]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/header.c
Merge remote-tracking branches 'regulator/topic/helpers', 'regulator/topic/hi655x...
[karo-tx-linux.git] / tools / perf / util / header.c
1 #include "util.h"
2 #include <sys/types.h>
3 #include <byteswap.h>
4 #include <unistd.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <linux/list.h>
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <sys/utsname.h>
11
12 #include "evlist.h"
13 #include "evsel.h"
14 #include "header.h"
15 #include "../perf.h"
16 #include "trace-event.h"
17 #include "session.h"
18 #include "symbol.h"
19 #include "debug.h"
20 #include "cpumap.h"
21 #include "pmu.h"
22 #include "vdso.h"
23 #include "strbuf.h"
24 #include "build-id.h"
25 #include "data.h"
26 #include <api/fs/fs.h>
27 #include "asm/bug.h"
28
29 /*
30  * magic2 = "PERFILE2"
31  * must be a numerical value to let the endianness
32  * determine the memory layout. That way we are able
33  * to detect endianness when reading the perf.data file
34  * back.
35  *
36  * we check for legacy (PERFFILE) format.
37  */
38 static const char *__perf_magic1 = "PERFFILE";
39 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
40 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
41
42 #define PERF_MAGIC      __perf_magic2
43
44 const char perf_version_string[] = PERF_VERSION;
45
46 struct perf_file_attr {
47         struct perf_event_attr  attr;
48         struct perf_file_section        ids;
49 };
50
51 void perf_header__set_feat(struct perf_header *header, int feat)
52 {
53         set_bit(feat, header->adds_features);
54 }
55
56 void perf_header__clear_feat(struct perf_header *header, int feat)
57 {
58         clear_bit(feat, header->adds_features);
59 }
60
61 bool perf_header__has_feat(const struct perf_header *header, int feat)
62 {
63         return test_bit(feat, header->adds_features);
64 }
65
66 static int do_write(int fd, const void *buf, size_t size)
67 {
68         while (size) {
69                 int ret = write(fd, buf, size);
70
71                 if (ret < 0)
72                         return -errno;
73
74                 size -= ret;
75                 buf += ret;
76         }
77
78         return 0;
79 }
80
81 int write_padded(int fd, const void *bf, size_t count, size_t count_aligned)
82 {
83         static const char zero_buf[NAME_ALIGN];
84         int err = do_write(fd, bf, count);
85
86         if (!err)
87                 err = do_write(fd, zero_buf, count_aligned - count);
88
89         return err;
90 }
91
92 #define string_size(str)                                                \
93         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
94
95 static int do_write_string(int fd, const char *str)
96 {
97         u32 len, olen;
98         int ret;
99
100         olen = strlen(str) + 1;
101         len = PERF_ALIGN(olen, NAME_ALIGN);
102
103         /* write len, incl. \0 */
104         ret = do_write(fd, &len, sizeof(len));
105         if (ret < 0)
106                 return ret;
107
108         return write_padded(fd, str, olen, len);
109 }
110
111 static char *do_read_string(int fd, struct perf_header *ph)
112 {
113         ssize_t sz, ret;
114         u32 len;
115         char *buf;
116
117         sz = readn(fd, &len, sizeof(len));
118         if (sz < (ssize_t)sizeof(len))
119                 return NULL;
120
121         if (ph->needs_swap)
122                 len = bswap_32(len);
123
124         buf = malloc(len);
125         if (!buf)
126                 return NULL;
127
128         ret = readn(fd, buf, len);
129         if (ret == (ssize_t)len) {
130                 /*
131                  * strings are padded by zeroes
132                  * thus the actual strlen of buf
133                  * may be less than len
134                  */
135                 return buf;
136         }
137
138         free(buf);
139         return NULL;
140 }
141
142 static int write_tracing_data(int fd, struct perf_header *h __maybe_unused,
143                             struct perf_evlist *evlist)
144 {
145         return read_tracing_data(fd, &evlist->entries);
146 }
147
148
149 static int write_build_id(int fd, struct perf_header *h,
150                           struct perf_evlist *evlist __maybe_unused)
151 {
152         struct perf_session *session;
153         int err;
154
155         session = container_of(h, struct perf_session, header);
156
157         if (!perf_session__read_build_ids(session, true))
158                 return -1;
159
160         err = perf_session__write_buildid_table(session, fd);
161         if (err < 0) {
162                 pr_debug("failed to write buildid table\n");
163                 return err;
164         }
165         perf_session__cache_build_ids(session);
166
167         return 0;
168 }
169
170 static int write_hostname(int fd, struct perf_header *h __maybe_unused,
171                           struct perf_evlist *evlist __maybe_unused)
172 {
173         struct utsname uts;
174         int ret;
175
176         ret = uname(&uts);
177         if (ret < 0)
178                 return -1;
179
180         return do_write_string(fd, uts.nodename);
181 }
182
183 static int write_osrelease(int fd, struct perf_header *h __maybe_unused,
184                            struct perf_evlist *evlist __maybe_unused)
