]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/evsel.c
Merge tag 'sunxi-fixes-for-4.12' of https://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/err.h>
19 #include <sys/ioctl.h>
20 #include <sys/resource.h>
21 #include "asm/bug.h"
22 #include "callchain.h"
23 #include "cgroup.h"
24 #include "event.h"
25 #include "evsel.h"
26 #include "evlist.h"
27 #include "util.h"
28 #include "cpumap.h"
29 #include "thread_map.h"
30 #include "target.h"
31 #include "perf_regs.h"
32 #include "debug.h"
33 #include "trace-event.h"
34 #include "stat.h"
35 #include "util/parse-branch-options.h"
36
37 #include "sane_ctype.h"
38
39 static struct {
40         bool sample_id_all;
41         bool exclude_guest;
42         bool mmap2;
43         bool cloexec;
44         bool clockid;
45         bool clockid_wrong;
46         bool lbr_flags;
47         bool write_backward;
48 } perf_missing_features;
49
50 static clockid_t clockid;
51
52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
53 {
54         return 0;
55 }
56
57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
58 {
59 }
60
61 static struct {
62         size_t  size;
63         int     (*init)(struct perf_evsel *evsel);
64         void    (*fini)(struct perf_evsel *evsel);
65 } perf_evsel__object = {
66         .size = sizeof(struct perf_evsel),
67         .init = perf_evsel__no_extra_init,
68         .fini = perf_evsel__no_extra_fini,
69 };
70
71 int perf_evsel__object_config(size_t object_size,
72                               int (*init)(struct perf_evsel *evsel),
73                               void (*fini)(struct perf_evsel *evsel))
74 {
75
76         if (object_size == 0)
77                 goto set_methods;
78
79         if (perf_evsel__object.size > object_size)
80                 return -EINVAL;
81
82         perf_evsel__object.size = object_size;
83
84 set_methods:
85         if (init != NULL)
86                 perf_evsel__object.init = init;
87
88         if (fini != NULL)
89                 perf_evsel__object.fini = fini;
90
91         return 0;
92 }
93
94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
95
96 int __perf_evsel__sample_size(u64 sample_type)
97 {
98         u64 mask = sample_type & PERF_SAMPLE_MASK;
99         int size = 0;
100         int i;
101
102         for (i = 0; i < 64; i++) {
103                 if (mask & (1ULL << i))
104                         size++;
105         }
106
107         size *= sizeof(u64);
108
109         return size;
110 }
111
112 /**
113  * __perf_evsel__calc_id_pos - calculate id_pos.
114  * @sample_type: sample type
115  *
116  * This function returns the position of the event id (PERF_SAMPLE_ID or
117  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118  * sample_event.
119  */
120 static int __perf_evsel__calc_id_pos(u64 sample_type)
121 {
122         int idx = 0;
123
124         if (sample_type & PERF_SAMPLE_IDENTIFIER)
125                 return 0;
126
127         if (!(sample_type & PERF_SAMPLE_ID))
128                 return -1;
129
130         if (sample_type & PERF_SAMPLE_IP)
131                 idx += 1;
132
133         if (sample_type & PERF_SAMPLE_TID)
134                 idx += 1;
135
136         if (sample_type & PERF_SAMPLE_TIME)
137                 idx += 1;
138
139         if (sample_type & PERF_SAMPLE_ADDR)
140                 idx += 1;
141
142         return idx;
143 }
144
145 /**
146  * __perf_evsel__calc_is_pos - calculate is_pos.
147  * @sample_type: sample type
148  *
149  * This function returns the position (counting backwards) of the event id
150  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
151  * sample_id_all is used there is an id sample appended to non-sample events.
152  */
153 static int __perf_evsel__calc_is_pos(u64 sample_type)
154 {
155         int idx = 1;
156
157         if (sample_type & PERF_SAMPLE_IDENTIFIER)
158                 return 1;
159
160         if (!(sample_type & PERF_SAMPLE_ID))
161                 return -1;
162
163         if (sample_type & PERF_SAMPLE_CPU)
164                 idx += 1;
165
166         if (sample_type & PERF_SAMPLE_STREAM_ID)
167                 idx += 1;
168
169         return idx;
170 }
171
172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
173 {
174         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
175         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
176 }
177
178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
179                                   enum perf_event_sample_format bit)
180 {
181         if (!(evsel->attr.sample_type & bit)) {
182                 evsel->attr.sample_type |= bit;
183                 evsel->sample_size += sizeof(u64);
184                 perf_evsel__calc_id_pos(evsel);
185         }
186 }
187
188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
189                                     enum perf_event_sample_format bit)
190 {
191         if (evsel->attr.sample_type & bit) {
192                 evsel->attr.sample_type &= ~bit;
193                 evsel->sample_size -= sizeof(u64);
194                 perf_evsel__calc_id_pos(evsel);
195         }
196 }
197
198 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
199                                bool can_sample_identifier)
200 {
201         if (can_sample_identifier) {
202                 perf_evsel__reset_sample_bit(evsel, ID);
203                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
204         } else {
205                 perf_evsel__set_sample_bit(evsel, ID);
206         }
207         evsel->attr.read_format |= PERF_FORMAT_ID;
208 }
209
210 /**
211  * perf_evsel__is_function_event - Return whether given evsel is a function
212  * trace event
213  *
214  * @evsel - evsel selector to be tested
215  *
216  * Return %true if event is function trace event
217  */
218 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
219 {
220 #define FUNCTION_EVENT "ftrace:function"
221
222         return evsel->name &&
223                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
224
225 #undef FUNCTION_EVENT
226 }
227
228 void perf_evsel__init(struct perf_evsel *evsel,
229                       struct perf_event_attr *attr, int idx)
230 {
231         evsel->idx         = idx;
232         evsel->tracking    = !idx;
233         evsel->attr        = *attr;
234         evsel->leader      = evsel;
235         evsel->unit        = "";
236         evsel->scale       = 1.0;
237         evsel->evlist      = NULL;
238         evsel->bpf_fd      = -1;
239         INIT_LIST_HEAD(&evsel->node);
240         INIT_LIST_HEAD(&evsel->config_terms);
241         perf_evsel__object.init(evsel);
242         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243         perf_evsel__calc_id_pos(evsel);
244         evsel->cmdline_group_boundary = false;
245         evsel->metric_expr   = NULL;
246         evsel->metric_name   = NULL;
247         evsel->metric_events = NULL;
248         evsel->collect_stat  = false;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255         if (evsel != NULL)
256                 perf_evsel__init(evsel, attr, idx);
257
258         if (perf_evsel__is_bpf_output(evsel)) {
259                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261                 evsel->attr.sample_period = 1;
262         }
263
264         return evsel;
265 }
266
267 struct perf_evsel *perf_evsel__new_cycles(void)
268 {
269         struct perf_event_attr attr = {
270                 .type   = PERF_TYPE_HARDWARE,
271                 .config = PERF_COUNT_HW_CPU_CYCLES,
272         };
273         struct perf_evsel *evsel;
274
275         event_attr_init(&attr);
276
277         perf_event_attr__set_max_precise_ip(&attr);
278
279         evsel = perf_evsel__new(&attr);
280         if (evsel == NULL)
281                 goto out;
282
283         /* use asprintf() because free(evsel) assumes name is allocated */
284         if (asprintf(&evsel->name, "cycles%.*s",
285                      attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
286                 goto error_free;
287 out:
288         return evsel;
289 error_free:
290         perf_evsel__delete(evsel);
291         evsel = NULL;
292         goto out;
293 }
294
295 /*
296  * Returns pointer with encoded error via <linux/err.h> interface.
