]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/evsel.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/err.h>
19 #include <sys/ioctl.h>
20 #include <sys/resource.h>
21 #include "asm/bug.h"
22 #include "callchain.h"
23 #include "cgroup.h"
24 #include "event.h"
25 #include "evsel.h"
26 #include "evlist.h"
27 #include "util.h"
28 #include "cpumap.h"
29 #include "thread_map.h"
30 #include "target.h"
31 #include "perf_regs.h"
32 #include "debug.h"
33 #include "trace-event.h"
34 #include "stat.h"
35 #include "util/parse-branch-options.h"
36
37 #include "sane_ctype.h"
38
39 static struct {
40         bool sample_id_all;
41         bool exclude_guest;
42         bool mmap2;
43         bool cloexec;
44         bool clockid;
45         bool clockid_wrong;
46         bool lbr_flags;
47         bool write_backward;
48 } perf_missing_features;
49
50 static clockid_t clockid;
51
52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
53 {
54         return 0;
55 }
56
57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
58 {
59 }
60
61 static struct {
62         size_t  size;
63         int     (*init)(struct perf_evsel *evsel);
64         void    (*fini)(struct perf_evsel *evsel);
65 } perf_evsel__object = {
66         .size = sizeof(struct perf_evsel),
67         .init = perf_evsel__no_extra_init,
68         .fini = perf_evsel__no_extra_fini,
69 };
70
71 int perf_evsel__object_config(size_t object_size,
72                               int (*init)(struct perf_evsel *evsel),
73                               void (*fini)(struct perf_evsel *evsel))
74 {
75
76         if (object_size == 0)
77                 goto set_methods;
78
79         if (perf_evsel__object.size > object_size)
80                 return -EINVAL;
81
82         perf_evsel__object.size = object_size;
83
84 set_methods:
85         if (init != NULL)
86                 perf_evsel__object.init = init;
87
88         if (fini != NULL)
89                 perf_evsel__object.fini = fini;
90
91         return 0;
92 }
93
94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
95
96 int __perf_evsel__sample_size(u64 sample_type)
97 {
98         u64 mask = sample_type & PERF_SAMPLE_MASK;
99         int size = 0;
100         int i;
101
102         for (i = 0; i < 64; i++) {
103                 if (mask & (1ULL << i))
104                         size++;
105         }
106
107         size *= sizeof(u64);
108
109         return size;
110 }
111
112 /**
113  * __perf_evsel__calc_id_pos - calculate id_pos.
114  * @sample_type: sample type
115  *
116  * This function returns the position of the event id (PERF_SAMPLE_ID or
117  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118  * sample_event.
119  */
120 static int __perf_evsel__calc_id_pos(u64 sample_type)
121 {
122         int idx = 0;
123
124         if (sample_type & PERF_SAMPLE_IDENTIFIER)
125                 return 0;
126
127         if (!(sample_type & PERF_SAMPLE_ID))
128                 return -1;
129
130         if (sample_type & PERF_SAMPLE_IP)
131                 idx += 1;
132
133         if (sample_type & PERF_SAMPLE_TID)
134                 idx += 1;
135
136         if (sample_type & PERF_SAMPLE_TIME)
137                 idx += 1;
138
139         if (sample_type & PERF_SAMPLE_ADDR)
140                 idx += 1;
141
142         return idx;
143 }
144
145 /**
146  * __perf_evsel__calc_is_pos - calculate is_pos.
147  * @sample_type: sample type
148  *
149  * This function returns the position (counting backwards) of the event id
150  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
151  * sample_id_all is used there is an id sample appended to non-sample events.
152  */
153 static int __perf_evsel__calc_is_pos(u64 sample_type)
154 {
155         int idx = 1;
156
157         if (sample_type & PERF_SAMPLE_IDENTIFIER)
158                 return 1;
159
160         if (!(sample_type & PERF_SAMPLE_ID))
161                 return -1;
162
163         if (sample_type & PERF_SAMPLE_CPU)
164                 idx += 1;
165
166         if (sample_type & PERF_SAMPLE_STREAM_ID)
167                 idx += 1;
168
169         return idx;
170 }
171
172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
173 {
174         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
175         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
176 }
177
178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
179                                   enum perf_event_sample_format bit)
180 {
181         if (!(evsel->attr.sample_type & bit)) {
182                 evsel->attr.sample_type |= bit;
183                 evsel->sample_size += sizeof(u64);
184                 perf_evsel__calc_id_pos(evsel);
185         }
186 }
187
188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
189                                     enum perf_event_sample_format bit)
190 {
191         if (evsel->attr.sample_type & bit) {
192                 evsel->attr.sample_type &= ~bit;
193                 evsel->sample_size -= sizeof(u64);
194                 perf_evsel__calc_id_pos(evsel);
195         }
196 }
197
198 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
199                                bool can_sample_identifier)
200 {
201         if (can_sample_identifier) {
202                 perf_evsel__reset_sample_bit(evsel, ID);
203                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
204         } else {
205                 perf_evsel__set_sample_bit(evsel, ID);
206         }
207         evsel->attr.read_format |= PERF_FORMAT_ID;
208 }
209
210 /**
211  * perf_evsel__is_function_event - Return whether given evsel is a function
212  * trace event
213  *
214  * @evsel - evsel selector to be tested
215  *
216  * Return %true if event is function trace event
217  */
218 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
219 {
220 #define FUNCTION_EVENT "ftrace:function"
221
222         return evsel->name &&
223                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
224
225 #undef FUNCTION_EVENT
226 }
227
228 void perf_evsel__init(struct perf_evsel *evsel,
229                       struct perf_event_attr *attr, int idx)
230 {
231         evsel->idx         = idx;
232         evsel->tracking    = !idx;
233         evsel->attr        = *attr;
234         evsel->leader      = evsel;
235         evsel->unit        = "";
236         evsel->scale       = 1.0;
237         evsel->evlist      = NULL;
238         evsel->bpf_fd      = -1;
239         INIT_LIST_HEAD(&evsel->node);
240         INIT_LIST_HEAD(&evsel->config_terms);
241         perf_evsel__object.init(evsel);
242         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243         perf_evsel__calc_id_pos(evsel);
244         evsel->cmdline_group_boundary = false;
245         evsel->metric_expr   = NULL;
246         evsel->metric_name   = NULL;
247         evsel->metric_events = NULL;
248         evsel->collect_stat  = false;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255         if (evsel != NULL)
256                 perf_evsel__init(evsel, attr, idx);
257
258         if (perf_evsel__is_bpf_output(evsel)) {
259                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261                 evsel->attr.sample_period = 1;
262         }
263
264         return evsel;
265 }
266
267 struct perf_evsel *perf_evsel__new_cycles(void)
268 {
269         struct perf_event_attr attr = {
270                 .type   = PERF_TYPE_HARDWARE,
271                 .config = PERF_COUNT_HW_CPU_CYCLES,
272         };
273         struct perf_evsel *evsel;
274
275         event_attr_init(&attr);
276         /*
277          * Unnamed union member, not supported as struct member named
278          * initializer in older compilers such as gcc 4.4.7
279          *
280          * Just for probing the precise_ip:
281          */
282         attr.sample_period = 1;
283
284         perf_event_attr__set_max_precise_ip(&attr);
285         /*
286          * Now let the usual logic to set up the perf_event_attr defaults
287          * to kick in when we return and before perf_evsel__open() is called.
288          */
289         attr.sample_period = 0;
290
291         evsel = perf_evsel__new(&attr);
292         if (evsel == NULL)
293                 goto out;
294
295         /* use asprintf() because free(evsel) assumes name is allocated */
296         if (asprintf(&evsel->name, "cycles%.*s",
297                      attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
298                 goto error_free;
299 out:
300         return evsel;
301 error_free:
302         perf_evsel__delete(evsel);
303         evsel = NULL;
304         goto out;
305 }
306
307 /*
308  * Returns pointer with encoded error via <linux/err.h> interface.