185 {
186         struct utsname uts;
187         int ret;
188
189         ret = uname(&uts);
190         if (ret < 0)
191                 return -1;
192
193         return do_write_string(fd, uts.release);
194 }
195
196 static int write_arch(int fd, struct perf_header *h __maybe_unused,
197                       struct perf_evlist *evlist __maybe_unused)
198 {
199         struct utsname uts;
200         int ret;
201
202         ret = uname(&uts);
203         if (ret < 0)
204                 return -1;
205
206         return do_write_string(fd, uts.machine);
207 }
208
209 static int write_version(int fd, struct perf_header *h __maybe_unused,
210                          struct perf_evlist *evlist __maybe_unused)
211 {
212         return do_write_string(fd, perf_version_string);
213 }
214
215 static int __write_cpudesc(int fd, const char *cpuinfo_proc)
216 {
217         FILE *file;
218         char *buf = NULL;
219         char *s, *p;
220         const char *search = cpuinfo_proc;
221         size_t len = 0;
222         int ret = -1;
223
224         if (!search)
225                 return -1;
226
227         file = fopen("/proc/cpuinfo", "r");
228         if (!file)
229                 return -1;
230
231         while (getline(&buf, &len, file) > 0) {
232                 ret = strncmp(buf, search, strlen(search));
233                 if (!ret)
234                         break;
235         }
236
237         if (ret) {
238                 ret = -1;
239                 goto done;
240         }
241
242         s = buf;
243
244         p = strchr(buf, ':');
245         if (p && *(p+1) == ' ' && *(p+2))
246                 s = p + 2;
247         p = strchr(s, '\n');
248         if (p)
249                 *p = '\0';
250
251         /* squash extra space characters (branding string) */
252         p = s;
253         while (*p) {
254                 if (isspace(*p)) {
255                         char *r = p + 1;
256                         char *q = r;
257                         *p = ' ';
258                         while (*q && isspace(*q))
259                                 q++;
260                         if (q != (p+1))
261                                 while ((*r++ = *q++));
262                 }
263                 p++;
264         }
265         ret = do_write_string(fd, s);
266 done:
267         free(buf);
268         fclose(file);
269         return ret;
270 }
271
272 static int write_cpudesc(int fd, struct perf_header *h __maybe_unused,
273                        struct perf_evlist *evlist __maybe_unused)
274 {
275 #ifndef CPUINFO_PROC
276 #define CPUINFO_PROC {"model name", }
277 #endif
278         const char *cpuinfo_procs[] = CPUINFO_PROC;
279         unsigned int i;
280
281         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
282                 int ret;
283                 ret = __write_cpudesc(fd, cpuinfo_procs[i]);
284                 if (ret >= 0)
285                         return ret;
286         }
287         return -1;
288 }
289
290
291 static int write_nrcpus(int fd, struct perf_header *h __maybe_unused,
292                         struct perf_evlist *evlist __maybe_unused)
293 {
294         long nr;
295         u32 nrc, nra;
296         int ret;
297
298         nrc = cpu__max_present_cpu();
299
300         nr = sysconf(_SC_NPROCESSORS_ONLN);
301         if (nr < 0)
302                 return -1;
303
304         nra = (u32)(nr & UINT_MAX);
305
306         ret = do_write(fd, &nrc, sizeof(nrc));
307         if (ret < 0)
308                 return ret;
309
310         return do_write(fd, &nra, sizeof(nra));
311 }
312
313 static int write_event_desc(int fd, struct perf_header *h __maybe_unused,
314                             struct perf_evlist *evlist)
315 {
316         struct perf_evsel *evsel;
317         u32 nre, nri, sz;
318         int ret;
319
320         nre = evlist->nr_entries;
321
322         /*
323          * write number of events
324          */
325         ret = do_write(fd, &nre, sizeof(nre));
326         if (ret < 0)
327                 return ret;
328
329         /*
330          * size of perf_event_attr struct
331          */
332         sz = (u32)sizeof(evsel->attr);
333         ret = do_write(fd, &sz, sizeof(sz));
334         if (ret < 0)
335                 return ret;
336
337         evlist__for_each_entry(evlist, evsel) {
338                 ret = do_write(fd, &evsel->attr, sz);
339                 if (ret < 0)
340                         return ret;
341                 /*
342                  * write number of unique id per event
343                  * there is one id per instance of an event
344                  *
345                  * copy into an nri to be independent of the
346                  * type of ids,
347                  */
348                 nri = evsel->ids;
349                 ret = do_write(fd, &nri, sizeof(nri));
350                 if (ret < 0)
351                         return ret;
352
353                 /*
354                  * write event string as passed on cmdline
355                  */
356                 ret = do_write_string(fd, perf_evsel__name(evsel));
357                 if (ret < 0)
358                         return ret;
359                 /*
360                  * write unique ids for this event