297  */
298 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
299 {
300         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
301         int err = -ENOMEM;
302
303         if (evsel == NULL) {
304                 goto out_err;
305         } else {
306                 struct perf_event_attr attr = {
307                         .type          = PERF_TYPE_TRACEPOINT,
308                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
309                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
310                 };
311
312                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
313                         goto out_free;
314
315                 evsel->tp_format = trace_event__tp_format(sys, name);
316                 if (IS_ERR(evsel->tp_format)) {
317                         err = PTR_ERR(evsel->tp_format);
318                         goto out_free;
319                 }
320
321                 event_attr_init(&attr);
322                 attr.config = evsel->tp_format->id;
323                 attr.sample_period = 1;
324                 perf_evsel__init(evsel, &attr, idx);
325         }
326
327         return evsel;
328
329 out_free:
330         zfree(&evsel->name);
331         free(evsel);
332 out_err:
333         return ERR_PTR(err);
334 }
335
336 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
337         "cycles",
338         "instructions",
339         "cache-references",
340         "cache-misses",
341         "branches",
342         "branch-misses",
343         "bus-cycles",
344         "stalled-cycles-frontend",
345         "stalled-cycles-backend",
346         "ref-cycles",
347 };
348
349 static const char *__perf_evsel__hw_name(u64 config)
350 {
351         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
352                 return perf_evsel__hw_names[config];
353
354         return "unknown-hardware";
355 }
356
357 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
358 {
359         int colon = 0, r = 0;
360         struct perf_event_attr *attr = &evsel->attr;
361         bool exclude_guest_default = false;
362
363 #define MOD_PRINT(context, mod) do {                                    \
364                 if (!attr->exclude_##context) {                         \
365                         if (!colon) colon = ++r;                        \
366                         r += scnprintf(bf + r, size - r, "%c", mod);    \
367                 } } while(0)
368
369         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
370                 MOD_PRINT(kernel, 'k');
371                 MOD_PRINT(user, 'u');
372                 MOD_PRINT(hv, 'h');
373                 exclude_guest_default = true;
374         }
375
376         if (attr->precise_ip) {
377                 if (!colon)
378                         colon = ++r;
379                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
380                 exclude_guest_default = true;
381         }
382
383         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
384                 MOD_PRINT(host, 'H');
385                 MOD_PRINT(guest, 'G');
386         }
387 #undef MOD_PRINT
388         if (colon)
389                 bf[colon - 1] = ':';
390         return r;
391 }
392
393 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
394 {
395         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
396         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
397 }
398
399 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
400         "cpu-clock",
401         "task-clock",
402         "page-faults",
403         "context-switches",
404         "cpu-migrations",
405         "minor-faults",
406         "major-faults",
407         "alignment-faults",
408         "emulation-faults",
409         "dummy",
410 };
411
412 static const char *__perf_evsel__sw_name(u64 config)
413 {
414         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
415                 return perf_evsel__sw_names[config];
416         return "unknown-software";
417 }
418
419 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
420 {
421         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
422         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
423 }
424
425 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
426 {
427         int r;
428
429         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
430
431         if (type & HW_BREAKPOINT_R)
432                 r += scnprintf(bf + r, size - r, "r");
433
434         if (type & HW_BREAKPOINT_W)
435                 r += scnprintf(bf + r, size - r, "w");
436
437         if (type & HW_BREAKPOINT_X)
438                 r += scnprintf(bf + r, size - r, "x");
439
440         return r;
441 }
442
443 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
444 {
445         struct perf_event_attr *attr = &evsel->attr;
446         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
447         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
448 }
449
450 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
451                                 [PERF_EVSEL__MAX_ALIASES] = {
452  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
453  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
454  { "LLC",       "L2",                                                   },
455  { "dTLB",      "d-tlb",        "Data-TLB",                             },
456  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
457  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
458  { "node",                                                              },
459 };
460
461 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
462                                    [PERF_EVSEL__MAX_ALIASES] = {
463  { "load",      "loads",        "read",                                 },
464  { "store",     "stores",       "write",                                },
465  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
466 };
467
468 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
469                                        [PERF_EVSEL__MAX_ALIASES] = {
470  { "refs",      "Reference",    "ops",          "access",               },
471  { "misses",    "miss",                                                 },
472 };
473
474 #define C(x)            PERF_COUNT_HW_CACHE_##x
475 #define CACHE_READ      (1 << C(OP_READ))
476 #define CACHE_WRITE     (1 << C(OP_WRITE))
477 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
478 #define COP(x)          (1 << x)
479
480 /*
481  * cache operartion stat
482  * L1I : Read and prefetch only
483  * ITLB and BPU : Read-only
484  */
485 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
486  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
487  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
488  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
489  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
490  [C(ITLB)]      = (CACHE_READ),
491  [C(BPU)]       = (CACHE_READ),
492  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
493 };
494
495 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
496 {
497         if (perf_evsel__hw_cache_stat[type] & COP(op))
498                 return true;    /* valid */
499         else
500                 return false;   /* invalid */
501 }
502
503 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
504                                             char *bf, size_t size)
505 {
506         if (result) {
507                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
508                                  perf_evsel__hw_cache_op[op][0],
509                                  perf_evsel__hw_cache_result[result][0]);
510         }
511
512         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
513                          perf_evsel__hw_cache_op[op][1]);
514 }
515
516 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
517 {
518         u8 op, result, type = (config >>  0) & 0xff;
519         const char *err = "unknown-ext-hardware-cache-type";
520
521         if (type >= PERF_COUNT_HW_CACHE_MAX)
522                 goto out_err;
523
524         op = (config >>  8) & 0xff;
525         err = "unknown-ext-hardware-cache-op";
526         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
527                 goto out_err;
528
529         result = (config >> 16) & 0xff;
530         err = "unknown-ext-hardware-cache-result";
531         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
532                 goto out_err;
533
534         err = "invalid-cache";
535         if (!perf_evsel__is_cache_op_valid(type, op))
536                 goto out_err;
537
538         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
539 out_err:
540         return scnprintf(bf, size, "%s", err);
541 }
542
543 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
544 {
545         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
546         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
547 }
548
549 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
550 {
551         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
552         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
553 }
554
555 const char *perf_evsel__name(struct perf_evsel *evsel)
556 {
557         char bf[128];
558
559         if (evsel->name)
560                 return evsel->name;
561
562         switch (evsel->attr.type) {
563         case PERF_TYPE_RAW:
564                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
565                 break;
566
567         case PERF_TYPE_HARDWARE:
568                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
569                 break;
570
571         case PERF_TYPE_HW_CACHE:
572                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
573                 break;
574
575         case PERF_TYPE_SOFTWARE:
576                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
577                 break;
578
579         case PERF_TYPE_TRACEPOINT:
580                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
581                 break;
582
583         case PERF_TYPE_BREAKPOINT:
584                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
585                 break;
586
587         default:
588                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
589                           evsel->attr.type);
590                 break;
591         }
592
593         evsel->name = strdup(bf);
594
595         return evsel->name ?: "unknown";
596 }
597
598 const char *perf_evsel__group_name(struct perf_evsel *evsel)
599 {
600         return evsel->group_name ?: "anon group";
601 }
602
603 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
604 {
605         int ret;
606         struct perf_evsel *pos;
607         const char *group_name = perf_evsel__group_name(evsel);
608
609         ret = scnprintf(buf, size, "%s", group_name);
610
611         ret += scnprintf(buf + ret, size - ret, " { %s",
612                          perf_evsel__name(evsel));
613
614         for_each_group_member(pos, evsel)
615                 ret += scnprintf(buf + ret, size - ret, ", %s",
616                                  perf_evsel__name(pos));
617
618         ret += scnprintf(buf + ret, size - ret, " }");
619
620         return ret;
621 }
622
623 void perf_evsel__config_callchain(struct perf_evsel *evsel,
624                                   struct record_opts *opts,
625                                   struct callchain_param *param)
626 {
627         bool function = perf_evsel__is_function_event(evsel);
628         struct perf_event_attr *attr = &evsel->attr;
629
630         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
631
632         attr->sample_max_stack = param->max_stack;
633
634         if (param->record_mode == CALLCHAIN_LBR) {
635                 if (!opts->branch_stack) {
636                         if (attr->exclude_user) {
637                                 pr_warning("LBR callstack option is only available "
638                                            "to get user callchain information. "
639                                            "Falling back to framepointers.\n");
640                         } else {
641                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
642                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
643                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
644                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
645                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
646                         }
647                 } else
648                          pr_warning("Cannot use LBR callstack with branch stack. "
649                                     "Falling back to framepointers.\n");
650         }
651
652         if (param->record_mode == CALLCHAIN_DWARF) {
653                 if (!function) {
654                         perf_evsel__set_sample_bit(evsel, REGS_USER);
655                         perf_evsel__set_sample_bit(evsel, STACK_USER);
656                         attr->sample_regs_user = PERF_REGS_MASK;
657                         attr->sample_stack_user = param->dump_size;
658                         attr->exclude_callchain_user = 1;
659                 } else {
660                         pr_info("Cannot use DWARF unwind for function trace event,"
661                                 " falling back to framepointers.\n");
662                 }
663         }
664
665         if (function) {
666                 pr_info("Disabling user space callchains for function trace event.\n");
667                 attr->exclude_callchain_user = 1;
668         }
669 }
670
671 static void
672 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
673                             struct callchain_param *param)
674 {
675         struct perf_event_attr *attr = &evsel->attr;
676
677         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
678         if (param->record_mode == CALLCHAIN_LBR) {
679                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
680                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
681                                               PERF_SAMPLE_BRANCH_CALL_STACK);
682         }
683         if (param->record_mode == CALLCHAIN_DWARF) {
684                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
685                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
686         }
687 }
688
689 static void apply_config_terms(struct perf_evsel *evsel,
690                                struct record_opts *opts)
691 {
692         struct perf_evsel_config_term *term;
693         struct list_head *config_terms = &evsel->config_terms;
694         struct perf_event_attr *attr = &evsel->attr;
695         struct callchain_param param;
696         u32 dump_size = 0;
697         int max_stack = 0;
698         const char *callgraph_buf = NULL;
699
700         /* callgraph default */
701         param.record_mode = callchain_param.record_mode;
702
703         list_for_each_entry(term, config_terms, list) {
704                 switch (term->type) {
705                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
706                         attr->sample_period = term->val.period;
707                         attr->freq = 0;
708                         break;
709                 case PERF_EVSEL__CONFIG_TERM_FREQ:
710                         attr->sample_freq = term->val.freq;
711                         attr->freq = 1;
712                         break;
713                 case PERF_EVSEL__CONFIG_TERM_TIME:
714                         if (term->val.time)
715                                 perf_evsel__set_sample_bit(evsel, TIME);
716                         else
717                                 perf_evsel__reset_sample_bit(evsel, TIME);
718                         break;
719                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
720                         callgraph_buf = term->val.callgraph;
721                         break;
722                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
723                         if (term->val.branch && strcmp(term->val.branch, "no")) {
724                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
725                                 parse_branch_str(term->val.branch,
726                                                  &attr->branch_sample_type);
727                         } else
728                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
729                         break;
730                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
731                         dump_size = term->val.stack_user;
732                         break;
733                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
734                         max_stack = term->val.max_stack;
735                         break;
736                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
737                         /*
738                          * attr->inherit should has already been set by
739                          * perf_evsel__config. If user explicitly set
740                          * inherit using config terms, override global
741                          * opt->no_inherit setting.