309  */
310 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
311 {
312         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
313         int err = -ENOMEM;
314
315         if (evsel == NULL) {
316                 goto out_err;
317         } else {
318                 struct perf_event_attr attr = {
319                         .type          = PERF_TYPE_TRACEPOINT,
320                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
321                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
322                 };
323
324                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
325                         goto out_free;
326
327                 evsel->tp_format = trace_event__tp_format(sys, name);
328                 if (IS_ERR(evsel->tp_format)) {
329                         err = PTR_ERR(evsel->tp_format);
330                         goto out_free;
331                 }
332
333                 event_attr_init(&attr);
334                 attr.config = evsel->tp_format->id;
335                 attr.sample_period = 1;
336                 perf_evsel__init(evsel, &attr, idx);
337         }
338
339         return evsel;
340
341 out_free:
342         zfree(&evsel->name);
343         free(evsel);
344 out_err:
345         return ERR_PTR(err);
346 }
347
348 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
349         "cycles",
350         "instructions",
351         "cache-references",
352         "cache-misses",
353         "branches",
354         "branch-misses",
355         "bus-cycles",
356         "stalled-cycles-frontend",
357         "stalled-cycles-backend",
358         "ref-cycles",
359 };
360
361 static const char *__perf_evsel__hw_name(u64 config)
362 {
363         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
364                 return perf_evsel__hw_names[config];
365
366         return "unknown-hardware";
367 }
368
369 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
370 {
371         int colon = 0, r = 0;
372         struct perf_event_attr *attr = &evsel->attr;
373         bool exclude_guest_default = false;
374
375 #define MOD_PRINT(context, mod) do {                                    \
376                 if (!attr->exclude_##context) {                         \
377                         if (!colon) colon = ++r;                        \
378                         r += scnprintf(bf + r, size - r, "%c", mod);    \
379                 } } while(0)
380
381         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
382                 MOD_PRINT(kernel, 'k');
383                 MOD_PRINT(user, 'u');
384                 MOD_PRINT(hv, 'h');
385                 exclude_guest_default = true;
386         }
387
388         if (attr->precise_ip) {
389                 if (!colon)
390                         colon = ++r;
391                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
392                 exclude_guest_default = true;
393         }
394
395         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
396                 MOD_PRINT(host, 'H');
397                 MOD_PRINT(guest, 'G');
398         }
399 #undef MOD_PRINT
400         if (colon)
401                 bf[colon - 1] = ':';
402         return r;
403 }
404
405 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
406 {
407         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
408         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
409 }
410
411 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
412         "cpu-clock",
413         "task-clock",
414         "page-faults",
415         "context-switches",
416         "cpu-migrations",
417         "minor-faults",
418         "major-faults",
419         "alignment-faults",
420         "emulation-faults",
421         "dummy",
422 };
423
424 static const char *__perf_evsel__sw_name(u64 config)
425 {
426         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
427                 return perf_evsel__sw_names[config];
428         return "unknown-software";
429 }
430
431 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
432 {
433         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
434         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
435 }
436
437 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
438 {
439         int r;
440
441         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
442
443         if (type & HW_BREAKPOINT_R)
444                 r += scnprintf(bf + r, size - r, "r");
445
446         if (type & HW_BREAKPOINT_W)
447                 r += scnprintf(bf + r, size - r, "w");
448
449         if (type & HW_BREAKPOINT_X)
450                 r += scnprintf(bf + r, size - r, "x");
451
452         return r;
453 }
454
455 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
456 {
457         struct perf_event_attr *attr = &evsel->attr;
458         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
459         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
460 }
461
462 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
463                                 [PERF_EVSEL__MAX_ALIASES] = {
464  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
465  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
466  { "LLC",       "L2",                                                   },
467  { "dTLB",      "d-tlb",        "Data-TLB",                             },
468  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
469  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
470  { "node",                                                              },
471 };
472
473 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
474                                    [PERF_EVSEL__MAX_ALIASES] = {
475  { "load",      "loads",        "read",                                 },
476  { "store",     "stores",       "write",                                },
477  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
478 };
479
480 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
481                                        [PERF_EVSEL__MAX_ALIASES] = {
482  { "refs",      "Reference",    "ops",          "access",               },
483  { "misses",    "miss",                                                 },
484 };
485
486 #define C(x)            PERF_COUNT_HW_CACHE_##x
487 #define CACHE_READ      (1 << C(OP_READ))
488 #define CACHE_WRITE     (1 << C(OP_WRITE))
489 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
490 #define COP(x)          (1 << x)
491
492 /*
493  * cache operartion stat
494  * L1I : Read and prefetch only
495  * ITLB and BPU : Read-only
496  */
497 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
498  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
499  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
500  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
501  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
502  [C(ITLB)]      = (CACHE_READ),
503  [C(BPU)]       = (CACHE_READ),
504  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
505 };
506
507 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
508 {
509         if (perf_evsel__hw_cache_stat[type] & COP(op))
510                 return true;    /* valid */
511         else
512                 return false;   /* invalid */
513 }
514
515 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
516                                             char *bf, size_t size)
517 {
518         if (result) {
519                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
520                                  perf_evsel__hw_cache_op[op][0],
521                                  perf_evsel__hw_cache_result[result][0]);
522         }
523
524         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
525                          perf_evsel__hw_cache_op[op][1]);
526 }
527
528 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
529 {
530         u8 op, result, type = (config >>  0) & 0xff;
531         const char *err = "unknown-ext-hardware-cache-type";
532
533         if (type >= PERF_COUNT_HW_CACHE_MAX)
534                 goto out_err;
535
536         op = (config >>  8) & 0xff;
537         err = "unknown-ext-hardware-cache-op";
538         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
539                 goto out_err;
540
541         result = (config >> 16) & 0xff;
542         err = "unknown-ext-hardware-cache-result";
543         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
544                 goto out_err;
545
546         err = "invalid-cache";
547         if (!perf_evsel__is_cache_op_valid(type, op))
548                 goto out_err;
549
550         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
551 out_err:
552         return scnprintf(bf, size, "%s", err);
553 }
554
555 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
556 {
557         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
558         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
559 }
560
561 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
562 {
563         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
564         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
565 }
566
567 const char *perf_evsel__name(struct perf_evsel *evsel)
568 {
569         char bf[128];
570
571         if (evsel->name)
572                 return evsel->name;
573
574         switch (evsel->attr.type) {
575         case PERF_TYPE_RAW:
576                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
577                 break;
578
579         case PERF_TYPE_HARDWARE:
580                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
581                 break;
582
583         case PERF_TYPE_HW_CACHE:
584                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
585                 break;
586
587         case PERF_TYPE_SOFTWARE:
588                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
589                 break;
590
591         case PERF_TYPE_TRACEPOINT:
592                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
593                 break;
594
595         case PERF_TYPE_BREAKPOINT:
596                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
597                 break;
598
599         default:
600                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
601                           evsel->attr.type);
602                 break;
603         }
604
605         evsel->name = strdup(bf);
606
607         return evsel->name ?: "unknown";
608 }
609
610 const char *perf_evsel__group_name(struct perf_evsel *evsel)
611 {
612         return evsel->group_name ?: "anon group";
613 }
614
615 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
616 {
617         int ret;
618         struct perf_evsel *pos;
619         const char *group_name = perf_evsel__group_name(evsel);
620
621         ret = scnprintf(buf, size, "%s", group_name);
622
623         ret += scnprintf(buf + ret, size - ret, " { %s",
624                          perf_evsel__name(evsel));
625
626         for_each_group_member(pos, evsel)
627                 ret += scnprintf(buf + ret, size - ret, ", %s",
628                                  perf_evsel__name(pos));
629
630         ret += scnprintf(buf + ret, size - ret, " }");
631
632         return ret;
633 }
634
635 void perf_evsel__config_callchain(struct perf_evsel *evsel,
636                                   struct record_opts *opts,
637                                   struct callchain_param *param)
638 {
639         bool function = perf_evsel__is_function_event(evsel);
640         struct perf_event_attr *attr = &evsel->attr;
641
642         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
643
644         attr->sample_max_stack = param->max_stack;
645
646         if (param->record_mode == CALLCHAIN_LBR) {
647                 if (!opts->branch_stack) {
648                         if (attr->exclude_user) {
649                                 pr_warning("LBR callstack option is only available "
650                                            "to get user callchain information. "
651                                            "Falling back to framepointers.\n");
652                         } else {
653                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
654                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
655                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
656                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
657                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
658                         }
659                 } else
660                          pr_warning("Cannot use LBR callstack with branch stack. "
661                                     "Falling back to framepointers.\n");
662         }
663
664         if (param->record_mode == CALLCHAIN_DWARF) {
665                 if (!function) {
666                         perf_evsel__set_sample_bit(evsel, REGS_USER);
667                         perf_evsel__set_sample_bit(evsel, STACK_USER);
668                         attr->sample_regs_user = PERF_REGS_MASK;
669                         attr->sample_stack_user = param->dump_size;
670                         attr->exclude_callchain_user = 1;
671                 } else {
672                         pr_info("Cannot use DWARF unwind for function trace event,"
673                                 " falling back to framepointers.\n");
674                 }
675         }
676
677         if (function) {
678                 pr_info("Disabling user space callchains for function trace event.\n");
679                 attr->exclude_callchain_user = 1;
680         }
681 }
682
683 static void
684 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
685                             struct callchain_param *param)
686 {
687         struct perf_event_attr *attr = &evsel->attr;
688
689         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
690         if (param->record_mode == CALLCHAIN_LBR) {
691                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
692                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
693                                               PERF_SAMPLE_BRANCH_CALL_STACK);
694         }
695         if (param->record_mode == CALLCHAIN_DWARF) {
696                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
697                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
698         }
699 }
700
701 static void apply_config_terms(struct perf_evsel *evsel,
702                                struct record_opts *opts)
703 {
704         struct perf_evsel_config_term *term;
705         struct list_head *config_terms = &evsel->config_terms;
706         struct perf_event_attr *attr = &evsel->attr;
707         struct callchain_param param;
708         u32 dump_size = 0;
709         int max_stack = 0;
710         const char *callgraph_buf = NULL;
711
712         /* callgraph default */
713         param.record_mode = callchain_param.record_mode;
714
715         list_for_each_entry(term, config_terms, list) {
716                 switch (term->type) {
717                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
718                         attr->sample_period = term->val.period;
719                         attr->freq = 0;
720                         break;
721                 case PERF_EVSEL__CONFIG_TERM_FREQ:
722                         attr->sample_freq = term->val.freq;
723                         attr->freq = 1;
724                         break;
725                 case PERF_EVSEL__CONFIG_TERM_TIME:
726                         if (term->val.time)
727                                 perf_evsel__set_sample_bit(evsel, TIME);
728                         else
729                                 perf_evsel__reset_sample_bit(evsel, TIME);
730                         break;
731                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
732                         callgraph_buf = term->val.callgraph;
733                         break;
734                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
735                         if (term->val.branch && strcmp(term->val.branch, "no")) {
736                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
737                                 parse_branch_str(term->val.branch,
738                                                  &attr->branch_sample_type);
739                         } else
740                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
741                         break;
742                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
743                         dump_size = term->val.stack_user;
744                         break;
745                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
746                         max_stack = term->val.max_stack;
747                         break;
748                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
749                         /*
750                          * attr->inherit should has already been set by
751                          * perf_evsel__config. If user explicitly set
752                          * inherit using config terms, override global
753                          * opt->no_inherit setting.