361                  */
362                 ret = do_write(fd, evsel->id, evsel->ids * sizeof(u64));
363                 if (ret < 0)
364                         return ret;
365         }
366         return 0;
367 }
368
369 static int write_cmdline(int fd, struct perf_header *h __maybe_unused,
370                          struct perf_evlist *evlist __maybe_unused)
371 {
372         char buf[MAXPATHLEN];
373         char proc[32];
374         u32 n;
375         int i, ret;
376
377         /*
378          * actual atual path to perf binary
379          */
380         sprintf(proc, "/proc/%d/exe", getpid());
381         ret = readlink(proc, buf, sizeof(buf));
382         if (ret <= 0)
383                 return -1;
384
385         /* readlink() does not add null termination */
386         buf[ret] = '\0';
387
388         /* account for binary path */
389         n = perf_env.nr_cmdline + 1;
390
391         ret = do_write(fd, &n, sizeof(n));
392         if (ret < 0)
393                 return ret;
394
395         ret = do_write_string(fd, buf);
396         if (ret < 0)
397                 return ret;
398
399         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
400                 ret = do_write_string(fd, perf_env.cmdline_argv[i]);
401                 if (ret < 0)
402                         return ret;
403         }
404         return 0;
405 }
406
407 #define CORE_SIB_FMT \
408         "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
409 #define THRD_SIB_FMT \
410         "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
411
412 struct cpu_topo {
413         u32 cpu_nr;
414         u32 core_sib;
415         u32 thread_sib;
416         char **core_siblings;
417         char **thread_siblings;
418 };
419
420 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
421 {
422         FILE *fp;
423         char filename[MAXPATHLEN];
424         char *buf = NULL, *p;
425         size_t len = 0;
426         ssize_t sret;
427         u32 i = 0;
428         int ret = -1;
429
430         sprintf(filename, CORE_SIB_FMT, cpu);
431         fp = fopen(filename, "r");
432         if (!fp)
433                 goto try_threads;
434
435         sret = getline(&buf, &len, fp);
436         fclose(fp);
437         if (sret <= 0)
438                 goto try_threads;
439
440         p = strchr(buf, '\n');
441         if (p)
442                 *p = '\0';
443
444         for (i = 0; i < tp->core_sib; i++) {
445                 if (!strcmp(buf, tp->core_siblings[i]))
446                         break;
447         }
448         if (i == tp->core_sib) {
449                 tp->core_siblings[i] = buf;
450                 tp->core_sib++;
451                 buf = NULL;
452                 len = 0;
453         }
454         ret = 0;
455
456 try_threads:
457         sprintf(filename, THRD_SIB_FMT, cpu);
458         fp = fopen(filename, "r");
459         if (!fp)
460                 goto done;
461
462         if (getline(&buf, &len, fp) <= 0)
463                 goto done;
464
465         p = strchr(buf, '\n');
466         if (p)
467                 *p = '\0';
468
469         for (i = 0; i < tp->thread_sib; i++) {
470                 if (!strcmp(buf, tp->thread_siblings[i]))
471                         break;
472         }
473         if (i == tp->thread_sib) {
474                 tp->thread_siblings[i] = buf;
475                 tp->thread_sib++;
476                 buf = NULL;
477         }
478         ret = 0;
479 done:
480         if(fp)
481                 fclose(fp);
482         free(buf);
483         return ret;
484 }
485
486 static void free_cpu_topo(struct cpu_topo *tp)
487 {
488         u32 i;
489
490         if (!tp)
491                 return;
492
493         for (i = 0 ; i < tp->core_sib; i++)
494                 zfree(&tp->core_siblings[i]);
495
496         for (i = 0 ; i < tp->thread_sib; i++)
497                 zfree(&tp->thread_siblings[i]);
498
499         free(tp);
500 }
501
502 static struct cpu_topo *build_cpu_topology(void)
503 {
504         struct cpu_topo *tp = NULL;
505         void *addr;
506         u32 nr, i;
507         size_t sz;
508         long ncpus;
509         int ret = -1;
510         struct cpu_map *map;
511
512         ncpus = cpu__max_present_cpu();
513
514         /* build online CPU map */
515         map = cpu_map__new(NULL);
516         if (map == NULL) {
517                 pr_debug("failed to get system cpumap\n");
518                 return NULL;
519         }
520
521         nr = (u32)(ncpus & UINT_MAX);
522
523         sz = nr * sizeof(char *);
524         addr = calloc(1, sizeof(*tp) + 2 * sz);
525         if (!addr)
526                 goto out_free;
527
528         tp = addr;
529         tp->cpu_nr = nr;
530         addr += sizeof(*tp);
531         tp->core_siblings = addr;
532         addr += sz;
533         tp->thread_siblings = addr;
534
535         for (i = 0; i < nr; i++) {
536                 if (!cpu_map__has(map, i))
537                         continue;
538
539                 ret = build_cpu_topo(tp, i);
540                 if (ret < 0)
541                         break;
542         }
543
544 out_free:
545         cpu_map__put(map);
546         if (ret) {
547                 free_cpu_topo(tp);
548                 tp = NULL;
549         }
