]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/evsel.c
e8745fb635a7c170176435cc2268556d1b9d057e
[karo-tx-linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28         bool sample_id_all;
29         bool exclude_guest;
30 } perf_missing_features;
31
32 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
33
34 int __perf_evsel__sample_size(u64 sample_type)
35 {
36         u64 mask = sample_type & PERF_SAMPLE_MASK;
37         int size = 0;
38         int i;
39
40         for (i = 0; i < 64; i++) {
41                 if (mask & (1ULL << i))
42                         size++;
43         }
44
45         size *= sizeof(u64);
46
47         return size;
48 }
49
50 /**
51  * __perf_evsel__calc_id_pos - calculate id_pos.
52  * @sample_type: sample type
53  *
54  * This function returns the position of the event id (PERF_SAMPLE_ID or
55  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
56  * sample_event.
57  */
58 static int __perf_evsel__calc_id_pos(u64 sample_type)
59 {
60         int idx = 0;
61
62         if (sample_type & PERF_SAMPLE_IDENTIFIER)
63                 return 0;
64
65         if (!(sample_type & PERF_SAMPLE_ID))
66                 return -1;
67
68         if (sample_type & PERF_SAMPLE_IP)
69                 idx += 1;
70
71         if (sample_type & PERF_SAMPLE_TID)
72                 idx += 1;
73
74         if (sample_type & PERF_SAMPLE_TIME)
75                 idx += 1;
76
77         if (sample_type & PERF_SAMPLE_ADDR)
78                 idx += 1;
79
80         return idx;
81 }
82
83 /**
84  * __perf_evsel__calc_is_pos - calculate is_pos.
85  * @sample_type: sample type
86  *
87  * This function returns the position (counting backwards) of the event id
88  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
89  * sample_id_all is used there is an id sample appended to non-sample events.
90  */
91 static int __perf_evsel__calc_is_pos(u64 sample_type)
92 {
93         int idx = 1;
94
95         if (sample_type & PERF_SAMPLE_IDENTIFIER)
96                 return 1;
97
98         if (!(sample_type & PERF_SAMPLE_ID))
99                 return -1;
100
101         if (sample_type & PERF_SAMPLE_CPU)
102                 idx += 1;
103
104         if (sample_type & PERF_SAMPLE_STREAM_ID)
105                 idx += 1;
106
107         return idx;
108 }
109
110 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
111 {
112         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
113         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
114 }
115
116 void hists__init(struct hists *hists)
117 {
118         memset(hists, 0, sizeof(*hists));
119         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
120         hists->entries_in = &hists->entries_in_array[0];
121         hists->entries_collapsed = RB_ROOT;
122         hists->entries = RB_ROOT;
123         pthread_mutex_init(&hists->lock, NULL);
124 }
125
126 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
127                                   enum perf_event_sample_format bit)
128 {
129         if (!(evsel->attr.sample_type & bit)) {
130                 evsel->attr.sample_type |= bit;
131                 evsel->sample_size += sizeof(u64);
132                 perf_evsel__calc_id_pos(evsel);
133         }
134 }
135
136 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
137                                     enum perf_event_sample_format bit)
138 {
139         if (evsel->attr.sample_type & bit) {
140                 evsel->attr.sample_type &= ~bit;
141                 evsel->sample_size -= sizeof(u64);
142                 perf_evsel__calc_id_pos(evsel);
143         }
144 }
145
146 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
147                                bool can_sample_identifier)
148 {
149         if (can_sample_identifier) {
150                 perf_evsel__reset_sample_bit(evsel, ID);
151                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
152         } else {
153                 perf_evsel__set_sample_bit(evsel, ID);
154         }
155         evsel->attr.read_format |= PERF_FORMAT_ID;
156 }
157
158 void perf_evsel__init(struct perf_evsel *evsel,
159                       struct perf_event_attr *attr, int idx)
160 {
161         evsel->idx         = idx;
162         evsel->attr        = *attr;
163         evsel->leader      = evsel;
164         INIT_LIST_HEAD(&evsel->node);
165         hists__init(&evsel->hists);
166         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
167         perf_evsel__calc_id_pos(evsel);
168 }
169
170 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
171 {
172         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
173
174         if (evsel != NULL)
175                 perf_evsel__init(evsel, attr, idx);
176
177         return evsel;
178 }
179
180 struct event_format *event_format__new(const char *sys, const char *name)
181 {
182         int fd, n;
183         char *filename;
184         void *bf = NULL, *nbf;
185         size_t size = 0, alloc_size = 0;
186         struct event_format *format = NULL;
187
188         if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
189                 goto out;
190
191         fd = open(filename, O_RDONLY);
192         if (fd < 0)
193                 goto out_free_filename;
194
195         do {
196                 if (size == alloc_size) {
197                         alloc_size += BUFSIZ;
198                         nbf = realloc(bf, alloc_size);
199                         if (nbf == NULL)
200                                 goto out_free_bf;
201                         bf = nbf;
202                 }
203
204                 n = read(fd, bf + size, alloc_size - size);
205                 if (n < 0)
206                         goto out_free_bf;
207                 size += n;
208         } while (n > 0);
209
210         pevent_parse_format(&format, bf, size, sys);
211
212 out_free_bf:
213         free(bf);
214         close(fd);
215 out_free_filename:
216         free(filename);
217 out:
218         return format;
219 }
220
221 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
222 {
223         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
224
225         if (evsel != NULL) {
226                 struct perf_event_attr attr = {
227                         .type          = PERF_TYPE_TRACEPOINT,
228                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
229                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
230                 };
231
232                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
233                         goto out_free;
234
235                 evsel->tp_format = event_format__new(sys, name);
236                 if (evsel->tp_format == NULL)
237                         goto out_free;
238
239                 event_attr_init(&attr);
240                 attr.config = evsel->tp_format->id;
241                 attr.sample_period = 1;
242                 perf_evsel__init(evsel, &attr, idx);
243         }
244
245         return evsel;
246
247 out_free:
248         free(evsel->name);
249         free(evsel);
250         return NULL;
251 }
252
253 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
254         "cycles",
255         "instructions",
256         "cache-references",
257         "cache-misses",
258         "branches",
259         "branch-misses",
260         "bus-cycles",
261         "stalled-cycles-frontend",
262         "stalled-cycles-backend",
263         "ref-cycles",
264 };
265
266 static const char *__perf_evsel__hw_name(u64 config)
267 {
268         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
269                 return perf_evsel__hw_names[config];
270
271         return "unknown-hardware";
272 }
273
274 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
275 {
276         int colon = 0, r = 0;
277         struct perf_event_attr *attr = &evsel->attr;
278         bool exclude_guest_default = false;
279
280 #define MOD_PRINT(context, mod) do {                                    \
281                 if (!attr->exclude_##context) {                         \
282                         if (!colon) colon = ++r;                        \
283                         r += scnprintf(bf + r, size - r, "%c", mod);    \
284                 } } while(0)
285
286         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
287                 MOD_PRINT(kernel, 'k');
288                 MOD_PRINT(user, 'u');
289                 MOD_PRINT(hv, 'h');
290                 exclude_guest_default = true;
291         }
292
293         if (attr->precise_ip) {
294                 if (!colon)
295                         colon = ++r;
296                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
297                 exclude_guest_default = true;
298         }
299
300         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
301                 MOD_PRINT(host, 'H');
302                 MOD_PRINT(guest, 'G');
303         }
304 #undef MOD_PRINT
305         if (colon)
306                 bf[colon - 1] = ':';
307         return r;
308 }
309
310 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
