value == 0)
1824                 return 0;
1825
1826         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1827 }
1828
1829 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1830
1831 struct bit_names {
1832         int bit;
1833         const char *name;
1834 };
1835
1836 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1837                          struct bit_names *bits, bool *first)
1838 {
1839         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1840         bool first_bit = true;
1841
1842         do {
1843                 if (value & bits[i].bit) {
1844                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1845                         first_bit = false;
1846                 }
1847         } while (bits[++i].name != NULL);
1848
1849         return printed;
1850 }
1851
1852 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1853 {
1854 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1855         struct bit_names bits[] = {
1856                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1857                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1858                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1859                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1860                 bit_name(IDENTIFIER),
1861                 { .name = NULL, }
1862         };
1863 #undef bit_name
1864         return bits__fprintf(fp, "sample_type", value, bits, first);
1865 }
1866
1867 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1868 {
1869 #define bit_name(n) { PERF_FORMAT_##n, #n }
1870         struct bit_names bits[] = {
1871                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1872                 bit_name(ID), bit_name(GROUP),
1873                 { .name = NULL, }
1874         };
1875 #undef bit_name
1876         return bits__fprintf(fp, "read_format", value, bits, first);
1877 }
1878
1879 int perf_evsel__fprintf(struct perf_evsel *evsel,
1880                         struct perf_attr_details *details, FILE *fp)
1881 {
1882         bool first = true;
1883         int printed = 0;
1884
1885         if (details->event_group) {
1886                 struct perf_evsel *pos;
1887
1888                 if (!perf_evsel__is_group_leader(evsel))
1889                         return 0;
1890
1891                 if (evsel->nr_members > 1)
1892                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1893
1894                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1895                 for_each_group_member(pos, evsel)
1896                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1897
1898                 if (evsel->nr_members > 1)
1899                         printed += fprintf(fp, "}");
1900                 goto out;
1901         }
1902
1903         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1904
1905         if (details->verbose || details->freq) {
1906                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1907                                          (u64)evsel->attr.sample_freq);
1908         }
1909
1910         if (details->verbose) {
1911                 if_print(type);
1912                 if_print(config);
1913                 if_print(config1);
1914                 if_print(config2);
1915                 if_print(size);
1916                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1917                 if (evsel->attr.read_format)
1918                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1919                 if_print(disabled);
1920                 if_print(inherit);
1921                 if_print(pinned);
1922                 if_print(exclusive);
1923                 if_print(exclude_user);
1924                 if_print(exclude_kernel);
1925                 if_print(exclude_hv);
1926                 if_print(exclude_idle);
1927                 if_print(mmap);
1928                 if_print(comm);
1929                 if_print(freq);
1930                 if_print(inherit_stat);
1931                 if_print(enable_on_exec);
1932                 if_print(task);
1933                 if_print(watermark);
1934                 if_print(precise_ip);
1935                 if_print(mmap_data);
1936                 if_print(sample_id_all);
1937                 if_print(exclude_host);
1938                 if_print(exclude_guest);
1939                 if_print(__reserved_1);
1940                 if_print(wakeup_events);
1941                 if_print(bp_type);
1942                 if_print(branch_sample_type);
1943         }
1944 out:
1945         fputc('\n', fp);
1946         return ++printed;
1947 }
1948
1949 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1950                           char *msg, size_t msgsize)
1951 {
1952         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1953             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1954             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1955                 /*
1956                  * If it's cycles then fall back to hrtimer based
1957                  * cpu-clock-tick sw counter, which is always available even if
1958                  * no PMU support.
1959                  *
1960                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1961                  * b0a873e).
1962                  */
1963                 scnprintf(msg, msgsize, "%s",
1964 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1965
1966                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1967                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1968
1969                 free(evsel->name);
1970                 evsel->name = NULL;
1971                 return true;
1972         }
1973
1974         return false;
1975 }
1976
1977 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1978                               struct perf_target *target,
1979                               int err, char *msg, size_t size)
1980 {
1981         switch (err) {
1982         case EPERM:
1983         case EACCES:
1984                 return scnprintf(msg, size,
1985                  "You may not have permission to collect %sstats.\n"
1986                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1987                  " -1 - Not paranoid at all\n"
1988                  "  0 - Disallow raw tracepoint access for unpriv\n"
1989                  "  1 - Disallow cpu events for unpriv\n"
1990                  "  2 - Disallow kernel profiling for unpriv",
1991                                  target->system_wide ? "system-wide " : "");
1992         case ENOENT:
1993                 return scnprintf(msg, size, "The %s event is not supported.",
1994                                  perf_evsel__name(evsel));
1995         case EMFILE:
1996                 return scnprintf(msg, size, "%s",
1997                          "Too many events are opened.\n"
1998                          "Try again after reducing the number of events.");
1999         case ENODEV:
2000                 if (target->cpu_list)
2001                         return scnprintf(msg, size, "%s",
2002          "No such device - did you specify an out-of-range profile CPU?\n");
2003                 break;
2004         case EOPNOTSUPP:
2005                 if (evsel->attr.precise_ip)
2006                         return scnprintf(msg, size, "%s",
2007         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2008 #if defined(__i386__) || defined(__x86_64__)
2009                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2010                         return scnprintf(msg, size, "%s",
2011         "No hardware sampling interrupt available.\n"
2012         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2013 #endif
2014                 break;
2015         default:
2016                 break;
2017         }
2018
2019         return scnprintf(msg, size,
2020         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2021         "/bin/dmesg may provide additional information.\n"
2022         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2023                          err, strerror(err), perf_evsel__name(evsel));
2024 }