550         return tp;
551 }
552
553 static int write_cpu_topology(int fd, struct perf_header *h __maybe_unused,
554                           struct perf_evlist *evlist __maybe_unused)
555 {
556         struct cpu_topo *tp;
557         u32 i;
558         int ret, j;
559
560         tp = build_cpu_topology();
561         if (!tp)
562                 return -1;
563
564         ret = do_write(fd, &tp->core_sib, sizeof(tp->core_sib));
565         if (ret < 0)
566                 goto done;
567
568         for (i = 0; i < tp->core_sib; i++) {
569                 ret = do_write_string(fd, tp->core_siblings[i]);
570                 if (ret < 0)
571                         goto done;
572         }
573         ret = do_write(fd, &tp->thread_sib, sizeof(tp->thread_sib));
574         if (ret < 0)
575                 goto done;
576
577         for (i = 0; i < tp->thread_sib; i++) {
578                 ret = do_write_string(fd, tp->thread_siblings[i]);
579                 if (ret < 0)
580                         break;
581         }
582
583         ret = perf_env__read_cpu_topology_map(&perf_env);
584         if (ret < 0)
585                 goto done;
586
587         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
588                 ret = do_write(fd, &perf_env.cpu[j].core_id,
589                                sizeof(perf_env.cpu[j].core_id));
590                 if (ret < 0)
591                         return ret;
592                 ret = do_write(fd, &perf_env.cpu[j].socket_id,
593                                sizeof(perf_env.cpu[j].socket_id));
594                 if (ret < 0)
595                         return ret;
596         }
597 done:
598         free_cpu_topo(tp);
599         return ret;
600 }
601
602
603
604 static int write_total_mem(int fd, struct perf_header *h __maybe_unused,
605                           struct perf_evlist *evlist __maybe_unused)
606 {
607         char *buf = NULL;
608         FILE *fp;
609         size_t len = 0;
610         int ret = -1, n;
611         uint64_t mem;
612
613         fp = fopen("/proc/meminfo", "r");
614         if (!fp)
615                 return -1;
616
617         while (getline(&buf, &len, fp) > 0) {
618                 ret = strncmp(buf, "MemTotal:", 9);
619                 if (!ret)
620                         break;
621         }
622         if (!ret) {
623                 n = sscanf(buf, "%*s %"PRIu64, &mem);
624                 if (n == 1)
625                         ret = do_write(fd, &mem, sizeof(mem));
626         } else
627                 ret = -1;
628         free(buf);
629         fclose(fp);
630         return ret;
631 }
632
633 static int write_topo_node(int fd, int node)
634 {
635         char str[MAXPATHLEN];
636         char field[32];
637         char *buf = NULL, *p;
638         size_t len = 0;
639         FILE *fp;
640         u64 mem_total, mem_free, mem;
641         int ret = -1;
642
643         sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
644         fp = fopen(str, "r");
645         if (!fp)
646                 return -1;
647
648         while (getline(&buf, &len, fp) > 0) {
649                 /* skip over invalid lines */
650                 if (!strchr(buf, ':'))
651                         continue;
652                 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
653                         goto done;
654                 if (!strcmp(field, "MemTotal:"))
655                         mem_total = mem;
656                 if (!strcmp(field, "MemFree:"))
657                         mem_free = mem;
658         }
659
660         fclose(fp);
661         fp = NULL;
662
663         ret = do_write(fd, &mem_total, sizeof(u64));
664         if (ret)
665                 goto done;
666
667         ret = do_write(fd, &mem_free, sizeof(u64));
668         if (ret)
669                 goto done;
670
671         ret = -1;
672         sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
673
674         fp = fopen(str, "r");
675         if (!fp)
676                 goto done;
677
678         if (getline(&buf, &len, fp) <= 0)
679                 goto done;
680
681         p = strchr(buf, '\n');
682         if (p)
683                 *p = '\0';
684
685         ret = do_write_string(fd, buf);
686 done:
687         free(buf);
688         if (fp)
689                 fclose(fp);
690         return ret;
691 }
692
693 static int write_numa_topology(int fd, struct perf_header *h __maybe_unused,
694                           struct perf_evlist *evlist __maybe_unused)
695 {
696         char *buf = NULL;
697         size_t len = 0;
698         FILE *fp;
699         struct cpu_map *node_map = NULL;
700         char *c;
701         u32 nr, i, j;
702         int ret = -1;
703
704         fp = fopen("/sys/devices/system/node/online", "r");
705         if (!fp)
706                 return -1;
707
708         if (getline(&buf, &len, fp) <= 0)
709                 goto done;
710
711         c = strchr(buf, '\n');
712         if (c)
713                 *c = '\0';
714
715         node_map = cpu_map__new(buf);
716         if (!node_map)
717                 goto done;
718
719         nr = (u32)node_map->nr;
720
721         ret = do_write(fd, &nr, sizeof(nr));
722         if (ret < 0)
723                 goto done;
724