754                          */
755                         attr->inherit = term->val.inherit ? 1 : 0;
756                         break;
757                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
758                         attr->write_backward = term->val.overwrite ? 1 : 0;
759                         break;
760                 default:
761                         break;
762                 }
763         }
764
765         /* User explicitly set per-event callgraph, clear the old setting and reset. */
766         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
767                 if (max_stack) {
768                         param.max_stack = max_stack;
769                         if (callgraph_buf == NULL)
770                                 callgraph_buf = "fp";
771                 }
772
773                 /* parse callgraph parameters */
774                 if (callgraph_buf != NULL) {
775                         if (!strcmp(callgraph_buf, "no")) {
776                                 param.enabled = false;
777                                 param.record_mode = CALLCHAIN_NONE;
778                         } else {
779                                 param.enabled = true;
780                                 if (parse_callchain_record(callgraph_buf, &param)) {
781                                         pr_err("per-event callgraph setting for %s failed. "
782                                                "Apply callgraph global setting for it\n",
783                                                evsel->name);
784                                         return;
785                                 }
786                         }
787                 }
788                 if (dump_size > 0) {
789                         dump_size = round_up(dump_size, sizeof(u64));
790                         param.dump_size = dump_size;
791                 }
792
793                 /* If global callgraph set, clear it */
794                 if (callchain_param.enabled)
795                         perf_evsel__reset_callgraph(evsel, &callchain_param);
796
797                 /* set perf-event callgraph */
798                 if (param.enabled)
799                         perf_evsel__config_callchain(evsel, opts, &param);
800         }
801 }
802
803 /*
804  * The enable_on_exec/disabled value strategy:
805  *
806  *  1) For any type of traced program:
807  *    - all independent events and group leaders are disabled
808  *    - all group members are enabled
809  *
810  *     Group members are ruled by group leaders. They need to
811  *     be enabled, because the group scheduling relies on that.
812  *
813  *  2) For traced programs executed by perf:
814  *     - all independent events and group leaders have
815  *       enable_on_exec set
816  *     - we don't specifically enable or disable any event during
817  *       the record command
818  *
819  *     Independent events and group leaders are initially disabled
820  *     and get enabled by exec. Group members are ruled by group
821  *     leaders as stated in 1).
822  *
823  *  3) For traced programs attached by perf (pid/tid):
824  *     - we specifically enable or disable all events during
825  *       the record command
826  *
827  *     When attaching events to already running traced we
828  *     enable/disable events specifically, as there's no
829  *     initial traced exec call.
830  */
831 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
832                         struct callchain_param *callchain)
833 {
834         struct perf_evsel *leader = evsel->leader;
835         struct perf_event_attr *attr = &evsel->attr;
836         int track = evsel->tracking;
837         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
838
839         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
840         attr->inherit       = !opts->no_inherit;
841         attr->write_backward = opts->overwrite ? 1 : 0;
842
843         perf_evsel__set_sample_bit(evsel, IP);
844         perf_evsel__set_sample_bit(evsel, TID);
845
846         if (evsel->sample_read) {
847                 perf_evsel__set_sample_bit(evsel, READ);
848
849                 /*
850                  * We need ID even in case of single event, because
851                  * PERF_SAMPLE_READ process ID specific data.
852                  */
853                 perf_evsel__set_sample_id(evsel, false);
854
855                 /*
856                  * Apply group format only if we belong to group
857                  * with more than one members.
858                  */
859                 if (leader->nr_members > 1) {
860                         attr->read_format |= PERF_FORMAT_GROUP;
861                         attr->inherit = 0;
862                 }
863         }
864
865         /*
866          * We default some events to have a default interval. But keep
867          * it a weak assumption overridable by the user.
868          */
869         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
870                                      opts->user_interval != ULLONG_MAX)) {
871                 if (opts->freq) {
872                         perf_evsel__set_sample_bit(evsel, PERIOD);
873                         attr->freq              = 1;
874                         attr->sample_freq       = opts->freq;
875                 } else {
876                         attr->sample_period = opts->default_interval;
877                 }
878         }
879
880         /*
881          * Disable sampling for all group members other
882          * than leader in case leader 'leads' the sampling.
883          */
884         if ((leader != evsel) && leader->sample_read) {
885                 attr->sample_freq   = 0;
886                 attr->sample_period = 0;
887         }
888
889         if (opts->no_samples)
890                 attr->sample_freq = 0;
891
892         if (opts->inherit_stat)
893                 attr->inherit_stat = 1;
894
895         if (opts->sample_address) {
896                 perf_evsel__set_sample_bit(evsel, ADDR);
897                 attr->mmap_data = track;
898         }
899
900         /*
901          * We don't allow user space callchains for  function trace
902          * event, due to issues with page faults while tracing page
903          * fault handler and its overall trickiness nature.
904          */
905         if (perf_evsel__is_function_event(evsel))
906                 evsel->attr.exclude_callchain_user = 1;
907
908         if (callchain && callchain->enabled && !evsel->no_aux_samples)
909                 perf_evsel__config_callchain(evsel, opts, callchain);
910
911         if (opts->sample_intr_regs) {
912                 attr->sample_regs_intr = opts->sample_intr_regs;
913                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
914         }
915
916         if (target__has_cpu(&opts->target) || opts->sample_cpu)
917                 perf_evsel__set_sample_bit(evsel, CPU);
918
919         if (opts->period)
920                 perf_evsel__set_sample_bit(evsel, PERIOD);
921
922         /*
923          * When the user explicitly disabled time don't force it here.
924          */
925         if (opts->sample_time &&
926             (!perf_missing_features.sample_id_all &&
927             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
928              opts->sample_time_set)))
929                 perf_evsel__set_sample_bit(evsel, TIME);
930
931         if (opts->raw_samples && !evsel->no_aux_samples) {
932                 perf_evsel__set_sample_bit(evsel, TIME);
933                 perf_evsel__set_sample_bit(evsel, RAW);
934                 perf_evsel__set_sample_bit(evsel, CPU);
935         }
936
937         if (opts->sample_address)
938                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
939
940         if (opts->no_buffering) {
941                 attr->watermark = 0;
942                 attr->wakeup_events = 1;
943         }
944         if (opts->branch_stack && !evsel->no_aux_samples) {
945                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
946                 attr->branch_sample_type = opts->branch_stack;
947         }
948
949         if (opts->sample_weight)
950                 perf_evsel__set_sample_bit(evsel, WEIGHT);
951
952         attr->task  = track;
953         attr->mmap  = track;
954         attr->mmap2 = track && !perf_missing_features.mmap2;
955         attr->comm  = track;
956
957         if (opts->record_namespaces)
958                 attr->namespaces  = track;
959
960         if (opts->record_switch_events)
961                 attr->context_switch = track;
962
963         if (opts->sample_transaction)
964                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
965
966         if (opts->running_time) {
967                 evsel->attr.read_format |=
968                         PERF_FORMAT_TOTAL_TIME_ENABLED |
969                         PERF_FORMAT_TOTAL_TIME_RUNNING;
970         }
971
972         /*
973          * XXX see the function comment above
974          *
975          * Disabling only independent events or group leaders,
976          * keeping group members enabled.
977          */
978         if (perf_evsel__is_group_leader(evsel))
979                 attr->disabled = 1;
980
981         /*
982          * Setting enable_on_exec for independent events and
983          * group leaders for traced executed by perf.
984          */
985         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
986                 !opts->initial_delay)
987                 attr->enable_on_exec = 1;
988
989         if (evsel->immediate) {
990                 attr->disabled = 0;
991                 attr->enable_on_exec = 0;
992         }
993
994         clockid = opts->clockid;
995         if (opts->use_clockid) {
996                 attr->use_clockid = 1;
997                 attr->clockid = opts->clockid;
998         }
999
1000         if (evsel->precise_max)
1001                 perf_event_attr__set_max_precise_ip(attr);
1002
1003         if (opts->all_user) {
1004                 attr->exclude_kernel = 1;
1005                 attr->exclude_user   = 0;
1006         }
1007
1008         if (opts->all_kernel) {
1009                 attr->exclude_kernel = 0;
1010                 attr->exclude_user   = 1;
1011         }
1012
1013         /*
1014          * Apply event specific term settings,
1015          * it overloads any global configuration.