742                          */
743                         attr->inherit = term->val.inherit ? 1 : 0;
744                         break;
745                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
746                         attr->write_backward = term->val.overwrite ? 1 : 0;
747                         break;
748                 default:
749                         break;
750                 }
751         }
752
753         /* User explicitly set per-event callgraph, clear the old setting and reset. */
754         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
755                 if (max_stack) {
756                         param.max_stack = max_stack;
757                         if (callgraph_buf == NULL)
758                                 callgraph_buf = "fp";
759                 }
760
761                 /* parse callgraph parameters */
762                 if (callgraph_buf != NULL) {
763                         if (!strcmp(callgraph_buf, "no")) {
764                                 param.enabled = false;
765                                 param.record_mode = CALLCHAIN_NONE;
766                         } else {
767                                 param.enabled = true;
768                                 if (parse_callchain_record(callgraph_buf, &param)) {
769                                         pr_err("per-event callgraph setting for %s failed. "
770                                                "Apply callgraph global setting for it\n",
771                                                evsel->name);
772                                         return;
773                                 }
774                         }
775                 }
776                 if (dump_size > 0) {
777                         dump_size = round_up(dump_size, sizeof(u64));
778                         param.dump_size = dump_size;
779                 }
780
781                 /* If global callgraph set, clear it */
782                 if (callchain_param.enabled)
783                         perf_evsel__reset_callgraph(evsel, &callchain_param);
784
785                 /* set perf-event callgraph */
786                 if (param.enabled)
787                         perf_evsel__config_callchain(evsel, opts, &param);
788         }
789 }
790
791 /*
792  * The enable_on_exec/disabled value strategy:
793  *
794  *  1) For any type of traced program:
795  *    - all independent events and group leaders are disabled
796  *    - all group members are enabled
797  *
798  *     Group members are ruled by group leaders. They need to
799  *     be enabled, because the group scheduling relies on that.
800  *
801  *  2) For traced programs executed by perf:
802  *     - all independent events and group leaders have
803  *       enable_on_exec set
804  *     - we don't specifically enable or disable any event during
805  *       the record command
806  *
807  *     Independent events and group leaders are initially disabled
808  *     and get enabled by exec. Group members are ruled by group
809  *     leaders as stated in 1).
810  *
811  *  3) For traced programs attached by perf (pid/tid):
812  *     - we specifically enable or disable all events during
813  *       the record command
814  *
815  *     When attaching events to already running traced we
816  *     enable/disable events specifically, as there's no
817  *     initial traced exec call.
818  */
819 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
820                         struct callchain_param *callchain)
821 {
822         struct perf_evsel *leader = evsel->leader;
823         struct perf_event_attr *attr = &evsel->attr;
824         int track = evsel->tracking;
825         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
826
827         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
828         attr->inherit       = !opts->no_inherit;
829         attr->write_backward = opts->overwrite ? 1 : 0;
830
831         perf_evsel__set_sample_bit(evsel, IP);
832         perf_evsel__set_sample_bit(evsel, TID);
833
834         if (evsel->sample_read) {
835                 perf_evsel__set_sample_bit(evsel, READ);
836
837                 /*
838                  * We need ID even in case of single event, because
839                  * PERF_SAMPLE_READ process ID specific data.
840                  */
841                 perf_evsel__set_sample_id(evsel, false);
842
843                 /*
844                  * Apply group format only if we belong to group
845                  * with more than one members.
846                  */
847                 if (leader->nr_members > 1) {
848                         attr->read_format |= PERF_FORMAT_GROUP;
849                         attr->inherit = 0;
850                 }
851         }
852
853         /*
854          * We default some events to have a default interval. But keep
855          * it a weak assumption overridable by the user.
856          */
857         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
858                                      opts->user_interval != ULLONG_MAX)) {
859                 if (opts->freq) {
860                         perf_evsel__set_sample_bit(evsel, PERIOD);
861                         attr->freq              = 1;
862                         attr->sample_freq       = opts->freq;
863                 } else {
864                         attr->sample_period = opts->default_interval;
865                 }
866         }
867
868         /*
869          * Disable sampling for all group members other
870          * than leader in case leader 'leads' the sampling.
871          */
872         if ((leader != evsel) && leader->sample_read) {
873                 attr->sample_freq   = 0;
874                 attr->sample_period = 0;
875         }
876
877         if (opts->no_samples)
878                 attr->sample_freq = 0;
879
880         if (opts->inherit_stat)
881                 attr->inherit_stat = 1;
882
883         if (opts->sample_address) {
884                 perf_evsel__set_sample_bit(evsel, ADDR);
885                 attr->mmap_data = track;
886         }
887
888         /*
889          * We don't allow user space callchains for  function trace
890          * event, due to issues with page faults while tracing page
891          * fault handler and its overall trickiness nature.
892          */
893         if (perf_evsel__is_function_event(evsel))
894                 evsel->attr.exclude_callchain_user = 1;
895
896         if (callchain && callchain->enabled && !evsel->no_aux_samples)
897                 perf_evsel__config_callchain(evsel, opts, callchain);
898
899         if (opts->sample_intr_regs) {
900                 attr->sample_regs_intr = opts->sample_intr_regs;
901                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
902         }
903
904         if (target__has_cpu(&opts->target) || opts->sample_cpu)
905                 perf_evsel__set_sample_bit(evsel, CPU);
906
907         if (opts->period)
908                 perf_evsel__set_sample_bit(evsel, PERIOD);
909
910         /*
911          * When the user explicitly disabled time don't force it here.
912          */
913         if (opts->sample_time &&
914             (!perf_missing_features.sample_id_all &&
915             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
916              opts->sample_time_set)))
917                 perf_evsel__set_sample_bit(evsel, TIME);
918
919         if (opts->raw_samples && !evsel->no_aux_samples) {
920                 perf_evsel__set_sample_bit(evsel, TIME);
921                 perf_evsel__set_sample_bit(evsel, RAW);
922                 perf_evsel__set_sample_bit(evsel, CPU);
923         }
924
925         if (opts->sample_address)
926                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
927
928         if (opts->no_buffering) {
929                 attr->watermark = 0;
930                 attr->wakeup_events = 1;
931         }
932         if (opts->branch_stack && !evsel->no_aux_samples) {
933                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
934                 attr->branch_sample_type = opts->branch_stack;
935         }
936
937         if (opts->sample_weight)
938                 perf_evsel__set_sample_bit(evsel, WEIGHT);
939
940         attr->task  = track;
941         attr->mmap  = track;
942         attr->mmap2 = track && !perf_missing_features.mmap2;
943         attr->comm  = track;
944
945         if (opts->record_namespaces)
946                 attr->namespaces  = track;
947
948         if (opts->record_switch_events)
949                 attr->context_switch = track;
950
951         if (opts->sample_transaction)
952                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
953
954         if (opts->running_time) {
955                 evsel->attr.read_format |=
956                         PERF_FORMAT_TOTAL_TIME_ENABLED |
957                         PERF_FORMAT_TOTAL_TIME_RUNNING;
958         }
959
960         /*
961          * XXX see the function comment above
962          *
963          * Disabling only independent events or group leaders,
964          * keeping group members enabled.
965          */
966         if (perf_evsel__is_group_leader(evsel))
967                 attr->disabled = 1;
968
969         /*
970          * Setting enable_on_exec for independent events and
971          * group leaders for traced executed by perf.
972          */
973         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
974                 !opts->initial_delay)
975                 attr->enable_on_exec = 1;
976
977         if (evsel->immediate) {
978                 attr->disabled = 0;
979                 attr->enable_on_exec = 0;
980         }
981
982         clockid = opts->clockid;
983         if (opts->use_clockid) {
984                 attr->use_clockid = 1;
985                 attr->clockid = opts->clockid;
986         }
987
988         if (evsel->precise_max)
989                 perf_event_attr__set_max_precise_ip(attr);
990
991         if (opts->all_user) {
992                 attr->exclude_kernel = 1;
993                 attr->exclude_user   = 0;
994         }
995
996         if (opts->all_kernel) {
997                 attr->exclude_kernel = 0;
998                 attr->exclude_user   = 1;
999         }
1000
1001         /*
1002          * Apply event specific term settings,
1003          * it overloads any global configuration.