725         for (i = 0; i < nr; i++) {
726                 j = (u32)node_map->map[i];
727                 ret = do_write(fd, &j, sizeof(j));
728                 if (ret < 0)
729                         break;
730
731                 ret = write_topo_node(fd, i);
732                 if (ret < 0)
733                         break;
734         }
735 done:
736         free(buf);
737         fclose(fp);
738         cpu_map__put(node_map);
739         return ret;
740 }
741
742 /*
743  * File format:
744  *
745  * struct pmu_mappings {
746  *      u32     pmu_num;
747  *      struct pmu_map {
748  *              u32     type;
749  *              char    name[];
750  *      }[pmu_num];
751  * };
752  */
753
754 static int write_pmu_mappings(int fd, struct perf_header *h __maybe_unused,
755                               struct perf_evlist *evlist __maybe_unused)
756 {
757         struct perf_pmu *pmu = NULL;
758         off_t offset = lseek(fd, 0, SEEK_CUR);
759         __u32 pmu_num = 0;
760         int ret;
761
762         /* write real pmu_num later */
763         ret = do_write(fd, &pmu_num, sizeof(pmu_num));
764         if (ret < 0)
765                 return ret;
766
767         while ((pmu = perf_pmu__scan(pmu))) {
768                 if (!pmu->name)
769                         continue;
770                 pmu_num++;
771
772                 ret = do_write(fd, &pmu->type, sizeof(pmu->type));
773                 if (ret < 0)
774                         return ret;
775
776                 ret = do_write_string(fd, pmu->name);
777                 if (ret < 0)
778                         return ret;
779         }
780
781         if (pwrite(fd, &pmu_num, sizeof(pmu_num), offset) != sizeof(pmu_num)) {
782                 /* discard all */
783                 lseek(fd, offset, SEEK_SET);
784                 return -1;
785         }
786
787         return 0;
788 }
789
790 /*
791  * File format:
792  *
793  * struct group_descs {
794  *      u32     nr_groups;
795  *      struct group_desc {
796  *              char    name[];
797  *              u32     leader_idx;
798  *              u32     nr_members;
799  *      }[nr_groups];
800  * };
801  */
802 static int write_group_desc(int fd, struct perf_header *h __maybe_unused,
803                             struct perf_evlist *evlist)
804 {
805         u32 nr_groups = evlist->nr_groups;
806         struct perf_evsel *evsel;
807         int ret;
808
809         ret = do_write(fd, &nr_groups, sizeof(nr_groups));
810         if (ret < 0)
811                 return ret;
812
813         evlist__for_each_entry(evlist, evsel) {
814                 if (perf_evsel__is_group_leader(evsel) &&
815                     evsel->nr_members > 1) {
816                         const char *name = evsel->group_name ?: "{anon_group}";
817                         u32 leader_idx = evsel->idx;
818                         u32 nr_members = evsel->nr_members;
819
820                         ret = do_write_string(fd, name);
821                         if (ret < 0)
822                                 return ret;
823
824                         ret = do_write(fd, &leader_idx, sizeof(leader_idx));
825                         if (ret < 0)
826                                 return ret;
827
828                         ret = do_write(fd, &nr_members, sizeof(nr_members));
829                         if (ret < 0)
830                                 return ret;
831                 }
832         }
833         return 0;
834 }
835
836 /*
837  * default get_cpuid(): nothing gets recorded
838  * actual implementation must be in arch/$(ARCH)/util/header.c
839  */
840 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
841 {
842         return -1;
843 }
844
845 static int write_cpuid(int fd, struct perf_header *h __maybe_unused,
846                        struct perf_evlist *evlist __maybe_unused)
847 {
848         char buffer[64];
849         int ret;
850
851         ret = get_cpuid(buffer, sizeof(buffer));
852         if (!ret)
853                 goto write_it;
854
855         return -1;
856 write_it:
857         return do_write_string(fd, buffer);
858 }
859
860 static int write_branch_stack(int fd __maybe_unused,
861                               struct perf_header *h __maybe_unused,
862                        struct perf_evlist *evlist __maybe_unused)
863 {
864         return 0;
865 }
866
867 static int write_auxtrace(int fd, struct perf_header *h,
868                           struct perf_evlist *evlist __maybe_unused)
869 {
870         struct perf_session *session;
871         int err;
872
873         session = container_of(h, struct perf_session, header);
874
875         err = auxtrace_index__write(fd, &session->auxtrace_index);
876         if (err < 0)
877                 pr_err("Failed to write auxtrace index\n");
878         return err;
879 }
880
881 static int cpu_cache_level__sort(const void *a, const void *b)
882 {
883         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
884         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
885
886         return cache_a->level - cache_b->level;
887 }
888
889 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
890 {
891         if (a->level != b->level)
892                 return false;
893
894         if (a->line_size != b->line_size)