1016          */
1017         apply_config_terms(evsel, opts);
1018
1019         evsel->ignore_missing_thread = opts->ignore_missing_thread;
1020 }
1021
1022 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1023 {
1024         if (evsel->system_wide)
1025                 nthreads = 1;
1026
1027         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1028
1029         if (evsel->fd) {
1030                 int cpu, thread;
1031                 for (cpu = 0; cpu < ncpus; cpu++) {
1032                         for (thread = 0; thread < nthreads; thread++) {
1033                                 FD(evsel, cpu, thread) = -1;
1034                         }
1035                 }
1036         }
1037
1038         return evsel->fd != NULL ? 0 : -ENOMEM;
1039 }
1040
1041 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1042                           int ioc,  void *arg)
1043 {
1044         int cpu, thread;
1045
1046         if (evsel->system_wide)
1047                 nthreads = 1;
1048
1049         for (cpu = 0; cpu < ncpus; cpu++) {
1050                 for (thread = 0; thread < nthreads; thread++) {
1051                         int fd = FD(evsel, cpu, thread),
1052                             err = ioctl(fd, ioc, arg);
1053
1054                         if (err)
1055                                 return err;
1056                 }
1057         }
1058
1059         return 0;
1060 }
1061
1062 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1063                              const char *filter)
1064 {
1065         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1066                                      PERF_EVENT_IOC_SET_FILTER,
1067                                      (void *)filter);
1068 }
1069
1070 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1071 {
1072         char *new_filter = strdup(filter);
1073
1074         if (new_filter != NULL) {
1075                 free(evsel->filter);
1076                 evsel->filter = new_filter;
1077                 return 0;
1078         }
1079
1080         return -1;
1081 }
1082
1083 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1084                                      const char *fmt, const char *filter)
1085 {
1086         char *new_filter;
1087
1088         if (evsel->filter == NULL)
1089                 return perf_evsel__set_filter(evsel, filter);
1090
1091         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1092                 free(evsel->filter);
1093                 evsel->filter = new_filter;
1094                 return 0;
1095         }
1096
1097         return -1;
1098 }
1099
1100 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1101 {
1102         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1103 }
1104
1105 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1106 {
1107         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1108 }
1109
1110 int perf_evsel__enable(struct perf_evsel *evsel)
1111 {
1112         int nthreads = thread_map__nr(evsel->threads);
1113         int ncpus = cpu_map__nr(evsel->cpus);
1114
1115         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1116                                      PERF_EVENT_IOC_ENABLE,
1117                                      0);
1118 }
1119
1120 int perf_evsel__disable(struct perf_evsel *evsel)
1121 {
1122         int nthreads = thread_map__nr(evsel->threads);
1123         int ncpus = cpu_map__nr(evsel->cpus);
1124
1125         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1126                                      PERF_EVENT_IOC_DISABLE,
1127                                      0);
1128 }
1129
1130 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1131 {
1132         if (ncpus == 0 || nthreads == 0)
1133                 return 0;
1134
1135         if (evsel->system_wide)
1136                 nthreads = 1;
1137
1138         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1139         if (evsel->sample_id == NULL)
1140                 return -ENOMEM;
1141
1142         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1143         if (evsel->id == NULL) {
1144                 xyarray__delete(evsel->sample_id);
1145                 evsel->sample_id = NULL;
1146                 return -ENOMEM;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1153 {
1154         xyarray__delete(evsel->fd);
1155         evsel->fd = NULL;
1156 }
1157
1158 static void perf_evsel__free_id(struct perf_evsel *evsel)
1159 {
1160         xyarray__delete(evsel->sample_id);
1161         evsel->sample_id = NULL;
1162         zfree(&evsel->id);
1163 }
1164
1165 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1166 {
1167         struct perf_evsel_config_term *term, *h;
1168
1169         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1170                 list_del(&term->list);
1171                 free(term);
1172         }
1173 }
1174
1175 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1176 {
1177         int cpu, thread;
1178
1179         if (evsel->system_wide)
1180                 nthreads = 1;
1181
1182         for (cpu = 0; cpu < ncpus; cpu++)
1183                 for (thread = 0; thread < nthreads; ++thread) {
1184                         close(FD(evsel, cpu, thread));
1185                         FD(evsel, cpu, thread) = -1;
1186                 }
1187 }
1188
1189 void perf_evsel__exit(struct perf_evsel *evsel)
1190 {
1191         assert(list_empty(&evsel->node));
1192         assert(evsel->evlist == NULL);
1193         perf_evsel__free_fd(evsel);
1194         perf_evsel__free_id(evsel);
1195         perf_evsel__free_config_terms(evsel);
1196         close_cgroup(evsel->cgrp);
1197         cpu_map__put(evsel->cpus);
1198         cpu_map__put(evsel->own_cpus);
1199         thread_map__put(evsel->threads);
1200         zfree(&evsel->group_name);
1201         zfree(&evsel->name);
1202         perf_evsel__object.fini(evsel);
1203 }
1204
1205 void perf_evsel__delete(struct perf_evsel *evsel)
1206 {
1207         perf_evsel__exit(evsel);
1208         free(evsel);
1209 }
1210
1211 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1212                                 struct perf_counts_values *count)
1213 {
1214         struct perf_counts_values tmp;
1215
1216         if (!evsel->prev_raw_counts)
1217                 return;
1218
1219         if (cpu == -1) {
1220                 tmp = evsel->prev_raw_counts->aggr;
1221                 evsel->prev_raw_counts->aggr = *count;
1222         } else {
1223                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1224                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1225         }
1226
1227         count->val = count->val - tmp.val;
1228         count->ena = count->ena - tmp.ena;
1229         count->run = count->run - tmp.run;
1230 }
1231
1232 void perf_counts_values__scale(struct perf_counts_values *count,
1233                                bool scale, s8 *pscaled)
1234 {
1235         s8 scaled = 0;
1236
1237         if (scale) {
1238                 if (count->run == 0) {
1239                         scaled = -1;
1240                         count->val = 0;
1241                 } else if (count->run < count->ena) {
1242                         scaled = 1;
1243                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1244                 }
1245         } else
1246                 count->ena = count->run = 0;
1247
1248         if (pscaled)
1249                 *pscaled = scaled;
1250 }
1251
1252 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1253                      struct perf_counts_values *count)
1254 {
1255         memset(count, 0, sizeof(*count));
1256
1257         if (FD(evsel, cpu, thread) < 0)
1258                 return -EINVAL;
1259
1260         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1261                 return -errno;
1262
1263         return 0;
1264 }
1265
1266 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1267                               int cpu, int thread, bool scale)
1268 {
1269         struct perf_counts_values count;
1270         size_t nv = scale ? 3 : 1;
1271
1272         if (FD(evsel, cpu, thread) < 0)
1273                 return -EINVAL;
1274
1275         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1276                 return -ENOMEM;
1277
1278         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1279                 return -errno;
1280
1281         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1282         perf_counts_values__scale(&count, scale, NULL);
1283         *perf_counts(evsel->counts, cpu, thread) = count;
1284         return 0;
1285 }
1286
1287 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1288 {
1289         struct perf_evsel *leader = evsel->leader;
1290         int fd;
1291
1292         if (perf_evsel__is_group_leader(evsel))
1293                 return -1;
1294
1295         /*
1296          * Leader must be already processed/open,
1297          * if not it's a bug.