1004          */
1005         apply_config_terms(evsel, opts);
1006
1007         evsel->ignore_missing_thread = opts->ignore_missing_thread;
1008 }
1009
1010 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1011 {
1012         if (evsel->system_wide)
1013                 nthreads = 1;
1014
1015         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1016
1017         if (evsel->fd) {
1018                 int cpu, thread;
1019                 for (cpu = 0; cpu < ncpus; cpu++) {
1020                         for (thread = 0; thread < nthreads; thread++) {
1021                                 FD(evsel, cpu, thread) = -1;
1022                         }
1023                 }
1024         }
1025
1026         return evsel->fd != NULL ? 0 : -ENOMEM;
1027 }
1028
1029 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1030                           int ioc,  void *arg)
1031 {
1032         int cpu, thread;
1033
1034         if (evsel->system_wide)
1035                 nthreads = 1;
1036
1037         for (cpu = 0; cpu < ncpus; cpu++) {
1038                 for (thread = 0; thread < nthreads; thread++) {
1039                         int fd = FD(evsel, cpu, thread),
1040                             err = ioctl(fd, ioc, arg);
1041
1042                         if (err)
1043                                 return err;
1044                 }
1045         }
1046
1047         return 0;
1048 }
1049
1050 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1051                              const char *filter)
1052 {
1053         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1054                                      PERF_EVENT_IOC_SET_FILTER,
1055                                      (void *)filter);
1056 }
1057
1058 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1059 {
1060         char *new_filter = strdup(filter);
1061
1062         if (new_filter != NULL) {
1063                 free(evsel->filter);
1064                 evsel->filter = new_filter;
1065                 return 0;
1066         }
1067
1068         return -1;
1069 }
1070
1071 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1072                                      const char *fmt, const char *filter)
1073 {
1074         char *new_filter;
1075
1076         if (evsel->filter == NULL)
1077                 return perf_evsel__set_filter(evsel, filter);
1078
1079         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1080                 free(evsel->filter);
1081                 evsel->filter = new_filter;
1082                 return 0;
1083         }
1084
1085         return -1;
1086 }
1087
1088 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1089 {
1090         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1091 }
1092
1093 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1094 {
1095         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1096 }
1097
1098 int perf_evsel__enable(struct perf_evsel *evsel)
1099 {
1100         int nthreads = thread_map__nr(evsel->threads);
1101         int ncpus = cpu_map__nr(evsel->cpus);
1102
1103         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1104                                      PERF_EVENT_IOC_ENABLE,
1105                                      0);
1106 }
1107
1108 int perf_evsel__disable(struct perf_evsel *evsel)
1109 {
1110         int nthreads = thread_map__nr(evsel->threads);
1111         int ncpus = cpu_map__nr(evsel->cpus);
1112
1113         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1114                                      PERF_EVENT_IOC_DISABLE,
1115                                      0);
1116 }
1117
1118 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1119 {
1120         if (ncpus == 0 || nthreads == 0)
1121                 return 0;
1122
1123         if (evsel->system_wide)
1124                 nthreads = 1;
1125
1126         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1127         if (evsel->sample_id == NULL)
1128                 return -ENOMEM;
1129
1130         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1131         if (evsel->id == NULL) {
1132                 xyarray__delete(evsel->sample_id);
1133                 evsel->sample_id = NULL;
1134                 return -ENOMEM;
1135         }
1136
1137         return 0;
1138 }
1139
1140 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1141 {
1142         xyarray__delete(evsel->fd);
1143         evsel->fd = NULL;
1144 }
1145
1146 static void perf_evsel__free_id(struct perf_evsel *evsel)
1147 {
1148         xyarray__delete(evsel->sample_id);
1149         evsel->sample_id = NULL;
1150         zfree(&evsel->id);
1151 }
1152
1153 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1154 {
1155         struct perf_evsel_config_term *term, *h;
1156
1157         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1158                 list_del(&term->list);
1159                 free(term);
1160         }
1161 }
1162
1163 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1164 {
1165         int cpu, thread;
1166
1167         if (evsel->system_wide)
1168                 nthreads = 1;
1169
1170         for (cpu = 0; cpu < ncpus; cpu++)
1171                 for (thread = 0; thread < nthreads; ++thread) {
1172                         close(FD(evsel, cpu, thread));
1173                         FD(evsel, cpu, thread) = -1;
1174                 }
1175 }
1176
1177 void perf_evsel__exit(struct perf_evsel *evsel)
1178 {
1179         assert(list_empty(&evsel->node));
1180         assert(evsel->evlist == NULL);
1181         perf_evsel__free_fd(evsel);
1182         perf_evsel__free_id(evsel);
1183         perf_evsel__free_config_terms(evsel);
1184         close_cgroup(evsel->cgrp);
1185         cpu_map__put(evsel->cpus);
1186         cpu_map__put(evsel->own_cpus);
1187         thread_map__put(evsel->threads);
1188         zfree(&evsel->group_name);
1189         zfree(&evsel->name);
1190         perf_evsel__object.fini(evsel);
1191 }
1192
1193 void perf_evsel__delete(struct perf_evsel *evsel)
1194 {
1195         perf_evsel__exit(evsel);
1196         free(evsel);
1197 }
1198
1199 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1200                                 struct perf_counts_values *count)
1201 {
1202         struct perf_counts_values tmp;
1203
1204         if (!evsel->prev_raw_counts)
1205                 return;
1206
1207         if (cpu == -1) {
1208                 tmp = evsel->prev_raw_counts->aggr;
1209                 evsel->prev_raw_counts->aggr = *count;
1210         } else {
1211                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1212                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1213         }
1214
1215         count->val = count->val - tmp.val;
1216         count->ena = count->ena - tmp.ena;
1217         count->run = count->run - tmp.run;
1218 }
1219
1220 void perf_counts_values__scale(struct perf_counts_values *count,
1221                                bool scale, s8 *pscaled)
1222 {
1223         s8 scaled = 0;
1224
1225         if (scale) {
1226                 if (count->run == 0) {
1227                         scaled = -1;
1228                         count->val = 0;
1229                 } else if (count->run < count->ena) {
1230                         scaled = 1;
1231                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1232                 }
1233         } else
1234                 count->ena = count->run = 0;
1235
1236         if (pscaled)
1237                 *pscaled = scaled;
1238 }
1239
1240 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1241                      struct perf_counts_values *count)
1242 {
1243         memset(count, 0, sizeof(*count));
1244
1245         if (FD(evsel, cpu, thread) < 0)
1246                 return -EINVAL;
1247
1248         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1249                 return -errno;
1250
1251         return 0;
1252 }
1253
1254 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1255                               int cpu, int thread, bool scale)
1256 {
1257         struct perf_counts_values count;
1258         size_t nv = scale ? 3 : 1;
1259
1260         if (FD(evsel, cpu, thread) < 0)
1261                 return -EINVAL;
1262
1263         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1264                 return -ENOMEM;
1265
1266         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1267                 return -errno;
1268
1269         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1270         perf_counts_values__scale(&count, scale, NULL);
1271         *perf_counts(evsel->counts, cpu, thread) = count;
1272         return 0;
1273 }
1274
1275 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1276 {
1277         struct perf_evsel *leader = evsel->leader;
1278         int fd;
1279
1280         if (perf_evsel__is_group_leader(evsel))
1281                 return -1;
1282
1283         /*
1284          * Leader must be already processed/open,
1285          * if not it's a bug.