895                 return false;
896
897         if (a->sets != b->sets)
898                 return false;
899
900         if (a->ways != b->ways)
901                 return false;
902
903         if (strcmp(a->type, b->type))
904                 return false;
905
906         if (strcmp(a->size, b->size))
907                 return false;
908
909         if (strcmp(a->map, b->map))
910                 return false;
911
912         return true;
913 }
914
915 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
916 {
917         char path[PATH_MAX], file[PATH_MAX];
918         struct stat st;
919         size_t len;
920
921         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
922         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
923
924         if (stat(file, &st))
925                 return 1;
926
927         scnprintf(file, PATH_MAX, "%s/level", path);
928         if (sysfs__read_int(file, (int *) &cache->level))
929                 return -1;
930
931         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
932         if (sysfs__read_int(file, (int *) &cache->line_size))
933                 return -1;
934
935         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
936         if (sysfs__read_int(file, (int *) &cache->sets))
937                 return -1;
938
939         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
940         if (sysfs__read_int(file, (int *) &cache->ways))
941                 return -1;
942
943         scnprintf(file, PATH_MAX, "%s/type", path);
944         if (sysfs__read_str(file, &cache->type, &len))
945                 return -1;
946
947         cache->type[len] = 0;
948         cache->type = rtrim(cache->type);
949
950         scnprintf(file, PATH_MAX, "%s/size", path);
951         if (sysfs__read_str(file, &cache->size, &len)) {
952                 free(cache->type);
953                 return -1;
954         }
955
956         cache->size[len] = 0;
957         cache->size = rtrim(cache->size);
958
959         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
960         if (sysfs__read_str(file, &cache->map, &len)) {
961                 free(cache->map);
962                 free(cache->type);
963                 return -1;
964         }
965
966         cache->map[len] = 0;
967         cache->map = rtrim(cache->map);
968         return 0;
969 }
970
971 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
972 {
973         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
974 }
975
976 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
977 {
978         u32 i, cnt = 0;
979         long ncpus;
980         u32 nr, cpu;
981         u16 level;
982
983         ncpus = sysconf(_SC_NPROCESSORS_CONF);
984         if (ncpus < 0)
985                 return -1;
986
987         nr = (u32)(ncpus & UINT_MAX);
988
989         for (cpu = 0; cpu < nr; cpu++) {
990                 for (level = 0; level < 10; level++) {
991                         struct cpu_cache_level c;
992                         int err;
993
994                         err = cpu_cache_level__read(&c, cpu, level);
995                         if (err < 0)
996                                 return err;
997
998                         if (err == 1)
999                                 break;
1000
1001                         for (i = 0; i < cnt; i++) {
1002                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1003                                         break;
1004                         }
1005
1006                         if (i == cnt)
1007                                 caches[cnt++] = c;
1008                         else
1009                                 cpu_cache_level__free(&c);
1010
1011                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1012                                 goto out;
1013                 }
1014         }
1015  out:
1016         *cntp = cnt;
1017         return 0;
1018 }
1019
1020 #define MAX_CACHES 2000
1021
1022 static int write_cache(int fd, struct perf_header *h __maybe_unused,
1023                           struct perf_evlist *evlist __maybe_unused)
1024 {
1025         struct cpu_cache_level caches[MAX_CACHES];
1026         u32 cnt = 0, i, version = 1;
1027         int ret;
1028
1029         ret = build_caches(caches, MAX_CACHES, &cnt);
1030         if (ret)
1031                 goto out;
1032
1033         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1034
1035         ret = do_write(fd, &version, sizeof(u32));
1036         if (ret < 0)
1037                 goto out;
1038
1039         ret = do_write(fd, &cnt, sizeof(u32));
1040         if (ret < 0)
1041                 goto out;
1042
1043         for (i = 0; i < cnt; i++) {
1044                 struct cpu_cache_level *c = &caches[i];
1045
1046                 #define _W(v)                                   \
1047                         ret = do_write(fd, &c->v, sizeof(u32)); \
1048                         if (ret < 0)                            \
1049                                 goto out;
1050
1051                 _W(level)
1052                 _W(line_size)
1053                 _W(sets)
1054                 _W(ways)
1055                 #undef _W
1056
1057                 #define _W(v)                                           \