1298          */
1299         BUG_ON(!leader->fd);
1300
1301         fd = FD(leader, cpu, thread);
1302         BUG_ON(fd == -1);
1303
1304         return fd;
1305 }
1306
1307 struct bit_names {
1308         int bit;
1309         const char *name;
1310 };
1311
1312 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1313 {
1314         bool first_bit = true;
1315         int i = 0;
1316
1317         do {
1318                 if (value & bits[i].bit) {
1319                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1320                         first_bit = false;
1321                 }
1322         } while (bits[++i].name != NULL);
1323 }
1324
1325 static void __p_sample_type(char *buf, size_t size, u64 value)
1326 {
1327 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1328         struct bit_names bits[] = {
1329                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1330                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1331                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1332                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1333                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1334                 bit_name(WEIGHT),
1335                 { .name = NULL, }
1336         };
1337 #undef bit_name
1338         __p_bits(buf, size, value, bits);
1339 }
1340
1341 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1342 {
1343 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1344         struct bit_names bits[] = {
1345                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1346                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1347                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1348                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1349                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1350                 { .name = NULL, }
1351         };
1352 #undef bit_name
1353         __p_bits(buf, size, value, bits);
1354 }
1355
1356 static void __p_read_format(char *buf, size_t size, u64 value)
1357 {
1358 #define bit_name(n) { PERF_FORMAT_##n, #n }
1359         struct bit_names bits[] = {
1360                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1361                 bit_name(ID), bit_name(GROUP),
1362                 { .name = NULL, }
1363         };
1364 #undef bit_name
1365         __p_bits(buf, size, value, bits);
1366 }
1367
1368 #define BUF_SIZE                1024
1369
1370 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1371 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1372 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1373 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1374 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1375 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1376
1377 #define PRINT_ATTRn(_n, _f, _p)                         \
1378 do {                                                    \
1379         if (attr->_f) {                                 \
1380                 _p(attr->_f);                           \
1381                 ret += attr__fprintf(fp, _n, buf, priv);\
1382         }                                               \
1383 } while (0)
1384
1385 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1386
1387 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1388                              attr__fprintf_f attr__fprintf, void *priv)
1389 {
1390         char buf[BUF_SIZE];
1391         int ret = 0;
1392
1393         PRINT_ATTRf(type, p_unsigned);
1394         PRINT_ATTRf(size, p_unsigned);
1395         PRINT_ATTRf(config, p_hex);
1396         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1397         PRINT_ATTRf(sample_type, p_sample_type);
1398         PRINT_ATTRf(read_format, p_read_format);
1399
1400         PRINT_ATTRf(disabled, p_unsigned);
1401         PRINT_ATTRf(inherit, p_unsigned);
1402         PRINT_ATTRf(pinned, p_unsigned);
1403         PRINT_ATTRf(exclusive, p_unsigned);
1404         PRINT_ATTRf(exclude_user, p_unsigned);
1405         PRINT_ATTRf(exclude_kernel, p_unsigned);
1406         PRINT_ATTRf(exclude_hv, p_unsigned);
1407         PRINT_ATTRf(exclude_idle, p_unsigned);
1408         PRINT_ATTRf(mmap, p_unsigned);
1409         PRINT_ATTRf(comm, p_unsigned);
1410         PRINT_ATTRf(freq, p_unsigned);
1411         PRINT_ATTRf(inherit_stat, p_unsigned);
1412         PRINT_ATTRf(enable_on_exec, p_unsigned);
1413         PRINT_ATTRf(task, p_unsigned);
1414         PRINT_ATTRf(watermark, p_unsigned);
1415         PRINT_ATTRf(precise_ip, p_unsigned);
1416         PRINT_ATTRf(mmap_data, p_unsigned);
1417         PRINT_ATTRf(sample_id_all, p_unsigned);
1418         PRINT_ATTRf(exclude_host, p_unsigned);
1419         PRINT_ATTRf(exclude_guest, p_unsigned);
1420         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1421         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1422         PRINT_ATTRf(mmap2, p_unsigned);
1423         PRINT_ATTRf(comm_exec, p_unsigned);
1424         PRINT_ATTRf(use_clockid, p_unsigned);
1425         PRINT_ATTRf(context_switch, p_unsigned);
1426         PRINT_ATTRf(write_backward, p_unsigned);
1427
1428         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1429         PRINT_ATTRf(bp_type, p_unsigned);
1430         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1431         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1432         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1433         PRINT_ATTRf(sample_regs_user, p_hex);
1434         PRINT_ATTRf(sample_stack_user, p_unsigned);
1435         PRINT_ATTRf(clockid, p_signed);
1436         PRINT_ATTRf(sample_regs_intr, p_hex);
1437         PRINT_ATTRf(aux_watermark, p_unsigned);
1438         PRINT_ATTRf(sample_max_stack, p_unsigned);
1439
1440         return ret;
1441 }
1442
1443 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1444                                 void *priv __attribute__((unused)))
1445 {
1446         return fprintf(fp, "  %-32s %s\n", name, val);
1447 }
1448
1449 static bool ignore_missing_thread(struct perf_evsel *evsel,
1450                                   struct thread_map *threads,
1451                                   int thread, int err)
1452 {
1453         if (!evsel->ignore_missing_thread)
1454                 return false;
1455
1456         /* The system wide setup does not work with threads. */
1457         if (evsel->system_wide)
1458                 return false;
1459
1460         /* The -ESRCH is perf event syscall errno for pid's not found. */
1461         if (err != -ESRCH)
1462                 return false;
1463
1464         /* If there's only one thread, let it fail. */
1465         if (threads->nr == 1)
1466                 return false;
1467
1468         if (thread_map__remove(threads, thread))
1469                 return false;
1470
1471         pr_warning("WARNING: Ignored open failure for pid %d\n",
1472                    thread_map__pid(threads, thread));
1473         return true;
1474 }
1475
1476 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1477                      struct thread_map *threads)
1478 {
1479         int cpu, thread, nthreads;
1480         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1481         int pid = -1, err;
1482         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1483
1484         if (perf_missing_features.write_backward && evsel->attr.write_backward)
1485                 return -EINVAL;
1486
1487         if (cpus == NULL) {
1488                 static struct cpu_map *empty_cpu_map;
1489
1490                 if (empty_cpu_map == NULL) {
1491                         empty_cpu_map = cpu_map__dummy_new();
1492                         if (empty_cpu_map == NULL)
1493                                 return -ENOMEM;
1494                 }
1495
1496                 cpus = empty_cpu_map;
1497         }
1498
1499         if (threads == NULL) {
1500                 static struct thread_map *empty_thread_map;
1501
1502                 if (empty_thread_map == NULL) {
1503                         empty_thread_map = thread_map__new_by_tid(-1);
1504                         if (empty_thread_map == NULL)
1505                                 return -ENOMEM;
1506                 }
1507
1508                 threads = empty_thread_map;
1509         }
1510
1511         if (evsel->system_wide)
1512                 nthreads = 1;
1513         else
1514                 nthreads = threads->nr;
1515
1516         if (evsel->fd == NULL &&
1517             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1518                 return -ENOMEM;
1519
1520         if (evsel->cgrp) {
1521                 flags |= PERF_FLAG_PID_CGROUP;
1522                 pid = evsel->cgrp->fd;
1523         }
1524
1525 fallback_missing_features:
1526         if (perf_missing_features.clockid_wrong)
1527                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1528         if (perf_missing_features.clockid) {
1529                 evsel->attr.use_clockid = 0;
1530                 evsel->attr.clockid = 0;
1531         }
1532         if (perf_missing_features.cloexec)
1533                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1534         if (perf_missing_features.mmap2)
1535                 evsel->attr.mmap2 = 0;
1536         if (perf_missing_features.exclude_guest)
1537                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1538         if (perf_missing_features.lbr_flags)
1539                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1540                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1541 retry_sample_id:
1542         if (perf_missing_features.sample_id_all)
1543                 evsel->attr.sample_id_all = 0;
1544
1545         if (verbose >= 2) {
1546                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1547                 fprintf(stderr, "perf_event_attr:\n");
1548                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1549                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1550         }
1551
1552         for (cpu = 0; cpu < cpus->nr; cpu++) {
1553
1554                 for (thread = 0; thread < nthreads; thread++) {
1555                         int fd, group_fd;
1556
1557                         if (!evsel->cgrp && !evsel->system_wide)
1558                                 pid = thread_map__pid(threads, thread);
1559
1560                         group_fd = get_group_fd(evsel, cpu, thread);
1561 retry_open:
1562                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1563                                   pid, cpus->map[cpu], group_fd, flags);
1564
1565                         fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1566                                                  group_fd, flags);
1567
1568                         FD(evsel, cpu, thread) = fd;
1569
1570                         if (fd < 0) {
1571                                 err = -errno;
1572
1573                                 if (ignore_missing_thread(evsel, threads, thread, err)) {
1574                                         /*
1575                                          * We just removed 1 thread, so take a step
1576                                          * back on thread index and lower the upper
1577                                          * nthreads limit.
1578                                          */
1579                                         nthreads--;
1580                                         thread--;
1581
1582                                         /* ... and pretend like nothing have happened. */
1583                                         err = 0;
1584                                         continue;
1585                                 }
1586
1587                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1588                                           err);
1589                                 goto try_fallback;
1590                         }
1591
1592                         pr_debug2(" = %d\n", fd);
1593
1594                         if (evsel->bpf_fd >= 0) {
1595                                 int evt_fd = fd;
1596                                 int bpf_fd = evsel->bpf_fd;
1597
1598                                 err = ioctl(evt_fd,
1599                                             PERF_EVENT_IOC_SET_BPF,
1600                                             bpf_fd);
1601                                 if (err && errno != EEXIST) {
1602                                         pr_err("failed to attach bpf fd %d: %s\n",
1603                                                bpf_fd, strerror(errno));
1604                                         err = -EINVAL;
1605                                         goto out_close;
1606                                 }
1607                         }
1608
1609                         set_rlimit = NO_CHANGE;
1610
1611                         /*
1612                          * If we succeeded but had to kill clockid, fail and
1613                          * have perf_evsel__open_strerror() print us a nice
1614                          * error.
1615                          */
1616                         if (perf_missing_features.clockid ||
1617                             perf_missing_features.clockid_wrong) {
1618                                 err = -EINVAL;
1619                                 goto out_close;
1620                         }
1621                 }
1622         }
1623
1624         return 0;
1625
1626 try_fallback:
1627         /*
1628          * perf stat needs between 5 and 22 fds per CPU. When we run out
1629          * of them try to increase the limits.
1630          */
1631         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1632                 struct rlimit l;
1633                 int old_errno = errno;
1634
1635                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1636                         if (set_rlimit == NO_CHANGE)
1637                                 l.rlim_cur = l.rlim_max;
1638                         else {
1639                                 l.rlim_cur = l.rlim_max + 1000;
1640                                 l.rlim_max = l.rlim_cur;
1641                         }
1642                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1643                                 set_rlimit++;
1644                                 errno = old_errno;
1645                                 goto retry_open;
1646                         }
1647                 }
1648                 errno = old_errno;
1649         }
1650
1651         if (err != -EINVAL || cpu > 0 || thread > 0)
1652                 goto out_close;
1653
1654         /*
1655          * Must probe features in the order they were added to the
1656          * perf_event_attr interface.