1286          */
1287         BUG_ON(!leader->fd);
1288
1289         fd = FD(leader, cpu, thread);
1290         BUG_ON(fd == -1);
1291
1292         return fd;
1293 }
1294
1295 struct bit_names {
1296         int bit;
1297         const char *name;
1298 };
1299
1300 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1301 {
1302         bool first_bit = true;
1303         int i = 0;
1304
1305         do {
1306                 if (value & bits[i].bit) {
1307                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1308                         first_bit = false;
1309                 }
1310         } while (bits[++i].name != NULL);
1311 }
1312
1313 static void __p_sample_type(char *buf, size_t size, u64 value)
1314 {
1315 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1316         struct bit_names bits[] = {
1317                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1318                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1319                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1320                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1321                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1322                 bit_name(WEIGHT),
1323                 { .name = NULL, }
1324         };
1325 #undef bit_name
1326         __p_bits(buf, size, value, bits);
1327 }
1328
1329 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1330 {
1331 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1332         struct bit_names bits[] = {
1333                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1334                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1335                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1336                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1337                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1338                 { .name = NULL, }
1339         };
1340 #undef bit_name
1341         __p_bits(buf, size, value, bits);
1342 }
1343
1344 static void __p_read_format(char *buf, size_t size, u64 value)
1345 {
1346 #define bit_name(n) { PERF_FORMAT_##n, #n }
1347         struct bit_names bits[] = {
1348                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1349                 bit_name(ID), bit_name(GROUP),
1350                 { .name = NULL, }
1351         };
1352 #undef bit_name
1353         __p_bits(buf, size, value, bits);
1354 }
1355
1356 #define BUF_SIZE                1024
1357
1358 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1359 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1360 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1361 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1362 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1363 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1364
1365 #define PRINT_ATTRn(_n, _f, _p)                         \
1366 do {                                                    \
1367         if (attr->_f) {                                 \
1368                 _p(attr->_f);                           \
1369                 ret += attr__fprintf(fp, _n, buf, priv);\
1370         }                                               \
1371 } while (0)
1372
1373 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1374
1375 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1376                              attr__fprintf_f attr__fprintf, void *priv)
1377 {
1378         char buf[BUF_SIZE];
1379         int ret = 0;
1380
1381         PRINT_ATTRf(type, p_unsigned);
1382         PRINT_ATTRf(size, p_unsigned);
1383         PRINT_ATTRf(config, p_hex);
1384         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1385         PRINT_ATTRf(sample_type, p_sample_type);
1386         PRINT_ATTRf(read_format, p_read_format);
1387
1388         PRINT_ATTRf(disabled, p_unsigned);
1389         PRINT_ATTRf(inherit, p_unsigned);
1390         PRINT_ATTRf(pinned, p_unsigned);
1391         PRINT_ATTRf(exclusive, p_unsigned);
1392         PRINT_ATTRf(exclude_user, p_unsigned);
1393         PRINT_ATTRf(exclude_kernel, p_unsigned);
1394         PRINT_ATTRf(exclude_hv, p_unsigned);
1395         PRINT_ATTRf(exclude_idle, p_unsigned);
1396         PRINT_ATTRf(mmap, p_unsigned);
1397         PRINT_ATTRf(comm, p_unsigned);
1398         PRINT_ATTRf(freq, p_unsigned);
1399         PRINT_ATTRf(inherit_stat, p_unsigned);
1400         PRINT_ATTRf(enable_on_exec, p_unsigned);
1401         PRINT_ATTRf(task, p_unsigned);
1402         PRINT_ATTRf(watermark, p_unsigned);
1403         PRINT_ATTRf(precise_ip, p_unsigned);
1404         PRINT_ATTRf(mmap_data, p_unsigned);
1405         PRINT_ATTRf(sample_id_all, p_unsigned);
1406         PRINT_ATTRf(exclude_host, p_unsigned);
1407         PRINT_ATTRf(exclude_guest, p_unsigned);
1408         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1409         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1410         PRINT_ATTRf(mmap2, p_unsigned);
1411         PRINT_ATTRf(comm_exec, p_unsigned);
1412         PRINT_ATTRf(use_clockid, p_unsigned);
1413         PRINT_ATTRf(context_switch, p_unsigned);
1414         PRINT_ATTRf(write_backward, p_unsigned);
1415
1416         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1417         PRINT_ATTRf(bp_type, p_unsigned);
1418         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1419         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1420         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1421         PRINT_ATTRf(sample_regs_user, p_hex);
1422         PRINT_ATTRf(sample_stack_user, p_unsigned);
1423         PRINT_ATTRf(clockid, p_signed);
1424         PRINT_ATTRf(sample_regs_intr, p_hex);
1425         PRINT_ATTRf(aux_watermark, p_unsigned);
1426         PRINT_ATTRf(sample_max_stack, p_unsigned);
1427
1428         return ret;
1429 }
1430
1431 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1432                                 void *priv __attribute__((unused)))
1433 {
1434         return fprintf(fp, "  %-32s %s\n", name, val);
1435 }
1436
1437 static bool ignore_missing_thread(struct perf_evsel *evsel,
1438                                   struct thread_map *threads,
1439                                   int thread, int err)
1440 {
1441         if (!evsel->ignore_missing_thread)
1442                 return false;
1443
1444         /* The system wide setup does not work with threads. */
1445         if (evsel->system_wide)
1446                 return false;
1447
1448         /* The -ESRCH is perf event syscall errno for pid's not found. */
1449         if (err != -ESRCH)
1450                 return false;
1451
1452         /* If there's only one thread, let it fail. */
1453         if (threads->nr == 1)
1454                 return false;
1455
1456         if (thread_map__remove(threads, thread))
1457                 return false;
1458
1459         pr_warning("WARNING: Ignored open failure for pid %d\n",
1460                    thread_map__pid(threads, thread));
1461         return true;
1462 }
1463
1464 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1465                      struct thread_map *threads)
1466 {
1467         int cpu, thread, nthreads;
1468         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1469         int pid = -1, err;
1470         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1471
1472         if (perf_missing_features.write_backward && evsel->attr.write_backward)
1473                 return -EINVAL;
1474
1475         if (cpus == NULL) {
1476                 static struct cpu_map *empty_cpu_map;
1477
1478                 if (empty_cpu_map == NULL) {
1479                         empty_cpu_map = cpu_map__dummy_new();
1480                         if (empty_cpu_map == NULL)
1481                                 return -ENOMEM;
1482                 }
1483
1484                 cpus = empty_cpu_map;
1485         }
1486
1487         if (threads == NULL) {
1488                 static struct thread_map *empty_thread_map;
1489
1490                 if (empty_thread_map == NULL) {
1491                         empty_thread_map = thread_map__new_by_tid(-1);
1492                         if (empty_thread_map == NULL)
1493                                 return -ENOMEM;
1494                 }
1495
1496                 threads = empty_thread_map;
1497         }
1498
1499         if (evsel->system_wide)
1500                 nthreads = 1;
1501         else
1502                 nthreads = threads->nr;
1503
1504         if (evsel->fd == NULL &&
1505             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1506                 return -ENOMEM;
1507
1508         if (evsel->cgrp) {
1509                 flags |= PERF_FLAG_PID_CGROUP;
1510                 pid = evsel->cgrp->fd;
1511         }
1512
1513 fallback_missing_features:
1514         if (perf_missing_features.clockid_wrong)
1515                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1516         if (perf_missing_features.clockid) {
1517                 evsel->attr.use_clockid = 0;
1518                 evsel->attr.clockid = 0;
1519         }
1520         if (perf_missing_features.cloexec)
1521                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1522         if (perf_missing_features.mmap2)
1523                 evsel->attr.mmap2 = 0;
1524         if (perf_missing_features.exclude_guest)
1525                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1526         if (perf_missing_features.lbr_flags)
1527                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1528                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1529 retry_sample_id:
1530         if (perf_missing_features.sample_id_all)
1531                 evsel->attr.sample_id_all = 0;
1532
1533         if (verbose >= 2) {
1534                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1535                 fprintf(stderr, "perf_event_attr:\n");
1536                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1537                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1538         }
1539
1540         for (cpu = 0; cpu < cpus->nr; cpu++) {
1541
1542                 for (thread = 0; thread < nthreads; thread++) {
1543                         int fd, group_fd;
1544
1545                         if (!evsel->cgrp && !evsel->system_wide)
1546                                 pid = thread_map__pid(threads, thread);
1547
1548                         group_fd = get_group_fd(evsel, cpu, thread);
1549 retry_open:
1550                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1551                                   pid, cpus->map[cpu], group_fd, flags);
1552
1553                         fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1554                                                  group_fd, flags);
1555
1556                         FD(evsel, cpu, thread) = fd;
1557
1558                         if (fd < 0) {
1559                                 err = -errno;
1560
1561                                 if (ignore_missing_thread(evsel, threads, thread, err)) {
1562                                         /*
1563                                          * We just removed 1 thread, so take a step
1564                                          * back on thread index and lower the upper
1565                                          * nthreads limit.
1566                                          */
1567                                         nthreads--;
1568                                         thread--;
1569
1570                                         /* ... and pretend like nothing have happened. */
1571                                         err = 0;
1572                                         continue;
1573                                 }
1574
1575                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1576                                           err);
1577                                 goto try_fallback;
1578                         }
1579
1580                         pr_debug2(" = %d\n", fd);
1581
1582                         if (evsel->bpf_fd >= 0) {
1583                                 int evt_fd = fd;
1584                                 int bpf_fd = evsel->bpf_fd;
1585
1586                                 err = ioctl(evt_fd,
1587                                             PERF_EVENT_IOC_SET_BPF,
1588                                             bpf_fd);
1589                                 if (err && errno != EEXIST) {
1590                                         pr_err("failed to attach bpf fd %d: %s\n",
1591                                                bpf_fd, strerror(errno));
1592                                         err = -EINVAL;
1593                                         goto out_close;
1594                                 }
1595                         }
1596
1597                         set_rlimit = NO_CHANGE;
1598
1599                         /*
1600                          * If we succeeded but had to kill clockid, fail and
1601                          * have perf_evsel__open_strerror() print us a nice
1602                          * error.
1603                          */
1604                         if (perf_missing_features.clockid ||
1605                             perf_missing_features.clockid_wrong) {
1606                                 err = -EINVAL;
1607                                 goto out_close;
1608                         }
1609                 }
1610         }
1611
1612         return 0;
1613
1614 try_fallback:
1615         /*
1616          * perf stat needs between 5 and 22 fds per CPU. When we run out
1617          * of them try to increase the limits.
1618          */
1619         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1620                 struct rlimit l;
1621                 int old_errno = errno;
1622
1623                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1624                         if (set_rlimit == NO_CHANGE)
1625                                 l.rlim_cur = l.rlim_max;
1626                         else {
1627                                 l.rlim_cur = l.rlim_max + 1000;
1628                                 l.rlim_max = l.rlim_cur;
1629                         }
1630                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1631                                 set_rlimit++;
1632                                 errno = old_errno;
1633                                 goto retry_open;
1634                         }
1635                 }
1636                 errno = old_errno;
1637         }
1638
1639         if (err != -EINVAL || cpu > 0 || thread > 0)
1640                 goto out_close;
1641
1642         /*
1643          * Must probe features in the order they were added to the
1644          * perf_event_attr interface.