1058                         ret = do_write_string(fd, (const char *) c->v); \
1059                         if (ret < 0)                                    \
1060                                 goto out;
1061
1062                 _W(type)
1063                 _W(size)
1064                 _W(map)
1065                 #undef _W
1066         }
1067
1068 out:
1069         for (i = 0; i < cnt; i++)
1070                 cpu_cache_level__free(&caches[i]);
1071         return ret;
1072 }
1073
1074 static int write_stat(int fd __maybe_unused,
1075                       struct perf_header *h __maybe_unused,
1076                       struct perf_evlist *evlist __maybe_unused)
1077 {
1078         return 0;
1079 }
1080
1081 static void print_hostname(struct perf_header *ph, int fd __maybe_unused,
1082                            FILE *fp)
1083 {
1084         fprintf(fp, "# hostname : %s\n", ph->env.hostname);
1085 }
1086
1087 static void print_osrelease(struct perf_header *ph, int fd __maybe_unused,
1088                             FILE *fp)
1089 {
1090         fprintf(fp, "# os release : %s\n", ph->env.os_release);
1091 }
1092
1093 static void print_arch(struct perf_header *ph, int fd __maybe_unused, FILE *fp)
1094 {
1095         fprintf(fp, "# arch : %s\n", ph->env.arch);
1096 }
1097
1098 static void print_cpudesc(struct perf_header *ph, int fd __maybe_unused,
1099                           FILE *fp)
1100 {
1101         fprintf(fp, "# cpudesc : %s\n", ph->env.cpu_desc);
1102 }
1103
1104 static void print_nrcpus(struct perf_header *ph, int fd __maybe_unused,
1105                          FILE *fp)
1106 {
1107         fprintf(fp, "# nrcpus online : %u\n", ph->env.nr_cpus_online);
1108         fprintf(fp, "# nrcpus avail : %u\n", ph->env.nr_cpus_avail);
1109 }
1110
1111 static void print_version(struct perf_header *ph, int fd __maybe_unused,
1112                           FILE *fp)
1113 {
1114         fprintf(fp, "# perf version : %s\n", ph->env.version);
1115 }
1116
1117 static void print_cmdline(struct perf_header *ph, int fd __maybe_unused,
1118                           FILE *fp)
1119 {
1120         int nr, i;
1121
1122         nr = ph->env.nr_cmdline;
1123
1124         fprintf(fp, "# cmdline : ");
1125
1126         for (i = 0; i < nr; i++)
1127                 fprintf(fp, "%s ", ph->env.cmdline_argv[i]);
1128         fputc('\n', fp);
1129 }
1130
1131 static void print_cpu_topology(struct perf_header *ph, int fd __maybe_unused,
1132                                FILE *fp)
1133 {
1134         int nr, i;
1135         char *str;
1136         int cpu_nr = ph->env.nr_cpus_avail;
1137
1138         nr = ph->env.nr_sibling_cores;
1139         str = ph->env.sibling_cores;
1140
1141         for (i = 0; i < nr; i++) {
1142                 fprintf(fp, "# sibling cores   : %s\n", str);
1143                 str += strlen(str) + 1;
1144         }
1145
1146         nr = ph->env.nr_sibling_threads;
1147         str = ph->env.sibling_threads;
1148
1149         for (i = 0; i < nr; i++) {
1150                 fprintf(fp, "# sibling threads : %s\n", str);
1151                 str += strlen(str) + 1;
1152         }
1153
1154         if (ph->env.cpu != NULL) {
1155                 for (i = 0; i < cpu_nr; i++)
1156                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1157                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1158         } else
1159                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1160 }
1161
1162 static void free_event_desc(struct perf_evsel *events)
1163 {
1164         struct perf_evsel *evsel;
1165
1166         if (!events)
1167                 return;
1168
1169         for (evsel = events; evsel->attr.size; evsel++) {
1170                 zfree(&evsel->name);
1171                 zfree(&evsel->id);
1172         }
1173
1174         free(events);
1175 }
1176
1177 static struct perf_evsel *
1178 read_event_desc(struct perf_header *ph, int fd)
1179 {
1180         struct perf_evsel *evsel, *events = NULL;
1181         u64 *id;
1182         void *buf = NULL;
1183         u32 nre, sz, nr, i, j;
1184         ssize_t ret;
1185         size_t msz;
1186
1187         /* number of events */
1188         ret = readn(fd, &nre, sizeof(nre));
1189         if (ret != (ssize_t)sizeof(nre))
1190                 goto error;
1191
1192         if (ph->needs_swap)
1193                 nre = bswap_32(nre);
1194
1195         ret = readn(fd, &sz, sizeof(sz));
1196         if (ret != (ssize_t)sizeof(sz))
1197                 goto error;
1198
1199         if (ph->needs_swap)
1200                 sz = bswap_32(sz);
1201
1202         /* buffer to hold on file attr struct */
1203         buf = malloc(sz);
1204         if (!buf)
1205                 goto error;
1206
1207         /* the last event terminates with evsel->attr.size == 0: */
1208         events = calloc(nre + 1, sizeof(*events));
1209         if (!events)
1210                 goto error;
1211
1212         msz = sizeof(evsel->attr);
1213         if (sz < msz)
1214                 msz = sz;
1215
1216         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1217                 evsel->idx = i;
1218
1219                 /*
1220                  * must read entire on-file attr struct to
1221                  * sync up with layout.