1657          */
1658         if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1659                 perf_missing_features.write_backward = true;
1660                 goto out_close;
1661         } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1662                 perf_missing_features.clockid_wrong = true;
1663                 goto fallback_missing_features;
1664         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1665                 perf_missing_features.clockid = true;
1666                 goto fallback_missing_features;
1667         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1668                 perf_missing_features.cloexec = true;
1669                 goto fallback_missing_features;
1670         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1671                 perf_missing_features.mmap2 = true;
1672                 goto fallback_missing_features;
1673         } else if (!perf_missing_features.exclude_guest &&
1674                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1675                 perf_missing_features.exclude_guest = true;
1676                 goto fallback_missing_features;
1677         } else if (!perf_missing_features.sample_id_all) {
1678                 perf_missing_features.sample_id_all = true;
1679                 goto retry_sample_id;
1680         } else if (!perf_missing_features.lbr_flags &&
1681                         (evsel->attr.branch_sample_type &
1682                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1683                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1684                 perf_missing_features.lbr_flags = true;
1685                 goto fallback_missing_features;
1686         }
1687 out_close:
1688         do {
1689                 while (--thread >= 0) {
1690                         close(FD(evsel, cpu, thread));
1691                         FD(evsel, cpu, thread) = -1;
1692                 }
1693                 thread = nthreads;
1694         } while (--cpu >= 0);
1695         return err;
1696 }
1697
1698 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1699 {
1700         if (evsel->fd == NULL)
1701                 return;
1702
1703         perf_evsel__close_fd(evsel, ncpus, nthreads);
1704         perf_evsel__free_fd(evsel);
1705 }
1706
1707 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1708                              struct cpu_map *cpus)
1709 {
1710         return perf_evsel__open(evsel, cpus, NULL);
1711 }
1712
1713 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1714                                 struct thread_map *threads)
1715 {
1716         return perf_evsel__open(evsel, NULL, threads);
1717 }
1718
1719 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1720                                        const union perf_event *event,
1721                                        struct perf_sample *sample)
1722 {
1723         u64 type = evsel->attr.sample_type;
1724         const u64 *array = event->sample.array;
1725         bool swapped = evsel->needs_swap;
1726         union u64_swap u;
1727
1728         array += ((event->header.size -
1729                    sizeof(event->header)) / sizeof(u64)) - 1;
1730
1731         if (type & PERF_SAMPLE_IDENTIFIER) {
1732                 sample->id = *array;
1733                 array--;
1734         }
1735
1736         if (type & PERF_SAMPLE_CPU) {
1737                 u.val64 = *array;
1738                 if (swapped) {
1739                         /* undo swap of u64, then swap on individual u32s */
1740                         u.val64 = bswap_64(u.val64);
1741                         u.val32[0] = bswap_32(u.val32[0]);
1742                 }
1743
1744                 sample->cpu = u.val32[0];
1745                 array--;
1746         }
1747
1748         if (type & PERF_SAMPLE_STREAM_ID) {
1749                 sample->stream_id = *array;
1750                 array--;
1751         }
1752
1753         if (type & PERF_SAMPLE_ID) {
1754                 sample->id = *array;
1755                 array--;
1756         }
1757
1758         if (type & PERF_SAMPLE_TIME) {
1759                 sample->time = *array;
1760                 array--;
1761         }
1762
1763         if (type & PERF_SAMPLE_TID) {
1764                 u.val64 = *array;
1765                 if (swapped) {
1766                         /* undo swap of u64, then swap on individual u32s */
1767                         u.val64 = bswap_64(u.val64);
1768                         u.val32[0] = bswap_32(u.val32[0]);
1769                         u.val32[1] = bswap_32(u.val32[1]);
1770                 }
1771
1772                 sample->pid = u.val32[0];
1773                 sample->tid = u.val32[1];
1774                 array--;
1775         }
1776
1777         return 0;
1778 }
1779
1780 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1781                             u64 size)
1782 {
1783         return size > max_size || offset + size > endp;
1784 }
1785
1786 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1787         do {                                                            \
1788                 if (overflow(endp, (max_size), (offset), (size)))       \
1789                         return -EFAULT;                                 \
1790         } while (0)
1791
1792 #define OVERFLOW_CHECK_u64(offset) \
1793         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1794
1795 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1796                              struct perf_sample *data)
1797 {
1798         u64 type = evsel->attr.sample_type;
1799         bool swapped = evsel->needs_swap;
1800         const u64 *array;
1801         u16 max_size = event->header.size;
1802         const void *endp = (void *)event + max_size;
1803         u64 sz;
1804
1805         /*
1806          * used for cross-endian analysis. See git commit 65014ab3
1807          * for why this goofiness is needed.
1808          */
1809         union u64_swap u;
1810
1811         memset(data, 0, sizeof(*data));
1812         data->cpu = data->pid = data->tid = -1;
1813         data->stream_id = data->id = data->time = -1ULL;
1814         data->period = evsel->attr.sample_period;
1815         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1816
1817         if (event->header.type != PERF_RECORD_SAMPLE) {
1818                 if (!evsel->attr.sample_id_all)
1819                         return 0;
1820                 return perf_evsel__parse_id_sample(evsel, event, data);
1821         }
1822
1823         array = event->sample.array;
1824
1825         /*
1826          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1827          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1828          * check the format does not go past the end of the event.
1829          */
1830         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1831                 return -EFAULT;
1832
1833         data->id = -1ULL;
1834         if (type & PERF_SAMPLE_IDENTIFIER) {
1835                 data->id = *array;
1836                 array++;
1837         }
1838
1839         if (type & PERF_SAMPLE_IP) {
1840                 data->ip = *array;
1841                 array++;
1842         }
1843
1844         if (type & PERF_SAMPLE_TID) {
1845                 u.val64 = *array;
1846                 if (swapped) {
1847                         /* undo swap of u64, then swap on individual u32s */
1848                         u.val64 = bswap_64(u.val64);
1849                         u.val32[0] = bswap_32(u.val32[0]);
1850                         u.val32[1] = bswap_32(u.val32[1]);
1851                 }
1852
1853                 data->pid = u.val32[0];
1854                 data->tid = u.val32[1];
1855                 array++;
1856         }
1857
1858         if (type & PERF_SAMPLE_TIME) {
1859                 data->time = *array;
1860                 array++;
1861         }
1862
1863         data->addr = 0;
1864         if (type & PERF_SAMPLE_ADDR) {
1865                 data->addr = *array;
1866                 array++;
1867         }
1868
1869         if (type & PERF_SAMPLE_ID) {
1870                 data->id = *array;
1871                 array++;
1872         }
1873
1874         if (type & PERF_SAMPLE_STREAM_ID) {
1875                 data->stream_id = *array;
1876                 array++;
1877         }
1878
1879         if (type & PERF_SAMPLE_CPU) {
1880
1881                 u.val64 = *array;
1882                 if (swapped) {
1883                         /* undo swap of u64, then swap on individual u32s */
1884                         u.val64 = bswap_64(u.val64);
1885                         u.val32[0] = bswap_32(u.val32[0]);
1886                 }
1887
1888                 data->cpu = u.val32[0];
1889                 array++;
1890         }
1891
1892         if (type & PERF_SAMPLE_PERIOD) {
1893                 data->period = *array;
1894                 array++;
1895         }
1896
1897         if (type & PERF_SAMPLE_READ) {
1898                 u64 read_format = evsel->attr.read_format;
1899
1900                 OVERFLOW_CHECK_u64(array);
1901                 if (read_format & PERF_FORMAT_GROUP)
1902                         data->read.group.nr = *array;
1903                 else
1904                         data->read.one.value = *array;
1905
1906                 array++;
1907
1908                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1909                         OVERFLOW_CHECK_u64(array);
1910                         data->read.time_enabled = *array;
1911                         array++;
1912                 }
1913
1914                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1915                         OVERFLOW_CHECK_u64(array);
1916                         data->read.time_running = *array;
1917                         array++;
1918                 }
1919
1920                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1921                 if (read_format & PERF_FORMAT_GROUP) {
1922                         const u64 max_group_nr = UINT64_MAX /