1645          */
1646         if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1647                 perf_missing_features.write_backward = true;
1648                 goto out_close;
1649         } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1650                 perf_missing_features.clockid_wrong = true;
1651                 goto fallback_missing_features;
1652         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1653                 perf_missing_features.clockid = true;
1654                 goto fallback_missing_features;
1655         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1656                 perf_missing_features.cloexec = true;
1657                 goto fallback_missing_features;
1658         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1659                 perf_missing_features.mmap2 = true;
1660                 goto fallback_missing_features;
1661         } else if (!perf_missing_features.exclude_guest &&
1662                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1663                 perf_missing_features.exclude_guest = true;
1664                 goto fallback_missing_features;
1665         } else if (!perf_missing_features.sample_id_all) {
1666                 perf_missing_features.sample_id_all = true;
1667                 goto retry_sample_id;
1668         } else if (!perf_missing_features.lbr_flags &&
1669                         (evsel->attr.branch_sample_type &
1670                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1671                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1672                 perf_missing_features.lbr_flags = true;
1673                 goto fallback_missing_features;
1674         }
1675 out_close:
1676         do {
1677                 while (--thread >= 0) {
1678                         close(FD(evsel, cpu, thread));
1679                         FD(evsel, cpu, thread) = -1;
1680                 }
1681                 thread = nthreads;
1682         } while (--cpu >= 0);
1683         return err;
1684 }
1685
1686 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1687 {
1688         if (evsel->fd == NULL)
1689                 return;
1690
1691         perf_evsel__close_fd(evsel, ncpus, nthreads);
1692         perf_evsel__free_fd(evsel);
1693 }
1694
1695 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1696                              struct cpu_map *cpus)
1697 {
1698         return perf_evsel__open(evsel, cpus, NULL);
1699 }
1700
1701 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1702                                 struct thread_map *threads)
1703 {
1704         return perf_evsel__open(evsel, NULL, threads);
1705 }
1706
1707 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1708                                        const union perf_event *event,
1709                                        struct perf_sample *sample)
1710 {
1711         u64 type = evsel->attr.sample_type;
1712         const u64 *array = event->sample.array;
1713         bool swapped = evsel->needs_swap;
1714         union u64_swap u;
1715
1716         array += ((event->header.size -
1717                    sizeof(event->header)) / sizeof(u64)) - 1;
1718
1719         if (type & PERF_SAMPLE_IDENTIFIER) {
1720                 sample->id = *array;
1721                 array--;
1722         }
1723
1724         if (type & PERF_SAMPLE_CPU) {
1725                 u.val64 = *array;
1726                 if (swapped) {
1727                         /* undo swap of u64, then swap on individual u32s */
1728                         u.val64 = bswap_64(u.val64);
1729                         u.val32[0] = bswap_32(u.val32[0]);
1730                 }
1731
1732                 sample->cpu = u.val32[0];
1733                 array--;
1734         }
1735
1736         if (type & PERF_SAMPLE_STREAM_ID) {
1737                 sample->stream_id = *array;
1738                 array--;
1739         }
1740
1741         if (type & PERF_SAMPLE_ID) {
1742                 sample->id = *array;
1743                 array--;
1744         }
1745
1746         if (type & PERF_SAMPLE_TIME) {
1747                 sample->time = *array;
1748                 array--;
1749         }
1750
1751         if (type & PERF_SAMPLE_TID) {
1752                 u.val64 = *array;
1753                 if (swapped) {
1754                         /* undo swap of u64, then swap on individual u32s */
1755                         u.val64 = bswap_64(u.val64);
1756                         u.val32[0] = bswap_32(u.val32[0]);
1757                         u.val32[1] = bswap_32(u.val32[1]);
1758                 }
1759
1760                 sample->pid = u.val32[0];
1761                 sample->tid = u.val32[1];
1762                 array--;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1769                             u64 size)
1770 {
1771         return size > max_size || offset + size > endp;
1772 }
1773
1774 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1775         do {                                                            \
1776                 if (overflow(endp, (max_size), (offset), (size)))       \
1777                         return -EFAULT;                                 \
1778         } while (0)
1779
1780 #define OVERFLOW_CHECK_u64(offset) \
1781         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1782
1783 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1784                              struct perf_sample *data)
1785 {
1786         u64 type = evsel->attr.sample_type;
1787         bool swapped = evsel->needs_swap;
1788         const u64 *array;
1789         u16 max_size = event->header.size;
1790         const void *endp = (void *)event + max_size;
1791         u64 sz;
1792
1793         /*
1794          * used for cross-endian analysis. See git commit 65014ab3
1795          * for why this goofiness is needed.
1796          */
1797         union u64_swap u;
1798
1799         memset(data, 0, sizeof(*data));
1800         data->cpu = data->pid = data->tid = -1;
1801         data->stream_id = data->id = data->time = -1ULL;
1802         data->period = evsel->attr.sample_period;
1803         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1804
1805         if (event->header.type != PERF_RECORD_SAMPLE) {
1806                 if (!evsel->attr.sample_id_all)
1807                         return 0;
1808                 return perf_evsel__parse_id_sample(evsel, event, data);
1809         }
1810
1811         array = event->sample.array;
1812
1813         /*
1814          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1815          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1816          * check the format does not go past the end of the event.
1817          */
1818         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1819                 return -EFAULT;
1820
1821         data->id = -1ULL;
1822         if (type & PERF_SAMPLE_IDENTIFIER) {
1823                 data->id = *array;
1824                 array++;
1825         }
1826
1827         if (type & PERF_SAMPLE_IP) {
1828                 data->ip = *array;
1829                 array++;
1830         }
1831
1832         if (type & PERF_SAMPLE_TID) {
1833                 u.val64 = *array;
1834                 if (swapped) {
1835                         /* undo swap of u64, then swap on individual u32s */
1836                         u.val64 = bswap_64(u.val64);
1837                         u.val32[0] = bswap_32(u.val32[0]);
1838                         u.val32[1] = bswap_32(u.val32[1]);
1839                 }
1840
1841                 data->pid = u.val32[0];
1842                 data->tid = u.val32[1];
1843                 array++;
1844         }
1845
1846         if (type & PERF_SAMPLE_TIME) {
1847                 data->time = *array;
1848                 array++;
1849         }
1850
1851         data->addr = 0;
1852         if (type & PERF_SAMPLE_ADDR) {
1853                 data->addr = *array;
1854                 array++;
1855         }
1856
1857         if (type & PERF_SAMPLE_ID) {
1858                 data->id = *array;
1859                 array++;
1860         }
1861
1862         if (type & PERF_SAMPLE_STREAM_ID) {
1863                 data->stream_id = *array;
1864                 array++;
1865         }
1866
1867         if (type & PERF_SAMPLE_CPU) {
1868
1869                 u.val64 = *array;
1870                 if (swapped) {
1871                         /* undo swap of u64, then swap on individual u32s */
1872                         u.val64 = bswap_64(u.val64);
1873                         u.val32[0] = bswap_32(u.val32[0]);
1874                 }
1875
1876                 data->cpu = u.val32[0];
1877                 array++;
1878         }
1879
1880         if (type & PERF_SAMPLE_PERIOD) {
1881                 data->period = *array;
1882                 array++;
1883         }
1884
1885         if (type & PERF_SAMPLE_READ) {
1886                 u64 read_format = evsel->attr.read_format;
1887
1888                 OVERFLOW_CHECK_u64(array);
1889                 if (read_format & PERF_FORMAT_GROUP)
1890                         data->read.group.nr = *array;
1891                 else
1892                         data->read.one.value = *array;
1893
1894                 array++;
1895
1896                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1897                         OVERFLOW_CHECK_u64(array);
1898                         data->read.time_enabled = *array;
1899                         array++;
1900                 }
1901
1902                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1903                         OVERFLOW_CHECK_u64(array);
1904                         data->read.time_running = *array;
1905                         array++;
1906                 }
1907
1908                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1909                 if (read_format & PERF_FORMAT_GROUP) {
1910                         const u64 max_group_nr = UINT64_MAX /
1911                                         sizeof(struct sample_read_value);