311 {
312         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
313         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
314 }
315
316 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
317         "cpu-clock",
318         "task-clock",
319         "page-faults",
320         "context-switches",
321         "cpu-migrations",
322         "minor-faults",
323         "major-faults",
324         "alignment-faults",
325         "emulation-faults",
326 };
327
328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331                 return perf_evsel__sw_names[config];
332         return "unknown-software";
333 }
334
335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343         int r;
344
345         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347         if (type & HW_BREAKPOINT_R)
348                 r += scnprintf(bf + r, size - r, "r");
349
350         if (type & HW_BREAKPOINT_W)
351                 r += scnprintf(bf + r, size - r, "w");
352
353         if (type & HW_BREAKPOINT_X)
354                 r += scnprintf(bf + r, size - r, "x");
355
356         return r;
357 }
358
359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361         struct perf_event_attr *attr = &evsel->attr;
362         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367                                 [PERF_EVSEL__MAX_ALIASES] = {
368  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
369  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
370  { "LLC",       "L2",                                                   },
371  { "dTLB",      "d-tlb",        "Data-TLB",                             },
372  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
373  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
374  { "node",                                                              },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378                                    [PERF_EVSEL__MAX_ALIASES] = {
379  { "load",      "loads",        "read",                                 },
380  { "store",     "stores",       "write",                                },
381  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385                                        [PERF_EVSEL__MAX_ALIASES] = {
386  { "refs",      "Reference",    "ops",          "access",               },
387  { "misses",    "miss",                                                 },
388 };
389
390 #define C(x)            PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ      (1 << C(OP_READ))
392 #define CACHE_WRITE     (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
394 #define COP(x)          (1 << x)
395
396 /*
397  * cache operartion stat
398  * L1I : Read and prefetch only
399  * ITLB and BPU : Read-only
400  */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
404  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(ITLB)]      = (CACHE_READ),
407  [C(BPU)]       = (CACHE_READ),
408  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413         if (perf_evsel__hw_cache_stat[type] & COP(op))
414                 return true;    /* valid */
415         else
416                 return false;   /* invalid */
417 }
418
419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420                                             char *bf, size_t size)
421 {
422         if (result) {
423                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424                                  perf_evsel__hw_cache_op[op][0],
425                                  perf_evsel__hw_cache_result[result][0]);
426         }
427
428         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429                          perf_evsel__hw_cache_op[op][1]);
430 }
431
432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434         u8 op, result, type = (config >>  0) & 0xff;
435         const char *err = "unknown-ext-hardware-cache-type";
436
437         if (type > PERF_COUNT_HW_CACHE_MAX)
438                 goto out_err;
439
440         op = (config >>  8) & 0xff;
441         err = "unknown-ext-hardware-cache-op";
442         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443                 goto out_err;
444
445         result = (config >> 16) & 0xff;
446         err = "unknown-ext-hardware-cache-result";
447         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448                 goto out_err;
449
450         err = "invalid-cache";
451         if (!perf_evsel__is_cache_op_valid(type, op))
452                 goto out_err;
453
454         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456         return scnprintf(bf, size, "%s", err);
457 }
458
459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473         char bf[128];
474
475         if (evsel->name)
476                 return evsel->name;
477
478         switch (evsel->attr.type) {
479         case PERF_TYPE_RAW:
480                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481                 break;
482
483         case PERF_TYPE_HARDWARE:
484                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HW_CACHE:
488                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_SOFTWARE:
492                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_TRACEPOINT:
496                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497                 break;
498
499         case PERF_TYPE_BREAKPOINT:
500                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501                 break;
502
503         default:
504                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505                           evsel->attr.type);
506                 break;
507         }
508
509         evsel->name = strdup(bf);
510
511         return evsel->name ?: "unknown";
512 }
513
514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516         return evsel->group_name ?: "anon group";
517 }
518
519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521         int ret;
522         struct perf_evsel *pos;
523         const char *group_name = perf_evsel__group_name(evsel);
524
525         ret = scnprintf(buf, size, "%s", group_name);
526
527         ret += scnprintf(buf + ret, size - ret, " { %s",
528                          perf_evsel__name(evsel));
529
530         for_each_group_member(pos, evsel)
531                 ret += scnprintf(buf + ret, size - ret, ", %s",
532                                  perf_evsel__name(pos));
533
534         ret += scnprintf(buf + ret, size - ret, " }");
535
536         return ret;
537 }
538
539 /*
540  * The enable_on_exec/disabled value strategy:
541  *
542  *  1) For any type of traced program:
543  *    - all independent events and group leaders are disabled
544  *    - all group members are enabled
545  *
546  *     Group members are ruled by group leaders. They need to
547  *     be enabled, because the group scheduling relies on that.
548  *
549  *  2) For traced programs executed by perf:
550  *     - all independent events and group leaders have
551  *       enable_on_exec set
552  *     - we don't specifically enable or disable any event during
553  *       the record command
554  *
555  *     Independent events and group leaders are initially disabled
556  *     and get enabled by exec. Group members are ruled by group
557  *     leaders as stated in 1).
558  *
559  *  3) For traced programs attached by perf (pid/tid):
560  *     - we specifically enable or disable all events during
561  *       the record command
562  *
563  *     When attaching events to already running traced we
564  *     enable/disable events specifically, as there's no
565  *     initial traced exec call.
566  */
567 void perf_evsel__config(struct perf_evsel *evsel,
568                         struct perf_record_opts *opts)
569 {
570         struct perf_evsel *leader = evsel->leader;
571         struct perf_event_attr *attr = &evsel->attr;
572         int track = !evsel->idx; /* only the first counter needs these */
573
574         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
575         attr->inherit       = !opts->no_inherit;
576
577         perf_evsel__set_sample_bit(evsel, IP);
578         perf_evsel__set_sample_bit(evsel, TID);
579
580         if (evsel->sample_read) {
581                 perf_evsel__set_sample_bit(evsel, READ);
582
583                 /*
584                  * We need ID even in case of single event, because
585                  * PERF_SAMPLE_READ process ID specific data.
586                  */
587                 perf_evsel__set_sample_id(evsel, false);
588
589                 /*
590                  * Apply group format only if we belong to group
591                  * with more than one members.
592                  */
593                 if (leader->nr_members > 1) {
594                         attr->read_format |= PERF_FORMAT_GROUP;
595                         attr->inherit = 0;
596                 }
597         }
598
599         /*
600          * We default some events to a 1 default interval. But keep
601          * it a weak assumption overridable by the user.