1923                                         sizeof(struct sample_read_value);
1924
1925                         if (data->read.group.nr > max_group_nr)
1926                                 return -EFAULT;
1927                         sz = data->read.group.nr *
1928                              sizeof(struct sample_read_value);
1929                         OVERFLOW_CHECK(array, sz, max_size);
1930                         data->read.group.values =
1931                                         (struct sample_read_value *)array;
1932                         array = (void *)array + sz;
1933                 } else {
1934                         OVERFLOW_CHECK_u64(array);
1935                         data->read.one.id = *array;
1936                         array++;
1937                 }
1938         }
1939
1940         if (type & PERF_SAMPLE_CALLCHAIN) {
1941                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1942
1943                 OVERFLOW_CHECK_u64(array);
1944                 data->callchain = (struct ip_callchain *)array++;
1945                 if (data->callchain->nr > max_callchain_nr)
1946                         return -EFAULT;
1947                 sz = data->callchain->nr * sizeof(u64);
1948                 OVERFLOW_CHECK(array, sz, max_size);
1949                 array = (void *)array + sz;
1950         }
1951
1952         if (type & PERF_SAMPLE_RAW) {
1953                 OVERFLOW_CHECK_u64(array);
1954                 u.val64 = *array;
1955                 if (WARN_ONCE(swapped,
1956                               "Endianness of raw data not corrected!\n")) {
1957                         /* undo swap of u64, then swap on individual u32s */
1958                         u.val64 = bswap_64(u.val64);
1959                         u.val32[0] = bswap_32(u.val32[0]);
1960                         u.val32[1] = bswap_32(u.val32[1]);
1961                 }
1962                 data->raw_size = u.val32[0];
1963                 array = (void *)array + sizeof(u32);
1964
1965                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1966                 data->raw_data = (void *)array;
1967                 array = (void *)array + data->raw_size;
1968         }
1969
1970         if (type & PERF_SAMPLE_BRANCH_STACK) {
1971                 const u64 max_branch_nr = UINT64_MAX /
1972                                           sizeof(struct branch_entry);
1973
1974                 OVERFLOW_CHECK_u64(array);
1975                 data->branch_stack = (struct branch_stack *)array++;
1976
1977                 if (data->branch_stack->nr > max_branch_nr)
1978                         return -EFAULT;
1979                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1980                 OVERFLOW_CHECK(array, sz, max_size);
1981                 array = (void *)array + sz;
1982         }
1983
1984         if (type & PERF_SAMPLE_REGS_USER) {
1985                 OVERFLOW_CHECK_u64(array);
1986                 data->user_regs.abi = *array;
1987                 array++;
1988
1989                 if (data->user_regs.abi) {
1990                         u64 mask = evsel->attr.sample_regs_user;
1991
1992                         sz = hweight_long(mask) * sizeof(u64);
1993                         OVERFLOW_CHECK(array, sz, max_size);
1994                         data->user_regs.mask = mask;
1995                         data->user_regs.regs = (u64 *)array;
1996                         array = (void *)array + sz;
1997                 }
1998         }
1999
2000         if (type & PERF_SAMPLE_STACK_USER) {
2001                 OVERFLOW_CHECK_u64(array);
2002                 sz = *array++;
2003
2004                 data->user_stack.offset = ((char *)(array - 1)
2005                                           - (char *) event);
2006
2007                 if (!sz) {
2008                         data->user_stack.size = 0;
2009                 } else {
2010                         OVERFLOW_CHECK(array, sz, max_size);
2011                         data->user_stack.data = (char *)array;
2012                         array = (void *)array + sz;
2013                         OVERFLOW_CHECK_u64(array);
2014                         data->user_stack.size = *array++;
2015                         if (WARN_ONCE(data->user_stack.size > sz,
2016                                       "user stack dump failure\n"))
2017                                 return -EFAULT;
2018                 }
2019         }
2020
2021         if (type & PERF_SAMPLE_WEIGHT) {
2022                 OVERFLOW_CHECK_u64(array);
2023                 data->weight = *array;
2024                 array++;
2025         }
2026
2027         data->data_src = PERF_MEM_DATA_SRC_NONE;
2028         if (type & PERF_SAMPLE_DATA_SRC) {
2029                 OVERFLOW_CHECK_u64(array);
2030                 data->data_src = *array;
2031                 array++;
2032         }
2033
2034         data->transaction = 0;
2035         if (type & PERF_SAMPLE_TRANSACTION) {
2036                 OVERFLOW_CHECK_u64(array);
2037                 data->transaction = *array;
2038                 array++;
2039         }
2040
2041         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2042         if (type & PERF_SAMPLE_REGS_INTR) {
2043                 OVERFLOW_CHECK_u64(array);
2044                 data->intr_regs.abi = *array;
2045                 array++;
2046
2047                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2048                         u64 mask = evsel->attr.sample_regs_intr;
2049
2050                         sz = hweight_long(mask) * sizeof(u64);
2051                         OVERFLOW_CHECK(array, sz, max_size);
2052                         data->intr_regs.mask = mask;
2053                         data->intr_regs.regs = (u64 *)array;
2054                         array = (void *)array + sz;
2055                 }
2056         }
2057
2058         return 0;
2059 }
2060
2061 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2062                                      u64 read_format)
2063 {
2064         size_t sz, result = sizeof(struct sample_event);
2065
2066         if (type & PERF_SAMPLE_IDENTIFIER)
2067                 result += sizeof(u64);
2068
2069         if (type & PERF_SAMPLE_IP)
2070                 result += sizeof(u64);
2071
2072         if (type & PERF_SAMPLE_TID)
2073                 result += sizeof(u64);
2074
2075         if (type & PERF_SAMPLE_TIME)
2076                 result += sizeof(u64);
2077
2078         if (type & PERF_SAMPLE_ADDR)
2079                 result += sizeof(u64);
2080
2081         if (type & PERF_SAMPLE_ID)
2082                 result += sizeof(u64);
2083
2084         if (type & PERF_SAMPLE_STREAM_ID)
2085                 result += sizeof(u64);
2086
2087         if (type & PERF_SAMPLE_CPU)
2088                 result += sizeof(u64);
2089
2090         if (type & PERF_SAMPLE_PERIOD)
2091                 result += sizeof(u64);
2092
2093         if (type & PERF_SAMPLE_READ) {
2094                 result += sizeof(u64);
2095                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2096                         result += sizeof(u64);
2097                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2098                         result += sizeof(u64);
2099                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2100                 if (read_format & PERF_FORMAT_GROUP) {
2101                         sz = sample->read.group.nr *
2102                              sizeof(struct sample_read_value);
2103                         result += sz;
2104                 } else {
2105                         result += sizeof(u64);
2106                 }
2107         }
2108
2109         if (type & PERF_SAMPLE_CALLCHAIN) {
2110                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2111                 result += sz;
2112         }
2113
2114         if (type & PERF_SAMPLE_RAW) {
2115                 result += sizeof(u32);
2116                 result += sample->raw_size;
2117         }
2118
2119         if (type & PERF_SAMPLE_BRANCH_STACK) {
2120                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2121                 sz += sizeof(u64);
2122                 result += sz;
2123         }
2124
2125         if (type & PERF_SAMPLE_REGS_USER) {
2126                 if (sample->user_regs.abi) {
2127                         result += sizeof(u64);
2128                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2129                         result += sz;
2130                 } else {
2131                         result += sizeof(u64);
2132                 }
2133         }
2134
2135         if (type & PERF_SAMPLE_STACK_USER) {
2136                 sz = sample->user_stack.size;
2137                 result += sizeof(u64);
2138                 if (sz) {
2139                         result += sz;
2140                         result += sizeof(u64);
2141                 }
2142         }
2143
2144         if (type & PERF_SAMPLE_WEIGHT)
2145                 result += sizeof(u64);
2146
2147         if (type & PERF_SAMPLE_DATA_SRC)
2148                 result += sizeof(u64);
2149
2150         if (type & PERF_SAMPLE_TRANSACTION)
2151                 result += sizeof(u64);
2152
2153         if (type & PERF_SAMPLE_REGS_INTR) {
2154                 if (sample->intr_regs.abi) {
2155                         result += sizeof(u64);
2156                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2157                         result += sz;
2158                 } else {
2159                         result += sizeof(u64);
2160                 }
2161         }
2162
2163         return result;
2164 }
2165
2166 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2167                                   u64 read_format,
2168                                   const struct perf_sample *sample,
2169                                   bool swapped)
2170 {
2171         u64 *array;
2172         size_t sz;
2173         /*
2174          * used for cross-endian analysis. See git commit 65014ab3
2175          * for why this goofiness is needed.