1912
1913                         if (data->read.group.nr > max_group_nr)
1914                                 return -EFAULT;
1915                         sz = data->read.group.nr *
1916                              sizeof(struct sample_read_value);
1917                         OVERFLOW_CHECK(array, sz, max_size);
1918                         data->read.group.values =
1919                                         (struct sample_read_value *)array;
1920                         array = (void *)array + sz;
1921                 } else {
1922                         OVERFLOW_CHECK_u64(array);
1923                         data->read.one.id = *array;
1924                         array++;
1925                 }
1926         }
1927
1928         if (type & PERF_SAMPLE_CALLCHAIN) {
1929                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1930
1931                 OVERFLOW_CHECK_u64(array);
1932                 data->callchain = (struct ip_callchain *)array++;
1933                 if (data->callchain->nr > max_callchain_nr)
1934                         return -EFAULT;
1935                 sz = data->callchain->nr * sizeof(u64);
1936                 OVERFLOW_CHECK(array, sz, max_size);
1937                 array = (void *)array + sz;
1938         }
1939
1940         if (type & PERF_SAMPLE_RAW) {
1941                 OVERFLOW_CHECK_u64(array);
1942                 u.val64 = *array;
1943                 if (WARN_ONCE(swapped,
1944                               "Endianness of raw data not corrected!\n")) {
1945                         /* undo swap of u64, then swap on individual u32s */
1946                         u.val64 = bswap_64(u.val64);
1947                         u.val32[0] = bswap_32(u.val32[0]);
1948                         u.val32[1] = bswap_32(u.val32[1]);
1949                 }
1950                 data->raw_size = u.val32[0];
1951                 array = (void *)array + sizeof(u32);
1952
1953                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1954                 data->raw_data = (void *)array;
1955                 array = (void *)array + data->raw_size;
1956         }
1957
1958         if (type & PERF_SAMPLE_BRANCH_STACK) {
1959                 const u64 max_branch_nr = UINT64_MAX /
1960                                           sizeof(struct branch_entry);
1961
1962                 OVERFLOW_CHECK_u64(array);
1963                 data->branch_stack = (struct branch_stack *)array++;
1964
1965                 if (data->branch_stack->nr > max_branch_nr)
1966                         return -EFAULT;
1967                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1968                 OVERFLOW_CHECK(array, sz, max_size);
1969                 array = (void *)array + sz;
1970         }
1971
1972         if (type & PERF_SAMPLE_REGS_USER) {
1973                 OVERFLOW_CHECK_u64(array);
1974                 data->user_regs.abi = *array;
1975                 array++;
1976
1977                 if (data->user_regs.abi) {
1978                         u64 mask = evsel->attr.sample_regs_user;
1979
1980                         sz = hweight_long(mask) * sizeof(u64);
1981                         OVERFLOW_CHECK(array, sz, max_size);
1982                         data->user_regs.mask = mask;
1983                         data->user_regs.regs = (u64 *)array;
1984                         array = (void *)array + sz;
1985                 }
1986         }
1987
1988         if (type & PERF_SAMPLE_STACK_USER) {
1989                 OVERFLOW_CHECK_u64(array);
1990                 sz = *array++;
1991
1992                 data->user_stack.offset = ((char *)(array - 1)
1993                                           - (char *) event);
1994
1995                 if (!sz) {
1996                         data->user_stack.size = 0;
1997                 } else {
1998                         OVERFLOW_CHECK(array, sz, max_size);
1999                         data->user_stack.data = (char *)array;
2000                         array = (void *)array + sz;
2001                         OVERFLOW_CHECK_u64(array);
2002                         data->user_stack.size = *array++;
2003                         if (WARN_ONCE(data->user_stack.size > sz,
2004                                       "user stack dump failure\n"))
2005                                 return -EFAULT;
2006                 }
2007         }
2008
2009         if (type & PERF_SAMPLE_WEIGHT) {
2010                 OVERFLOW_CHECK_u64(array);
2011                 data->weight = *array;
2012                 array++;
2013         }
2014
2015         data->data_src = PERF_MEM_DATA_SRC_NONE;
2016         if (type & PERF_SAMPLE_DATA_SRC) {
2017                 OVERFLOW_CHECK_u64(array);
2018                 data->data_src = *array;
2019                 array++;
2020         }
2021
2022         data->transaction = 0;
2023         if (type & PERF_SAMPLE_TRANSACTION) {
2024                 OVERFLOW_CHECK_u64(array);
2025                 data->transaction = *array;
2026                 array++;
2027         }
2028
2029         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2030         if (type & PERF_SAMPLE_REGS_INTR) {
2031                 OVERFLOW_CHECK_u64(array);
2032                 data->intr_regs.abi = *array;
2033                 array++;
2034
2035                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2036                         u64 mask = evsel->attr.sample_regs_intr;
2037
2038                         sz = hweight_long(mask) * sizeof(u64);
2039                         OVERFLOW_CHECK(array, sz, max_size);
2040                         data->intr_regs.mask = mask;
2041                         data->intr_regs.regs = (u64 *)array;
2042                         array = (void *)array + sz;
2043                 }
2044         }
2045
2046         return 0;
2047 }
2048
2049 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2050                                      u64 read_format)
2051 {
2052         size_t sz, result = sizeof(struct sample_event);
2053
2054         if (type & PERF_SAMPLE_IDENTIFIER)
2055                 result += sizeof(u64);
2056
2057         if (type & PERF_SAMPLE_IP)
2058                 result += sizeof(u64);
2059
2060         if (type & PERF_SAMPLE_TID)
2061                 result += sizeof(u64);
2062
2063         if (type & PERF_SAMPLE_TIME)
2064                 result += sizeof(u64);
2065
2066         if (type & PERF_SAMPLE_ADDR)
2067                 result += sizeof(u64);
2068
2069         if (type & PERF_SAMPLE_ID)
2070                 result += sizeof(u64);
2071
2072         if (type & PERF_SAMPLE_STREAM_ID)
2073                 result += sizeof(u64);
2074
2075         if (type & PERF_SAMPLE_CPU)
2076                 result += sizeof(u64);
2077
2078         if (type & PERF_SAMPLE_PERIOD)
2079                 result += sizeof(u64);
2080
2081         if (type & PERF_SAMPLE_READ) {
2082                 result += sizeof(u64);
2083                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2084                         result += sizeof(u64);
2085                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2086                         result += sizeof(u64);
2087                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2088                 if (read_format & PERF_FORMAT_GROUP) {
2089                         sz = sample->read.group.nr *
2090                              sizeof(struct sample_read_value);
2091                         result += sz;
2092                 } else {
2093                         result += sizeof(u64);
2094                 }
2095         }
2096
2097         if (type & PERF_SAMPLE_CALLCHAIN) {
2098                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2099                 result += sz;
2100         }
2101
2102         if (type & PERF_SAMPLE_RAW) {
2103                 result += sizeof(u32);
2104                 result += sample->raw_size;
2105         }
2106
2107         if (type & PERF_SAMPLE_BRANCH_STACK) {
2108                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2109                 sz += sizeof(u64);
2110                 result += sz;
2111         }
2112
2113         if (type & PERF_SAMPLE_REGS_USER) {
2114                 if (sample->user_regs.abi) {
2115                         result += sizeof(u64);
2116                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2117                         result += sz;
2118                 } else {
2119                         result += sizeof(u64);
2120                 }
2121         }
2122
2123         if (type & PERF_SAMPLE_STACK_USER) {
2124                 sz = sample->user_stack.size;
2125                 result += sizeof(u64);
2126                 if (sz) {
2127                         result += sz;
2128                         result += sizeof(u64);
2129                 }
2130         }
2131
2132         if (type & PERF_SAMPLE_WEIGHT)
2133                 result += sizeof(u64);
2134
2135         if (type & PERF_SAMPLE_DATA_SRC)
2136                 result += sizeof(u64);
2137
2138         if (type & PERF_SAMPLE_TRANSACTION)
2139                 result += sizeof(u64);
2140
2141         if (type & PERF_SAMPLE_REGS_INTR) {
2142                 if (sample->intr_regs.abi) {
2143                         result += sizeof(u64);
2144                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2145                         result += sz;
2146                 } else {
2147                         result += sizeof(u64);
2148                 }
2149         }
2150
2151         return result;
2152 }
2153
2154 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2155                                   u64 read_format,
2156                                   const struct perf_sample *sample,
2157                                   bool swapped)
2158 {
2159         u64 *array;
2160         size_t sz;
2161         /*
2162          * used for cross-endian analysis. See git commit 65014ab3
2163          * for why this goofiness is needed.