602          */
603         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
604                                      opts->user_interval != ULLONG_MAX)) {
605                 if (opts->freq) {
606                         perf_evsel__set_sample_bit(evsel, PERIOD);
607                         attr->freq              = 1;
608                         attr->sample_freq       = opts->freq;
609                 } else {
610                         attr->sample_period = opts->default_interval;
611                 }
612         }
613
614         /*
615          * Disable sampling for all group members other
616          * than leader in case leader 'leads' the sampling.
617          */
618         if ((leader != evsel) && leader->sample_read) {
619                 attr->sample_freq   = 0;
620                 attr->sample_period = 0;
621         }
622
623         if (opts->no_samples)
624                 attr->sample_freq = 0;
625
626         if (opts->inherit_stat)
627                 attr->inherit_stat = 1;
628
629         if (opts->sample_address) {
630                 perf_evsel__set_sample_bit(evsel, ADDR);
631                 attr->mmap_data = track;
632         }
633
634         if (opts->call_graph) {
635                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
636
637                 if (opts->call_graph == CALLCHAIN_DWARF) {
638                         perf_evsel__set_sample_bit(evsel, REGS_USER);
639                         perf_evsel__set_sample_bit(evsel, STACK_USER);
640                         attr->sample_regs_user = PERF_REGS_MASK;
641                         attr->sample_stack_user = opts->stack_dump_size;
642                         attr->exclude_callchain_user = 1;
643                 }
644         }
645
646         if (perf_target__has_cpu(&opts->target))
647                 perf_evsel__set_sample_bit(evsel, CPU);
648
649         if (opts->period)
650                 perf_evsel__set_sample_bit(evsel, PERIOD);
651
652         if (!perf_missing_features.sample_id_all &&
653             (opts->sample_time || !opts->no_inherit ||
654              perf_target__has_cpu(&opts->target)))
655                 perf_evsel__set_sample_bit(evsel, TIME);
656
657         if (opts->raw_samples) {
658                 perf_evsel__set_sample_bit(evsel, TIME);
659                 perf_evsel__set_sample_bit(evsel, RAW);
660                 perf_evsel__set_sample_bit(evsel, CPU);
661         }
662
663         if (opts->sample_address)
664                 attr->sample_type       |= PERF_SAMPLE_DATA_SRC;
665
666         if (opts->no_delay) {
667                 attr->watermark = 0;
668                 attr->wakeup_events = 1;
669         }
670         if (opts->branch_stack) {
671                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
672                 attr->branch_sample_type = opts->branch_stack;
673         }
674
675         if (opts->sample_weight)
676                 attr->sample_type       |= PERF_SAMPLE_WEIGHT;
677
678         attr->mmap = track;
679         attr->comm = track;
680
681         /*
682          * XXX see the function comment above
683          *
684          * Disabling only independent events or group leaders,
685          * keeping group members enabled.
686          */
687         if (perf_evsel__is_group_leader(evsel))
688                 attr->disabled = 1;
689
690         /*
691          * Setting enable_on_exec for independent events and
692          * group leaders for traced executed by perf.
693          */
694         if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
695                 attr->enable_on_exec = 1;
696 }
697
698 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
699 {
700         int cpu, thread;
701         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
702
703         if (evsel->fd) {
704                 for (cpu = 0; cpu < ncpus; cpu++) {
705                         for (thread = 0; thread < nthreads; thread++) {
706                                 FD(evsel, cpu, thread) = -1;
707                         }
708                 }
709         }
710
711         return evsel->fd != NULL ? 0 : -ENOMEM;
712 }
713
714 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
715                           int ioc,  void *arg)
716 {
717         int cpu, thread;
718
719         for (cpu = 0; cpu < ncpus; cpu++) {
720                 for (thread = 0; thread < nthreads; thread++) {
721                         int fd = FD(evsel, cpu, thread),
722                             err = ioctl(fd, ioc, arg);
723
724                         if (err)
725                                 return err;
726                 }
727         }
728
729         return 0;
730 }
731
732 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
733                            const char *filter)
734 {
735         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
736                                      PERF_EVENT_IOC_SET_FILTER,
737                                      (void *)filter);
738 }
739
740 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
741 {
742         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
743                                      PERF_EVENT_IOC_ENABLE,
744                                      0);
745 }
746
747 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
748 {
749         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
750         if (evsel->sample_id == NULL)
751                 return -ENOMEM;
752
753         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
754         if (evsel->id == NULL) {
755                 xyarray__delete(evsel->sample_id);
756                 evsel->sample_id = NULL;
757                 return -ENOMEM;
758         }
759
760         return 0;
761 }
762
763 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
764 {
765         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
766                                  (ncpus * sizeof(struct perf_counts_values))));
767 }
768
769 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
770 {
771         evsel->counts = zalloc((sizeof(*evsel->counts) +
772                                 (ncpus * sizeof(struct perf_counts_values))));
773         return evsel->counts != NULL ? 0 : -ENOMEM;
774 }
775
776 void perf_evsel__free_fd(struct perf_evsel *evsel)
777 {
778         xyarray__delete(evsel->fd);
779         evsel->fd = NULL;
780 }
781
782 void perf_evsel__free_id(struct perf_evsel *evsel)
783 {
784         xyarray__delete(evsel->sample_id);
785         evsel->sample_id = NULL;
786         free(evsel->id);
787         evsel->id = NULL;
788 }
789
790 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
791 {
792         int cpu, thread;
793
794         for (cpu = 0; cpu < ncpus; cpu++)
795                 for (thread = 0; thread < nthreads; ++thread) {
796                         close(FD(evsel, cpu, thread));
797                         FD(evsel, cpu, thread) = -1;
798                 }
799 }
800
801 void perf_evsel__free_counts(struct perf_evsel *evsel)
802 {
803         free(evsel->counts);
804 }
805
806 void perf_evsel__exit(struct perf_evsel *evsel)
807 {
808         assert(list_empty(&evsel->node));
809         perf_evsel__free_fd(evsel);
810         perf_evsel__free_id(evsel);
811 }
812
813 void perf_evsel__delete(struct perf_evsel *evsel)
814 {
815         perf_evsel__exit(evsel);
816         close_cgroup(evsel->cgrp);
817         free(evsel->group_name);
818         if (evsel->tp_format)
819                 pevent_free_format(evsel->tp_format);
820         free(evsel->name);
821         free(evsel);
822 }
823
824 static inline void compute_deltas(struct perf_evsel *evsel,
825                                   int cpu,
826                                   struct perf_counts_values *count)
827 {
828         struct perf_counts_values tmp;
829
830         if (!evsel->prev_raw_counts)
831                 return;
832
833         if (cpu == -1) {
834                 tmp = evsel->prev_raw_counts->aggr;
835                 evsel->prev_raw_counts->aggr = *count;
836         } else {
837                 tmp = evsel->prev_raw_counts->cpu[cpu];