2176          */
2177         union u64_swap u;
2178
2179         array = event->sample.array;
2180
2181         if (type & PERF_SAMPLE_IDENTIFIER) {
2182                 *array = sample->id;
2183                 array++;
2184         }
2185
2186         if (type & PERF_SAMPLE_IP) {
2187                 *array = sample->ip;
2188                 array++;
2189         }
2190
2191         if (type & PERF_SAMPLE_TID) {
2192                 u.val32[0] = sample->pid;
2193                 u.val32[1] = sample->tid;
2194                 if (swapped) {
2195                         /*
2196                          * Inverse of what is done in perf_evsel__parse_sample
2197                          */
2198                         u.val32[0] = bswap_32(u.val32[0]);
2199                         u.val32[1] = bswap_32(u.val32[1]);
2200                         u.val64 = bswap_64(u.val64);
2201                 }
2202
2203                 *array = u.val64;
2204                 array++;
2205         }
2206
2207         if (type & PERF_SAMPLE_TIME) {
2208                 *array = sample->time;
2209                 array++;
2210         }
2211
2212         if (type & PERF_SAMPLE_ADDR) {
2213                 *array = sample->addr;
2214                 array++;
2215         }
2216
2217         if (type & PERF_SAMPLE_ID) {
2218                 *array = sample->id;
2219                 array++;
2220         }
2221
2222         if (type & PERF_SAMPLE_STREAM_ID) {
2223                 *array = sample->stream_id;
2224                 array++;
2225         }
2226
2227         if (type & PERF_SAMPLE_CPU) {
2228                 u.val32[0] = sample->cpu;
2229                 if (swapped) {
2230                         /*
2231                          * Inverse of what is done in perf_evsel__parse_sample
2232                          */
2233                         u.val32[0] = bswap_32(u.val32[0]);
2234                         u.val64 = bswap_64(u.val64);
2235                 }
2236                 *array = u.val64;
2237                 array++;
2238         }
2239
2240         if (type & PERF_SAMPLE_PERIOD) {
2241                 *array = sample->period;
2242                 array++;
2243         }
2244
2245         if (type & PERF_SAMPLE_READ) {
2246                 if (read_format & PERF_FORMAT_GROUP)
2247                         *array = sample->read.group.nr;
2248                 else
2249                         *array = sample->read.one.value;
2250                 array++;
2251
2252                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2253                         *array = sample->read.time_enabled;
2254                         array++;
2255                 }
2256
2257                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2258                         *array = sample->read.time_running;
2259                         array++;
2260                 }
2261
2262                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2263                 if (read_format & PERF_FORMAT_GROUP) {
2264                         sz = sample->read.group.nr *
2265                              sizeof(struct sample_read_value);
2266                         memcpy(array, sample->read.group.values, sz);
2267                         array = (void *)array + sz;
2268                 } else {
2269                         *array = sample->read.one.id;
2270                         array++;
2271                 }
2272         }
2273
2274         if (type & PERF_SAMPLE_CALLCHAIN) {
2275                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2276                 memcpy(array, sample->callchain, sz);
2277                 array = (void *)array + sz;
2278         }
2279
2280         if (type & PERF_SAMPLE_RAW) {
2281                 u.val32[0] = sample->raw_size;
2282                 if (WARN_ONCE(swapped,
2283                               "Endianness of raw data not corrected!\n")) {
2284                         /*
2285                          * Inverse of what is done in perf_evsel__parse_sample
2286                          */
2287                         u.val32[0] = bswap_32(u.val32[0]);
2288                         u.val32[1] = bswap_32(u.val32[1]);
2289                         u.val64 = bswap_64(u.val64);
2290                 }
2291                 *array = u.val64;
2292                 array = (void *)array + sizeof(u32);
2293
2294                 memcpy(array, sample->raw_data, sample->raw_size);
2295                 array = (void *)array + sample->raw_size;
2296         }
2297
2298         if (type & PERF_SAMPLE_BRANCH_STACK) {
2299                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2300                 sz += sizeof(u64);
2301                 memcpy(array, sample->branch_stack, sz);
2302                 array = (void *)array + sz;
2303         }
2304
2305         if (type & PERF_SAMPLE_REGS_USER) {
2306                 if (sample->user_regs.abi) {
2307                         *array++ = sample->user_regs.abi;
2308                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2309                         memcpy(array, sample->user_regs.regs, sz);
2310                         array = (void *)array + sz;
2311                 } else {
2312                         *array++ = 0;
2313                 }
2314         }
2315
2316         if (type & PERF_SAMPLE_STACK_USER) {
2317                 sz = sample->user_stack.size;
2318                 *array++ = sz;
2319                 if (sz) {
2320                         memcpy(array, sample->user_stack.data, sz);
2321                         array = (void *)array + sz;
2322                         *array++ = sz;
2323                 }
2324         }
2325
2326         if (type & PERF_SAMPLE_WEIGHT) {
2327                 *array = sample->weight;
2328                 array++;
2329         }
2330
2331         if (type & PERF_SAMPLE_DATA_SRC) {
2332                 *array = sample->data_src;
2333                 array++;
2334         }
2335
2336         if (type & PERF_SAMPLE_TRANSACTION) {
2337                 *array = sample->transaction;
2338                 array++;
2339         }
2340
2341         if (type & PERF_SAMPLE_REGS_INTR) {
2342                 if (sample->intr_regs.abi) {
2343                         *array++ = sample->intr_regs.abi;
2344                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2345                         memcpy(array, sample->intr_regs.regs, sz);
2346                         array = (void *)array + sz;
2347                 } else {
2348                         *array++ = 0;
2349                 }
2350         }
2351
2352         return 0;
2353 }
2354
2355 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2356 {
2357         return pevent_find_field(evsel->tp_format, name);
2358 }
2359
2360 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2361                          const char *name)
2362 {
2363         struct format_field *field = perf_evsel__field(evsel, name);
2364         int offset;
2365
2366         if (!field)
2367                 return NULL;
2368
2369         offset = field->offset;
2370
2371         if (field->flags & FIELD_IS_DYNAMIC) {
2372                 offset = *(int *)(sample->raw_data + field->offset);
2373                 offset &= 0xffff;
2374         }
2375
2376         return sample->raw_data + offset;
2377 }
2378
2379 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2380                          bool needs_swap)
2381 {
2382         u64 value;
2383         void *ptr = sample->raw_data + field->offset;
2384
2385         switch (field->size) {
2386         case 1:
2387                 return *(u8 *)ptr;
2388         case 2:
2389                 value = *(u16 *)ptr;
2390                 break;
2391         case 4:
2392                 value = *(u32 *)ptr;
2393                 break;
2394         case 8:
2395                 memcpy(&value, ptr, sizeof(u64));
2396                 break;
2397         default:
2398                 return 0;
2399         }
2400
2401         if (!needs_swap)
2402                 return value;
2403
2404         switch (field->size) {
2405         case 2:
2406                 return bswap_16(value);
2407         case 4:
2408                 return bswap_32(value);
2409         case 8:
2410                 return bswap_64(value);
2411         default:
2412                 return 0;
2413         }
2414
2415         return 0;
2416 }
2417
2418 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2419                        const char *name)
2420 {
2421         struct format_field *field = perf_evsel__field(evsel, name);
2422
2423         if (!field)
2424                 return 0;
2425
2426         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2427 }
2428
2429 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2430                           char *msg, size_t msgsize)
2431 {
2432         int paranoid;
2433
2434         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2435             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2436             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2437                 /*
2438                  * If it's cycles then fall back to hrtimer based
2439                  * cpu-clock-tick sw counter, which is always available even if
2440                  * no PMU support.
2441                  *
2442                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2443                  * b0a873e).
2444                  */
2445                 scnprintf(msg, msgsize, "%s",
2446 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2447
2448                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2449                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2450
2451                 zfree(&evsel->name);
2452                 return true;
2453         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2454                    (paranoid = perf_event_paranoid()) > 1) {
2455                 const char *name = perf_evsel__name(evsel);
2456                 char *new_name;
2457
2458                 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2459                         return false;
2460
2461                 if (evsel->name)
2462                         free(evsel->name);
2463                 evsel->name = new_name;
2464                 scnprintf(msg, msgsize,
2465 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2466                 evsel->attr.exclude_kernel = 1;
2467
2468                 return true;
2469         }
2470
2471         return false;
2472 }
2473
2474 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2475                               int err, char *msg, size_t size)
2476 {
2477         char sbuf[STRERR_BUFSIZE];
2478         int printed = 0;
2479
2480         switch (err) {
2481         case EPERM:
2482         case EACCES:
2483                 if (err == EPERM)
2484                         printed = scnprintf(msg, size,
2485                                 "No permission to enable %s event.\n\n",
2486                                 perf_evsel__name(evsel));
2487
2488                 return scnprintf(msg + printed, size - printed,
2489                  "You may not have permission to collect %sstats.\n\n"
2490                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2491                  "which controls use of the performance events system by\n"
2492                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2493                  "The current value is %d:\n\n"
2494                  "  -1: Allow use of (almost) all events by all users\n"
2495                  ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2496                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2497                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2498                  "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2499                  "      kernel.perf_event_paranoid = -1\n" ,
2500                                  target->system_wide ? "system-wide " : "",
2501                                  perf_event_paranoid());
2502         case ENOENT:
2503                 return scnprintf(msg, size, "The %s event is not supported.",
2504                                  perf_evsel__name(evsel));
2505         case EMFILE:
2506                 return scnprintf(msg, size, "%s",
2507                          "Too many events are opened.\n"
2508                          "Probably the maximum number of open file descriptors has been reached.\n"
2509                          "Hint: Try again after reducing the number of events.\n"
2510                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2511         case ENOMEM:
2512                 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2513                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2514                         return scnprintf(msg, size,
2515                                          "Not enough memory to setup event with callchain.\n"
2516                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2517                                          "Hint: Current value: %d", sysctl_perf_event_max_stack);
2518                 break;
2519         case ENODEV:
2520                 if (target->cpu_list)
2521                         return scnprintf(msg, size, "%s",
2522          "No such device - did you specify an out-of-range profile CPU?");
2523                 break;
2524         case EOPNOTSUPP:
2525                 if (evsel->attr.sample_period != 0)
2526                         return scnprintf(msg, size, "%s",
2527         "PMU Hardware doesn't support sampling/overflow-interrupts.");
2528                 if (evsel->attr.precise_ip)
2529                         return scnprintf(msg, size, "%s",
2530         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2531 #if defined(__i386__) || defined(__x86_64__)
2532                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2533                         return scnprintf(msg, size, "%s",
2534         "No hardware sampling interrupt available.\n"
2535         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2536 #endif
2537                 break;
2538         case EBUSY:
2539                 if (find_process("oprofiled"))
2540                         return scnprintf(msg, size,
2541         "The PMU counters are busy/taken by another profiler.\n"
2542         "We found oprofile daemon running, please stop it and try again.");
2543                 break;
2544         case EINVAL:
2545                 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2546                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2547                 if (perf_missing_features.clockid)
2548                         return scnprintf(msg, size, "clockid feature not supported.");
2549                 if (perf_missing_features.clockid_wrong)
2550                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2551                 break;
2552         default:
2553                 break;
2554         }
2555
2556         return scnprintf(msg, size,
2557         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2558         "/bin/dmesg may provide additional information.\n"
2559         "No CONFIG_PERF_EVENTS=y kernel support configured?",
2560                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2561                          perf_evsel__name(evsel));
2562 }
2563
2564 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2565 {
2566         if (evsel && evsel->evlist && evsel->evlist->env)
2567                 return evsel->evlist->env->arch;
2568         return NULL;
2569 }