2164          */
2165         union u64_swap u;
2166
2167         array = event->sample.array;
2168
2169         if (type & PERF_SAMPLE_IDENTIFIER) {
2170                 *array = sample->id;
2171                 array++;
2172         }
2173
2174         if (type & PERF_SAMPLE_IP) {
2175                 *array = sample->ip;
2176                 array++;
2177         }
2178
2179         if (type & PERF_SAMPLE_TID) {
2180                 u.val32[0] = sample->pid;
2181                 u.val32[1] = sample->tid;
2182                 if (swapped) {
2183                         /*
2184                          * Inverse of what is done in perf_evsel__parse_sample
2185                          */
2186                         u.val32[0] = bswap_32(u.val32[0]);
2187                         u.val32[1] = bswap_32(u.val32[1]);
2188                         u.val64 = bswap_64(u.val64);
2189                 }
2190
2191                 *array = u.val64;
2192                 array++;
2193         }
2194
2195         if (type & PERF_SAMPLE_TIME) {
2196                 *array = sample->time;
2197                 array++;
2198         }
2199
2200         if (type & PERF_SAMPLE_ADDR) {
2201                 *array = sample->addr;
2202                 array++;
2203         }
2204
2205         if (type & PERF_SAMPLE_ID) {
2206                 *array = sample->id;
2207                 array++;
2208         }
2209
2210         if (type & PERF_SAMPLE_STREAM_ID) {
2211                 *array = sample->stream_id;
2212                 array++;
2213         }
2214
2215         if (type & PERF_SAMPLE_CPU) {
2216                 u.val32[0] = sample->cpu;
2217                 if (swapped) {
2218                         /*
2219                          * Inverse of what is done in perf_evsel__parse_sample
2220                          */
2221                         u.val32[0] = bswap_32(u.val32[0]);
2222                         u.val64 = bswap_64(u.val64);
2223                 }
2224                 *array = u.val64;
2225                 array++;
2226         }
2227
2228         if (type & PERF_SAMPLE_PERIOD) {
2229                 *array = sample->period;
2230                 array++;
2231         }
2232
2233         if (type & PERF_SAMPLE_READ) {
2234                 if (read_format & PERF_FORMAT_GROUP)
2235                         *array = sample->read.group.nr;
2236                 else
2237                         *array = sample->read.one.value;
2238                 array++;
2239
2240                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2241                         *array = sample->read.time_enabled;
2242                         array++;
2243                 }
2244
2245                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2246                         *array = sample->read.time_running;
2247                         array++;
2248                 }
2249
2250                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2251                 if (read_format & PERF_FORMAT_GROUP) {
2252                         sz = sample->read.group.nr *
2253                              sizeof(struct sample_read_value);
2254                         memcpy(array, sample->read.group.values, sz);
2255                         array = (void *)array + sz;
2256                 } else {
2257                         *array = sample->read.one.id;
2258                         array++;
2259                 }
2260         }
2261
2262         if (type & PERF_SAMPLE_CALLCHAIN) {
2263                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2264                 memcpy(array, sample->callchain, sz);
2265                 array = (void *)array + sz;
2266         }
2267
2268         if (type & PERF_SAMPLE_RAW) {
2269                 u.val32[0] = sample->raw_size;
2270                 if (WARN_ONCE(swapped,
2271                               "Endianness of raw data not corrected!\n")) {
2272                         /*
2273                          * Inverse of what is done in perf_evsel__parse_sample
2274                          */
2275                         u.val32[0] = bswap_32(u.val32[0]);
2276                         u.val32[1] = bswap_32(u.val32[1]);
2277                         u.val64 = bswap_64(u.val64);
2278                 }
2279                 *array = u.val64;
2280                 array = (void *)array + sizeof(u32);
2281
2282                 memcpy(array, sample->raw_data, sample->raw_size);
2283                 array = (void *)array + sample->raw_size;
2284         }
2285
2286         if (type & PERF_SAMPLE_BRANCH_STACK) {
2287                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2288                 sz += sizeof(u64);
2289                 memcpy(array, sample->branch_stack, sz);
2290                 array = (void *)array + sz;
2291         }
2292
2293         if (type & PERF_SAMPLE_REGS_USER) {
2294                 if (sample->user_regs.abi) {
2295                         *array++ = sample->user_regs.abi;
2296                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2297                         memcpy(array, sample->user_regs.regs, sz);
2298                         array = (void *)array + sz;
2299                 } else {
2300                         *array++ = 0;
2301                 }
2302         }
2303
2304         if (type & PERF_SAMPLE_STACK_USER) {
2305                 sz = sample->user_stack.size;
2306                 *array++ = sz;
2307                 if (sz) {
2308                         memcpy(array, sample->user_stack.data, sz);
2309                         array = (void *)array + sz;
2310                         *array++ = sz;
2311                 }
2312         }
2313
2314         if (type & PERF_SAMPLE_WEIGHT) {
2315                 *array = sample->weight;
2316                 array++;
2317         }
2318
2319         if (type & PERF_SAMPLE_DATA_SRC) {
2320                 *array = sample->data_src;
2321                 array++;
2322         }
2323
2324         if (type & PERF_SAMPLE_TRANSACTION) {
2325                 *array = sample->transaction;
2326                 array++;
2327         }
2328
2329         if (type & PERF_SAMPLE_REGS_INTR) {
2330                 if (sample->intr_regs.abi) {
2331                         *array++ = sample->intr_regs.abi;
2332                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2333                         memcpy(array, sample->intr_regs.regs, sz);
2334                         array = (void *)array + sz;
2335                 } else {
2336                         *array++ = 0;
2337                 }
2338         }
2339
2340         return 0;
2341 }
2342
2343 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2344 {
2345         return pevent_find_field(evsel->tp_format, name);
2346 }
2347
2348 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2349                          const char *name)
2350 {
2351         struct format_field *field = perf_evsel__field(evsel, name);
2352         int offset;
2353
2354         if (!field)
2355                 return NULL;
2356
2357         offset = field->offset;
2358
2359         if (field->flags & FIELD_IS_DYNAMIC) {
2360                 offset = *(int *)(sample->raw_data + field->offset);
2361                 offset &= 0xffff;
2362         }
2363
2364         return sample->raw_data + offset;
2365 }
2366
2367 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2368                          bool needs_swap)
2369 {
2370         u64 value;
2371         void *ptr = sample->raw_data + field->offset;
2372
2373         switch (field->size) {
2374         case 1:
2375                 return *(u8 *)ptr;
2376         case 2:
2377                 value = *(u16 *)ptr;
2378                 break;
2379         case 4:
2380                 value = *(u32 *)ptr;
2381                 break;
2382         case 8:
2383                 memcpy(&value, ptr, sizeof(u64));
2384                 break;
2385         default:
2386                 return 0;
2387         }
2388
2389         if (!needs_swap)
2390                 return value;
2391
2392         switch (field->size) {
2393         case 2:
2394                 return bswap_16(value);
2395         case 4:
2396                 return bswap_32(value);
2397         case 8:
2398                 return bswap_64(value);
2399         default:
2400                 return 0;
2401         }
2402
2403         return 0;
2404 }
2405
2406 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2407                        const char *name)
2408 {
2409         struct format_field *field = perf_evsel__field(evsel, name);
2410
2411         if (!field)
2412                 return 0;
2413
2414         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2415 }
2416
2417 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2418                           char *msg, size_t msgsize)
2419 {
2420         int paranoid;
2421
2422         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2423             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2424             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2425                 /*
2426                  * If it's cycles then fall back to hrtimer based
2427                  * cpu-clock-tick sw counter, which is always available even if
2428                  * no PMU support.
2429                  *
2430                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2431                  * b0a873e).
2432                  */
2433                 scnprintf(msg, msgsize, "%s",
2434 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2435
2436                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2437                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2438
2439                 zfree(&evsel->name);
2440                 return true;
2441         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2442                    (paranoid = perf_event_paranoid()) > 1) {
2443                 const char *name = perf_evsel__name(evsel);
2444                 char *new_name;
2445
2446                 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2447                         return false;
2448
2449                 if (evsel->name)
2450                         free(evsel->name);
2451                 evsel->name = new_name;
2452                 scnprintf(msg, msgsize,
2453 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2454                 evsel->attr.exclude_kernel = 1;
2455
2456                 return true;
2457         }
2458
2459         return false;
2460 }
2461
2462 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2463                               int err, char *msg, size_t size)
2464 {
2465         char sbuf[STRERR_BUFSIZE];
2466         int printed = 0;
2467
2468         switch (err) {
2469         case EPERM:
2470         case EACCES:
2471                 if (err == EPERM)
2472                         printed = scnprintf(msg, size,
2473                                 "No permission to enable %s event.\n\n",
2474                                 perf_evsel__name(evsel));
2475
2476                 return scnprintf(msg + printed, size - printed,
2477                  "You may not have permission to collect %sstats.\n\n"
2478                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2479                  "which controls use of the performance events system by\n"
2480                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2481                  "The current value is %d:\n\n"
2482                  "  -1: Allow use of (almost) all events by all users\n"
2483                  ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2484                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2485                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2486                  "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2487                  "      kernel.perf_event_paranoid = -1\n" ,
2488                                  target->system_wide ? "system-wide " : "",
2489                                  perf_event_paranoid());
2490         case ENOENT:
2491                 return scnprintf(msg, size, "The %s event is not supported.",
2492                                  perf_evsel__name(evsel));
2493         case EMFILE:
2494                 return scnprintf(msg, size, "%s",
2495                          "Too many events are opened.\n"
2496                          "Probably the maximum number of open file descriptors has been reached.\n"
2497                          "Hint: Try again after reducing the number of events.\n"
2498                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2499         case ENOMEM:
2500                 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2501                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2502                         return scnprintf(msg, size,
2503                                          "Not enough memory to setup event with callchain.\n"
2504                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2505                                          "Hint: Current value: %d", sysctl_perf_event_max_stack);
2506                 break;
2507         case ENODEV:
2508                 if (target->cpu_list)
2509                         return scnprintf(msg, size, "%s",
2510          "No such device - did you specify an out-of-range profile CPU?");
2511                 break;
2512         case EOPNOTSUPP:
2513                 if (evsel->attr.sample_period != 0)
2514                         return scnprintf(msg, size, "%s",
2515         "PMU Hardware doesn't support sampling/overflow-interrupts.");
2516                 if (evsel->attr.precise_ip)
2517                         return scnprintf(msg, size, "%s",
2518         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2519 #if defined(__i386__) || defined(__x86_64__)
2520                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2521                         return scnprintf(msg, size, "%s",
2522         "No hardware sampling interrupt available.\n"
2523         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2524 #endif
2525                 break;
2526         case EBUSY:
2527                 if (find_process("oprofiled"))
2528                         return scnprintf(msg, size,
2529         "The PMU counters are busy/taken by another profiler.\n"
2530         "We found oprofile daemon running, please stop it and try again.");
2531                 break;
2532         case EINVAL:
2533                 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2534                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2535                 if (perf_missing_features.clockid)
2536                         return scnprintf(msg, size, "clockid feature not supported.");
2537                 if (perf_missing_features.clockid_wrong)
2538                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2539                 break;
2540         default:
2541                 break;
2542         }
2543
2544         return scnprintf(msg, size,
2545         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2546         "/bin/dmesg may provide additional information.\n"
2547         "No CONFIG_PERF_EVENTS=y kernel support configured?",
2548                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2549                          perf_evsel__name(evsel));
2550 }
2551
2552 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2553 {
2554         if (evsel && evsel->evlist && evsel->evlist->env)
2555                 return evsel->evlist->env->arch;
2556         return NULL;
2557 }