838                 evsel->prev_raw_counts->cpu[cpu] = *count;
839         }
840
841         count->val = count->val - tmp.val;
842         count->ena = count->ena - tmp.ena;
843         count->run = count->run - tmp.run;
844 }
845
846 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
847                               int cpu, int thread, bool scale)
848 {
849         struct perf_counts_values count;
850         size_t nv = scale ? 3 : 1;
851
852         if (FD(evsel, cpu, thread) < 0)
853                 return -EINVAL;
854
855         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
856                 return -ENOMEM;
857
858         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
859                 return -errno;
860
861         compute_deltas(evsel, cpu, &count);
862
863         if (scale) {
864                 if (count.run == 0)
865                         count.val = 0;
866                 else if (count.run < count.ena)
867                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
868         } else
869                 count.ena = count.run = 0;
870
871         evsel->counts->cpu[cpu] = count;
872         return 0;
873 }
874
875 int __perf_evsel__read(struct perf_evsel *evsel,
876                        int ncpus, int nthreads, bool scale)
877 {
878         size_t nv = scale ? 3 : 1;
879         int cpu, thread;
880         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
881
882         aggr->val = aggr->ena = aggr->run = 0;
883
884         for (cpu = 0; cpu < ncpus; cpu++) {
885                 for (thread = 0; thread < nthreads; thread++) {
886                         if (FD(evsel, cpu, thread) < 0)
887                                 continue;
888
889                         if (readn(FD(evsel, cpu, thread),
890                                   &count, nv * sizeof(u64)) < 0)
891                                 return -errno;
892
893                         aggr->val += count.val;
894                         if (scale) {
895                                 aggr->ena += count.ena;
896                                 aggr->run += count.run;
897                         }
898                 }
899         }
900
901         compute_deltas(evsel, -1, aggr);
902
903         evsel->counts->scaled = 0;
904         if (scale) {
905                 if (aggr->run == 0) {
906                         evsel->counts->scaled = -1;
907                         aggr->val = 0;
908                         return 0;
909                 }
910
911                 if (aggr->run < aggr->ena) {
912                         evsel->counts->scaled = 1;
913                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
914                 }
915         } else
916                 aggr->ena = aggr->run = 0;
917
918         return 0;
919 }
920
921 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
922 {
923         struct perf_evsel *leader = evsel->leader;
924         int fd;
925
926         if (perf_evsel__is_group_leader(evsel))
927                 return -1;
928
929         /*
930          * Leader must be already processed/open,
931          * if not it's a bug.
932          */
933         BUG_ON(!leader->fd);
934
935         fd = FD(leader, cpu, thread);
936         BUG_ON(fd == -1);
937
938         return fd;
939 }
940
941 #define __PRINT_ATTR(fmt, cast, field)  \
942         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
943
944 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
945 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
946 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
947 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
948
949 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
950         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
951         name1, attr->field1, name2, attr->field2)
952
953 #define PRINT_ATTR2(field1, field2) \
954         PRINT_ATTR2N(#field1, field1, #field2, field2)
955
956 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
957 {
958         size_t ret = 0;
959
960         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
961         ret += fprintf(fp, "perf_event_attr:\n");
962
963         ret += PRINT_ATTR_U32(type);
964         ret += PRINT_ATTR_U32(size);
965         ret += PRINT_ATTR_X64(config);
966         ret += PRINT_ATTR_U64(sample_period);
967         ret += PRINT_ATTR_U64(sample_freq);
968         ret += PRINT_ATTR_X64(sample_type);
969         ret += PRINT_ATTR_X64(read_format);
970
971         ret += PRINT_ATTR2(disabled, inherit);
972         ret += PRINT_ATTR2(pinned, exclusive);
973         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
974         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
975         ret += PRINT_ATTR2(mmap, comm);
976         ret += PRINT_ATTR2(freq, inherit_stat);
977         ret += PRINT_ATTR2(enable_on_exec, task);
978         ret += PRINT_ATTR2(watermark, precise_ip);
979         ret += PRINT_ATTR2(mmap_data, sample_id_all);
980         ret += PRINT_ATTR2(exclude_host, exclude_guest);
981         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
982                             "excl.callchain_user", exclude_callchain_user);
983
984         ret += PRINT_ATTR_U32(wakeup_events);
985         ret += PRINT_ATTR_U32(wakeup_watermark);
986         ret += PRINT_ATTR_X32(bp_type);
987         ret += PRINT_ATTR_X64(bp_addr);
988         ret += PRINT_ATTR_X64(config1);
989         ret += PRINT_ATTR_U64(bp_len);
990         ret += PRINT_ATTR_X64(config2);
991         ret += PRINT_ATTR_X64(branch_sample_type);
992         ret += PRINT_ATTR_X64(sample_regs_user);
993         ret += PRINT_ATTR_U32(sample_stack_user);
994
995         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
996
997         return ret;
998 }
999
1000 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1001                               struct thread_map *threads)
1002 {
1003         int cpu, thread;
1004         unsigned long flags = 0;
1005         int pid = -1, err;
1006         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1007
1008         if (evsel->fd == NULL &&
1009             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1010                 return -ENOMEM;
1011
1012         if (evsel->cgrp) {
1013                 flags = PERF_FLAG_PID_CGROUP;
1014                 pid = evsel->cgrp->fd;
1015         }
1016
1017 fallback_missing_features:
1018         if (perf_missing_features.exclude_guest)
1019                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1020 retry_sample_id:
1021         if (perf_missing_features.sample_id_all)
1022                 evsel->attr.sample_id_all = 0;
1023
1024         if (verbose >= 2)
1025                 perf_event_attr__fprintf(&evsel->attr, stderr);
1026
1027         for (cpu = 0; cpu < cpus->nr; cpu++) {
1028
1029                 for (thread = 0; thread < threads->nr; thread++) {
1030                         int group_fd;
1031
1032                         if (!evsel->cgrp)
1033                                 pid = threads->map[thread];
1034
1035                         group_fd = get_group_fd(evsel, cpu, thread);
1036 retry_open:
1037                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1038                                   pid, cpus->map[cpu], group_fd, flags);
1039
1040                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1041                                                                      pid,
1042                                                                      cpus->map[cpu],
1043                                                                      group_fd, flags);
1044                         if (FD(evsel, cpu, thread) < 0) {
1045                                 err = -errno;
1046                                 goto try_fallback;
1047                         }
1048                         set_rlimit = NO_CHANGE;
1049                 }
1050         }
1051
1052         return 0;
1053
1054 try_fallback:
1055         /*
1056          * perf stat needs between 5 and 22 fds per CPU. When we run out
1057          * of them try to increase the limits.
1058          */
1059         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1060                 struct rlimit l;
1061                 int old_errno = errno;
1062
1063                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1064                         if (set_rlimit == NO_CHANGE)
1065                                 l.rlim_cur = l.rlim_max;
1066                         else {
1067                                 l.rlim_cur = l.rlim_max + 1000;
1068                                 l.rlim_max = l.rlim_cur;
1069                         }
1070                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1071                                 set_rlimit++;
1072                                 errno = old_errno;
1073                                 goto retry_open;
1074                         }
1075                 }
1076                 errno = old_errno;
1077         }
1078
1079         if (err != -EINVAL || cpu > 0 || thread > 0)
1080                 goto out_close;
1081
1082         if (!perf_missing_features.exclude_guest &&
1083             (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1084                 perf_missing_features.exclude_guest = true;
1085                 goto fallback_missing_features;
1086         } else if (!perf_missing_features.sample_id_all) {
1087                 perf_missing_features.sample_id_all = true;
1088                 goto retry_sample_id;
1089         }
1090
1091 out_close:
1092         do {
1093                 while (--thread >= 0) {
1094                         close(FD(evsel, cpu, thread));
1095                         FD(evsel, cpu, thread) = -1;
1096                 }
1097                 thread = threads->nr;
1098         } while (--cpu >= 0);
1099         return err;
1100 }
1101
1102 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1103 {
1104         if (evsel->fd == NULL)
1105                 return;
1106
1107         perf_evsel__close_fd(evsel, ncpus, nthreads);
1108         perf_evsel__free_fd(evsel);
1109         evsel->fd = NULL;
1110 }
1111
1112 static struct {
1113         struct cpu_map map;
1114         int cpus[1];
1115 } empty_cpu_map = {
1116         .map.nr = 1,
1117         .cpus   = { -1, },
1118 };
1119
1120 static struct {
1121         struct thread_map map;
1122         int threads[1];
1123 } empty_thread_map = {
1124         .map.nr  = 1,
1125         .threads = { -1, },
1126 };
1127
1128 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1129                      struct thread_map *threads)
1130 {
1131         if (cpus == NULL) {
1132                 /* Work around old compiler warnings about strict aliasing */
1133                 cpus = &empty_cpu_map.map;
1134         }
1135
1136         if (threads == NULL)
1137                 threads = &empty_thread_map.map;
1138
1139         return __perf_evsel__open(evsel, cpus, threads);
1140 }
1141
1142 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1143                              struct cpu_map *cpus)
1144 {
1145         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1146 }
1147
1148 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1149                                 struct thread_map *threads)
1150 {
1151         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1152 }
1153
1154 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1155                                        const union perf_event *event,
1156                                        struct perf_sample *sample)
1157 {
1158         u64 type = evsel->attr.sample_type;
1159         const u64 *array = event->sample.array;
1160         bool swapped = evsel->needs_swap;
1161         union u64_swap u;
1162
1163         array += ((event->header.size -
1164                    sizeof(event->header)) / sizeof(u64)) - 1;
1165
1166         if (type & PERF_SAMPLE_IDENTIFIER) {
1167                 sample->id = *array;
1168                 array--;
1169         }
1170
1171         if (type & PERF_SAMPLE_CPU) {
1172                 u.val64 = *array;
1173                 if (swapped) {
1174                         /* undo swap of u64, then swap on individual u32s */
1175                         u.val64 = bswap_64(u.val64);
1176                         u.val32[0] = bswap_32(u.val32[0]);
1177                 }
1178
1179                 sample->cpu = u.val32[0];
1180                 array--;
1181         }
1182
1183         if (type & PERF_SAMPLE_STREAM_ID) {
1184                 sample->stream_id = *array;
1185                 array--;
1186         }
1187
1188         if (type & PERF_SAMPLE_ID) {
1189                 sample->id = *array;
1190                 array--;
1191         }
1192
1193         if (type & PERF_SAMPLE_TIME) {
1194                 sample->time = *array;
1195                 array--;
1196         }
1197
1198         if (type & PERF_SAMPLE_TID) {
1199                 u.val64 = *array;
1200                 if (swapped) {
1201                         /* undo swap of u64, then swap on individual u32s */
1202                         u.val64 = bswap_64(u.val64);
1203                         u.val32[0] = bswap_32(u.val32[0]);
1204                         u.val32[1] = bswap_32(u.val32[1]);
1205                 }
1206
1207                 sample->pid = u.val32[0];
1208                 sample->tid = u.val32[1];
1209         }
1210
1211         return 0;
1212 }
1213
1214 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1215                             u64 size)
1216 {
1217         return size > max_size || offset + size > endp;
1218 }
1219
1220 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1221         do {                                                            \
1222                 if (overflow(endp, (max_size), (offset), (size)))       \
1223                         return -EFAULT;                                 \
1224         } while (0)
1225
1226 #define OVERFLOW_CHECK_u64(offset) \
1227         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1228
1229 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1230                              struct perf_sample *data)
1231 {
1232         u64 type = evsel->attr.sample_type;
1233         bool swapped = evsel->needs_swap;
1234         const u64 *array;
1235         u16 max_size = event->header.size;
1236         const void *endp = (void *)event + max_size;
1237         u64 sz;
1238
1239         /*
1240          * used for cross-endian analysis. See git commit 65014ab3
1241          * for why this goofiness is needed.
1242          */
1243         union u64_swap u;
1244
1245         memset(data, 0, sizeof(*data));
1246         data->cpu = data->pid = data->tid = -1;
1247         data->stream_id = data->id = data->time = -1ULL;
1248         data->period = 1;
1249         data->weight = 0;
1250
1251         if (event->header.type != PERF_RECORD_SAMPLE) {
1252                 if (!evsel->attr.sample_id_all)
1253                         return 0;
1254                 return perf_evsel__parse_id_sample(evsel, event, data);
1255         }
1256
1257         array = event->sample.array;
1258
1259         /*
1260          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1261          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1262          * check the format does not go past the end of the event.
1263          */
1264         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1265                 return -EFAULT;
1266
1267         data->id = -1ULL;
1268         if (type & PERF_SAMPLE_IDENTIFIER) {
1269                 data->id = *array;
1270                 array++;
1271         }
1272
1273         if (type & PERF_SAMPLE_IP) {
1274                 data->ip = *array;
1275                 array++;
1276         }
1277
1278         if (type & PERF_SAMPLE_TID) {
1279                 u.val64 = *array;
1280                 if (swapped) {
1281                         /* undo swap of u64, then swap on individual u32s */
1282                         u.val64 = bswap_64(u.val64);
1283                         u.val32[0] = bswap_32(u.val32[0]);
1284                         u.val32[1] = bswap_32(u.val32[1]);
1285                 }
1286
1287                 data->pid = u.val32[0];
1288                 data->tid = u.val32[1];
1289                 array++;
1290         }
1291
1292         if (type & PERF_SAMPLE_TIME) {
1293                 data->time = *array;
1294                 array++;
1295         }
1296
1297         data->addr = 0;
1298         if (type & PERF_SAMPLE_ADDR) {
1299                 data->addr = *array;
1300                 array++;
1301         }
1302
1303         if (type & PERF_SAMPLE_ID) {
1304                 data->id = *array;
1305                 array++;
1306         }
1307
1308         if (type & PERF_SAMPLE_STREAM_ID) {
1309                 data->stream_id = *array;
1310                 array++;
1311         }
1312
1313         if (type & PERF_SAMPLE_CPU) {
1314
1315                 u.val64 = *array;
1316                 if (swapped) {
1317                         /* undo swap of u64, then swap on individual u32s */
1318                         u.val64 = bswap_64(u.val64);
1319                         u.val32[0] = bswap_32(u.val32[0]);
1320                 }
1321
1322                 data->cpu = u.val32[0];
1323                 array++;
1324         }
1325
1326         if (type & PERF_SAMPLE_PERIOD) {
1327                 data->period = *array;
1328                 array++;
1329         }
1330
1331         if (type & PERF_SAMPLE_READ) {
1332                 u64 read_format = evsel->attr.read_format;
1333
1334                 OVERFLOW_CHECK_u64(array);
1335                 if (read_format & PERF_FORMAT_GROUP)
1336                         data->read.group.nr = *array;
1337                 else
1338                         data->read.one.value = *array;
1339
1340                 array++;
1341
1342                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1343                         OVERFLOW_CHECK_u64(array);
1344                         data->read.time_enabled = *array;
1345                         array++;
1346                 }
1347
1348                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1349                         OVERFLOW_CHECK_u64(array);
1350                         data->read.time_running = *array;
1351                         array++;
1352                 }
1353
1354                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1355                 if (read_format & PERF_FORMAT_GROUP) {
1356                         const u64 max_group_nr = UINT64_MAX /
1357                                         sizeof(struct sample_read_value);
1358
1359                         if (data->read.group.nr > max_group_nr)
1360                                 return -EFAULT;
1361                         sz = data->read.group.nr *
1362                              sizeof(struct sample_read_value);
1363                         OVERFLOW_CHECK(array, sz, max_size);
1364                         data->read.group.values =
1365                                         (struct sample_read_value *)array;
1366                         array = (void *)array + sz;
1367                 } else {
1368                         OVERFLOW_CHECK_u64(array);
1369                         data->read.one.id = *array;
1370                         array++;
1371                 }
1372         }
1373
1374         if (type & PERF_SAMPLE_CALLCHAIN) {
1375                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1376
1377                 OVERFLOW_CHECK_u64(array);
1378                 data->callchain = (struct ip_callchain *)array++;
1379                 if (data->callchain->nr > max_callchain_nr)
1380                         return -EFAULT;
1381                 sz = data->callchain->nr * sizeof(u64);
1382                 OVERFLOW_CHECK(array, sz, max_size);
1383                 array = (void *)array + sz;
1384         }
1385
1386         if (type & PERF_SAMPLE_RAW) {
1387                 OVERFLOW_CHECK_u64(array);
1388                 u.val64 = *array;
1389                 if (WARN_ONCE(swapped,
1390                               "Endianness of raw data not corrected!\n")) {
1391                         /* undo swap of u64, then swap on individual u32s */
1392                         u.val64 = bswap_64(u.val64);
1393                         u.val32[0] = bswap_32(u.val32[0]);
1394                         u.val32[1] = bswap_32(u.val32[1]);
1395                 }
1396                 data->raw_size = u.val32[0];
1397                 array = (void *)array + sizeof(u32);
1398
1399                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1400                 data->raw_data = (void *)array;
1401                 array = (void *)array + data->raw_size;
1402         }
1403
1404         if (type & PERF_SAMPLE_BRANCH_STACK) {
1405                 const u64 max_branch_nr = UINT64_MAX /
1406                                           sizeof(struct branch_entry);
1407
1408                 OVERFLOW_CHECK_u64(array);
1409                 data->branch_stack = (struct branch_stack *)array++;
1410
1411                 if (data->branch_stack->nr > max_branch_nr)
1412                         return -EFAULT;
1413                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1414                 OVERFLOW_CHECK(array, sz, max_size);
1415                 array = (void *)array + sz;
1416         }
1417
1418         if (type & PERF_SAMPLE_REGS_USER) {
1419                 OVERFLOW_CHECK_u64(array);
1420                 data->user_regs.abi = *array;
1421                 array++;
1422
1423                 if (data->user_regs.abi) {
1424                         u64 regs_user = evsel->attr.sample_regs_user;
1425
1426                         sz = hweight_long(regs_user) * sizeof(u64);
1427                         OVERFLOW_CHECK(array, sz, max_size);
1428                         data->user_regs.regs = (u64 *)array;
1429                         array = (void *)array + sz;
1430                 }
1431         }
1432
1433         if (type & PERF_SAMPLE_STACK_USER) {
1434                 OVERFLOW_CHECK_u64(array);
1435                 sz = *array++;
1436
1437                 data->user_stack.offset = ((char *)(array - 1)
1438                                           - (char *) event);
1439
1440                 if (!sz) {
1441                         data->user_stack.size = 0;
1442                 } else {
1443                         OVERFLOW_CHECK(array, sz, max_size);
1444                         data->user_stack.data = (char *)array;
1445                         array = (void *)array + sz;
1446                         OVERFLOW_CHECK_u64(array);
1447                         data->user_stack.size = *array++;
1448                 }
1449         }
1450
1451         data->weight = 0;
1452         if (type & PERF_SAMPLE_WEIGHT) {
1453                 OVERFLOW_CHECK_u64(array);
1454                 data->weight = *array;
1455                 array++;
1456         }
1457
1458         data->data_src = PERF_MEM_DATA_SRC_NONE;
1459         if (type & PERF_SAMPLE_DATA_SRC) {
1460                 OVERFLOW_CHECK_u64(array);
1461                 data->data_src = *array;
1462                 array++;
1463         }
1464
1465         return 0;
1466 }
1467
1468 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1469                                      u64 sample_regs_user, u64 read_format)
1470 {
1471         size_t sz, result = sizeof(struct sample_event);
1472
1473         if (type & PERF_SAMPLE_IDENTIFIER)
1474                 result += sizeof(u64);
1475
1476         if (type & PERF_SAMPLE_IP)
1477                 result += sizeof(u64);
1478
1479         if (type & PERF_SAMPLE_TID)
1480                 result += sizeof(u64);
1481
1482         if (type & PERF_SAMPLE_TIME)
1483                 result += sizeof(u64);
1484
1485         if (type & PERF_SAMPLE_ADDR)
1486                 result += sizeof(u64);
1487
1488         if (type & PERF_SAMPLE_ID)
1489                 result += sizeof(u64);
1490
1491         if (type & PERF_SAMPLE_STREAM_ID)
1492                 result += sizeof(u64);
1493
1494         if (type & PERF_SAMPLE_CPU)
1495                 result += sizeof(u64);
1496
1497         if (type & PERF_SAMPLE_PERIOD)
1498                 result += sizeof(u64);
1499
1500         if (type & PERF_SAMPLE_READ) {
1501                 result += sizeof(u64);
1502                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1503                         result += sizeof(u64);
1504                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1505                         result += sizeof(u64);
1506                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1507                 if (read_format & PERF_FORMAT_GROUP) {
1508                         sz = sample->read.group.nr *
1509                              sizeof(struct sample_read_value);
1510                         result += sz;
1511                 } else {
1512                         result += sizeof(u64);
1513                 }
1514         }
1515
1516         if (type & PERF_SAMPLE_CALLCHAIN) {
1517                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1518                 result += sz;
1519         }
1520
1521         if (type & PERF_SAMPLE_RAW) {
1522                 result += sizeof(u32);
1523                 result += sample->raw_size;
1524         }
1525
1526         if (type & PERF_SAMPLE_BRANCH_STACK) {
1527                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1528                 sz += sizeof(u64);
1529                 result += sz;
1530         }
1531
1532         if (type & PERF_SAMPLE_REGS_USER) {
1533                 if (sample->user_regs.abi) {
1534                         result += sizeof(u64);
1535                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1536                         result += sz;
1537                 } else {
1538                         result += sizeof(u64);
1539                 }
1540         }
1541
1542         if (type & PERF_SAMPLE_STACK_USER) {
1543                 sz = sample->user_stack.size;
1544                 result += sizeof(u64);
1545                 if (sz) {
1546                         result += sz;
1547                         result += sizeof(u64);
1548                 }
1549         }
1550
1551         if (type & PERF_SAMPLE_WEIGHT)
1552                 result += sizeof(u64);
1553
1554         if (type & PERF_SAMPLE_DATA_SRC)
1555                 result += sizeof(u64);
1556
1557         return result;
1558 }
1559
1560 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1561                                   u64 sample_regs_user, u64 read_format,
1562                                   const struct perf_sample *sample,
1563                                   bool swapped)
1564 {
1565         u64 *array;
1566         size_t sz;
1567         /*
1568          * used for cross-endian analysis. See git commit 65014ab3
1569          * for why this goofiness is needed.
1570          */
1571         union u64_swap u;
1572
1573         array = event->sample.array;
1574
1575         if (type & PERF_SAMPLE_IDENTIFIER) {
1576                 *array = sample->id;
1577                 array++;
1578         }
1579
1580         if (type & PERF_SAMPLE_IP) {
1581                 *array = sample->ip;
1582                 array++;
1583         }
1584
1585         if (type & PERF_SAMPLE_TID) {
1586                 u.val32[0] = sample->pid;
1587                 u.val32[1] = sample->tid;
1588                 if (swapped) {
1589                         /*
1590                          * Inverse of what is done in perf_evsel__parse_sample
1591                          */
1592                         u.val32[0] = bswap_32(u.val32[0]);
1593                         u.val32[1] = bswap_32(u.val32[1]);
1594                         u.val64 = bswap_64(u.val64);
1595                 }
1596
1597                 *array = u.val64;
1598                 array++;
1599         }
1600
1601         if (type & PERF_SAMPLE_TIME) {
1602                 *array = sample->time;
1603                 array++;
1604         }
1605
1606         if (type & PERF_SAMPLE_ADDR) {
1607                 *array = sample->addr;
1608                 array++;
1609         }
1610
1611         if (type & PERF_SAMPLE_ID) {
1612                 *array = sample->id;
1613                 array++;
1614         }
1615
1616         if (type & PERF_SAMPLE_STREAM_ID) {
1617                 *array = sample->stream_id;
1618                 array++;
1619         }
1620
1621         if (type & PERF_SAMPLE_CPU) {
1622                 u.val32[0] = sample->cpu;
1623                 if (swapped) {
1624                         /*
1625                          * Inverse of what is done in perf_evsel__parse_sample
1626                          */
1627                         u.val32[0] = bswap_32(u.val32[0]);
1628                         u.val64 = bswap_64(u.val64);
1629                 }
1630                 *array = u.val64;
1631                 array++;
1632         }
1633
1634         if (type & PERF_SAMPLE_PERIOD) {
1635                 *array = sample->period;
1636                 array++;
1637         }
1638
1639         if (type & PERF_SAMPLE_READ) {
1640                 if (read_format & PERF_FORMAT_GROUP)
1641                         *array = sample->read.group.nr;
1642                 else
1643                         *array = sample->read.one.value;
1644                 array++;
1645
1646                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1647                         *array = sample->read.time_enabled;
1648                         array++;
1649                 }
1650
1651                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1652                         *array = sample->read.time_running;
1653                         array++;
1654                 }
1655
1656                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1657                 if (read_format & PERF_FORMAT_GROUP) {
1658                         sz = sample->read.group.nr *
1659                              sizeof(struct sample_read_value);
1660                         memcpy(array, sample->read.group.values, sz);
1661                         array = (void *)array + sz;
1662                 } else {
1663                         *array = sample->read.one.id;
1664                         array++;
1665                 }
1666         }
1667
1668         if (type & PERF_SAMPLE_CALLCHAIN) {
1669                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1670                 memcpy(array, sample->callchain, sz);
1671                 array = (void *)array + sz;
1672         }
1673
1674         if (type & PERF_SAMPLE_RAW) {
1675                 u.val32[0] = sample->raw_size;
1676                 if (WARN_ONCE(swapped,
1677                               "Endianness of raw data not corrected!\n")) {
1678                         /*
1679                          * Inverse of what is done in perf_evsel__parse_sample
1680                          */
1681                         u.val32[0] = bswap_32(u.val32[0]);
1682                         u.val32[1] = bswap_32(u.val32[1]);
1683                         u.val64 = bswap_64(u.val64);
1684                 }
1685                 *array = u.val64;
1686                 array = (void *)array + sizeof(u32);
1687
1688                 memcpy(array, sample->raw_data, sample->raw_size);
1689                 array = (void *)array + sample->raw_size;
1690         }
1691
1692         if (type & PERF_SAMPLE_BRANCH_STACK) {
1693                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1694                 sz += sizeof(u64);
1695                 memcpy(array, sample->branch_stack, sz);
1696                 array = (void *)array + sz;
1697         }
1698
1699         if (type & PERF_SAMPLE_REGS_USER) {
1700                 if (sample->user_regs.abi) {
1701                         *array++ = sample->user_regs.abi;
1702                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1703                         memcpy(array, sample->user_regs.regs, sz);
1704                         array = (void *)array + sz;
1705                 } else {
1706                         *array++ = 0;
1707                 }
1708         }
1709
1710         if (type & PERF_SAMPLE_STACK_USER) {
1711                 sz = sample->user_stack.size;
1712                 *array++ = sz;
1713                 if (sz) {
1714                         memcpy(array, sample->user_stack.data, sz);
1715                         array = (void *)array + sz;
1716                         *array++ = sz;
1717                 }
1718         }
1719
1720         if (type & PERF_SAMPLE_WEIGHT) {
1721                 *array = sample->weight;
1722                 array++;
1723         }
1724
1725         if (type & PERF_SAMPLE_DATA_SRC) {
1726                 *array = sample->data_src;
1727                 array++;
1728         }
1729
1730         return 0;
1731 }
1732
1733 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1734 {
1735         return pevent_find_field(evsel->tp_format, name);
1736 }
1737
1738 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1739                          const char *name)
1740 {
1741         struct format_field *field = perf_evsel__field(evsel, name);
1742         int offset;
1743
1744         if (!field)
1745                 return NULL;
1746
1747         offset = field->offset;
1748
1749         if (field->flags & FIELD_IS_DYNAMIC) {
1750                 offset = *(int *)(sample->raw_data + field->offset);
1751                 offset &= 0xffff;
1752         }
1753
1754         return sample->raw_data + offset;
1755 }
1756
1757 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1758                        const char *name)
1759 {
1760         struct format_field *field = perf_evsel__field(evsel, name);
1761         void *ptr;
1762         u64 value;
1763
1764         if (!field)
1765                 return 0;
1766
1767         ptr = sample->raw_data + field->offset;
1768
1769         switch (field->size) {
1770         case 1:
1771                 return *(u8 *)ptr;
1772         case 2:
1773                 value = *(u16 *)ptr;
1774                 break;
1775         case 4:
1776                 value = *(u32 *)ptr;
1777                 break;
1778         case 8:
1779                 value = *(u64 *)ptr;
1780                 break;
1781         default:
1782                 return 0;
1783         }
1784
1785         if (!evsel->needs_swap)
1786                 return value;
1787
1788         switch (field->size) {
1789         case 2:
1790                 return bswap_16(value);
1791         case 4:
1792                 return bswap_32(value);
1793         case 8:
1794                 return bswap_64(value);
1795         default:
1796                 return 0;
1797         }
1798
1799         return 0;
1800 }
1801
1802 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1803 {
1804         va_list args;
1805         int ret = 0;
1806
1807         if (!*first) {
1808                 ret += fprintf(fp, ",");
1809         } else {
1810                 ret += fprintf(fp, ":");
1811                 *first = false;
1812         }
1813
1814         va_start(args, fmt);
1815         ret += vfprintf(fp, fmt, args);
1816         va_end(args);
1817         return ret;
1818 }
1819
1820 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1821 {
1822         if (value == 0)
1823                 return 0;
1824
1825         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1826 }
1827
1828 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1829
1830 struct bit_names {
1831         int bit;
1832         const char *name;
1833 };
1834
1835 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1836                          struct bit_names *bits, bool *first)
1837 {
1838         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1839         bool first_bit = true;
1840
1841         do {
1842                 if (value & bits[i].bit) {
1843                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1844                         first_bit = false;
1845                 }
1846         } while (bits[++i].name != NULL);
1847
1848         return printed;
1849 }
1850
1851 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1852 {
1853 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1854         struct bit_names bits[] = {
1855                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1856                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1857                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1858                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1859                 bit_name(IDENTIFIER),
1860                 { .name = NULL, }
1861         };
1862 #undef bit_name
1863         return bits__fprintf(fp, "sample_type", value, bits, first);
1864 }
1865
1866 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1867 {
1868 #define bit_name(n) { PERF_FORMAT_##n, #n }
1869         struct bit_names bits[] = {
1870                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1871                 bit_name(ID), bit_name(GROUP),
1872                 { .name = NULL, }
1873         };
1874 #undef bit_name
1875         return bits__fprintf(fp, "read_format", value, bits, first);
1876 }
1877
1878 int perf_evsel__fprintf(struct perf_evsel *evsel,
1879                         struct perf_attr_details *details, FILE *fp)
1880 {
1881         bool first = true;
1882         int printed = 0;
1883
1884         if (details->event_group) {
1885                 struct perf_evsel *pos;
1886
1887                 if (!perf_evsel__is_group_leader(evsel))
1888                         return 0;
1889
1890                 if (evsel->nr_members > 1)
1891                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1892
1893                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1894                 for_each_group_member(pos, evsel)
1895                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1896
1897                 if (evsel->nr_members > 1)
1898                         printed += fprintf(fp, "}");
1899                 goto out;
1900         }
1901
1902         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1903
1904         if (details->verbose || details->freq) {
1905                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1906                                          (u64)evsel->attr.sample_freq);
1907         }
1908
1909         if (details->verbose) {
1910                 if_print(type);
1911                 if_print(config);
1912                 if_print(config1);
1913                 if_print(config2);
1914                 if_print(size);
1915                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1916                 if (evsel->attr.read_format)
1917                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1918                 if_print(disabled);
1919                 if_print(inherit);
1920                 if_print(pinned);
1921                 if_print(exclusive);
1922                 if_print(exclude_user);
1923                 if_print(exclude_kernel);
1924                 if_print(exclude_hv);
1925                 if_print(exclude_idle);
1926                 if_print(mmap);
1927                 if_print(comm);
1928                 if_print(freq);
1929                 if_print(inherit_stat);
1930                 if_print(enable_on_exec);
1931                 if_print(task);
1932                 if_print(watermark);
1933                 if_print(precise_ip);
1934                 if_print(mmap_data);
1935                 if_print(sample_id_all);
1936                 if_print(exclude_host);
1937                 if_print(exclude_guest);
1938                 if_print(__reserved_1);
1939                 if_print(wakeup_events);
1940                 if_print(bp_type);
1941                 if_print(branch_sample_type);
1942         }
1943 out:
1944         fputc('\n', fp);
1945         return ++printed;
1946 }
1947
1948 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1949                           char *msg, size_t msgsize)
1950 {
1951         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1952             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1953             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1954                 /*
1955                  * If it's cycles then fall back to hrtimer based
1956                  * cpu-clock-tick sw counter, which is always available even if
1957                  * no PMU support.
1958                  *
1959                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1960                  * b0a873e).
1961                  */
1962                 scnprintf(msg, msgsize, "%s",
1963 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1964
1965                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1966                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1967
1968                 free(evsel->name);
1969                 evsel->name = NULL;
1970                 return true;
1971         }
1972
1973         return false;
1974 }
1975
1976 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1977                               struct perf_target *target,
1978                               int err, char *msg, size_t size)
1979 {
1980         switch (err) {
1981         case EPERM:
1982         case EACCES:
1983                 return scnprintf(msg, size,
1984                  "You may not have permission to collect %sstats.\n"
1985                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1986                  " -1 - Not paranoid at all\n"
1987                  "  0 - Disallow raw tracepoint access for unpriv\n"
1988                  "  1 - Disallow cpu events for unpriv\n"
1989                  "  2 - Disallow kernel profiling for unpriv",
1990                                  target->system_wide ? "system-wide " : "");
1991         case ENOENT:
1992                 return scnprintf(msg, size, "The %s event is not supported.",
1993                                  perf_evsel__name(evsel));
1994         case EMFILE:
1995                 return scnprintf(msg, size, "%s",
1996                          "Too many events are opened.\n"
1997                          "Try again after reducing the number of events.");
1998         case ENODEV:
1999                 if (target->cpu_list)
2000                         return scnprintf(msg, size, "%s",
2001          "No such device - did you specify an out-of-range profile CPU?\n");
2002                 break;
2003         case EOPNOTSUPP:
2004                 if (evsel->attr.precise_ip)
2005                         return scnprintf(msg, size, "%s",
2006         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2007 #if defined(__i386__) || defined(__x86_64__)
2008                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2009                         return scnprintf(msg, size, "%s",
2010         "No hardware sampling interrupt available.\n"
2011         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2012 #endif
2013                 break;
2014         default:
2015                 break;
2016         }
2017
2018         return scnprintf(msg, size,
2019         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2020         "/bin/dmesg may provide additional information.\n"
2021         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2022                          err, strerror(err), perf_evsel__name(evsel));
2023 }