1222                  */
1223                 ret = readn(fd, buf, sz);
1224                 if (ret != (ssize_t)sz)
1225                         goto error;
1226
1227                 if (ph->needs_swap)
1228                         perf_event__attr_swap(buf);
1229
1230                 memcpy(&evsel->attr, buf, msz);
1231
1232                 ret = readn(fd, &nr, sizeof(nr));
1233                 if (ret != (ssize_t)sizeof(nr))
1234                         goto error;
1235
1236                 if (ph->needs_swap) {
1237                         nr = bswap_32(nr);
1238                         evsel->needs_swap = true;
1239                 }
1240
1241                 evsel->name = do_read_string(fd, ph);
1242
1243                 if (!nr)
1244                         continue;
1245
1246                 id = calloc(nr, sizeof(*id));
1247                 if (!id)
1248                         goto error;
1249                 evsel->ids = nr;
1250                 evsel->id = id;
1251
1252                 for (j = 0 ; j < nr; j++) {
1253                         ret = readn(fd, id, sizeof(*id));
1254                         if (ret != (ssize_t)sizeof(*id))
1255                                 goto error;
1256                         if (ph->needs_swap)
1257                                 *id = bswap_64(*id);
1258                         id++;
1259                 }
1260         }
1261 out:
1262         free(buf);
1263         return events;
1264 error:
1265         free_event_desc(events);
1266         events = NULL;
1267         goto out;
1268 }
1269
1270 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1271                                 void *priv __attribute__((unused)))
1272 {
1273         return fprintf(fp, ", %s = %s", name, val);
1274 }
1275
1276 static void print_event_desc(struct perf_header *ph, int fd, FILE *fp)
1277 {
1278         struct perf_evsel *evsel, *events = read_event_desc(ph, fd);
1279         u32 j;
1280         u64 *id;
1281
1282         if (!events) {
1283                 fprintf(fp, "# event desc: not available or unable to read\n");
1284                 return;
1285         }
1286
1287         for (evsel = events; evsel->attr.size; evsel++) {
1288                 fprintf(fp, "# event : name = %s, ", evsel->name);
1289
1290                 if (evsel->ids) {
1291                         fprintf(fp, ", id = {");
1292                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1293                                 if (j)
1294                                         fputc(',', fp);
1295                                 fprintf(fp, " %"PRIu64, *id);
1296                         }
1297                         fprintf(fp, " }");
1298                 }
1299
1300                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1301
1302                 fputc('\n', fp);
1303         }
1304
1305         free_event_desc(events);
1306 }
1307
1308 static void print_total_mem(struct perf_header *ph, int fd __maybe_unused,
1309                             FILE *fp)
1310 {
1311         fprintf(fp, "# total memory : %Lu kB\n", ph->env.total_mem);
1312 }
1313
1314 static void print_numa_topology(struct perf_header *ph, int fd __maybe_unused,
1315                                 FILE *fp)
1316 {
1317         int i;
1318         struct numa_node *n;
1319
1320         for (i = 0; i < ph->env.nr_numa_nodes; i++) {
1321                 n = &ph->env.numa_nodes[i];
1322
1323                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1324                             " free = %"PRIu64" kB\n",
1325                         n->node, n->mem_total, n->mem_free);
1326
1327                 fprintf(fp, "# node%u cpu list : ", n->node);
1328                 cpu_map__fprintf(n->map, fp);
1329         }
1330 }
1331
1332 static void print_cpuid(struct perf_header *ph, int fd __maybe_unused, FILE *fp)
1333 {
1334         fprintf(fp, "# cpuid : %s\n", ph->env.cpuid);
1335 }
1336
1337 static void print_branch_stack(struct perf_header *ph __maybe_unused,
1338                                int fd __maybe_unused, FILE *fp)
1339 {
1340         fprintf(fp, "# contains samples with branch stack\n");
1341 }
1342
1343 static void print_auxtrace(struct perf_header *ph __maybe_unused,
1344                            int fd __maybe_unused, FILE *fp)
1345 {
1346         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1347 }
1348
1349 static void print_stat(struct perf_header *ph __maybe_unused,
1350                        int fd __maybe_unused, FILE *fp)
1351 {
1352         fprintf(fp, "# contains stat data\n");
1353 }
1354
1355 static void print_cache(struct perf_header *ph __maybe_unused,
1356                         int fd __maybe_unused, FILE *fp __maybe_unused)
1357 {
1358         int i;
1359
1360         fprintf(fp, "# CPU cache info:\n");
1361         for (i = 0; i < ph->env.caches_cnt; i++) {
1362                 fprintf(fp, "#  ");
1363                 cpu_cache_level__fprintf(fp, &ph->env.caches[i]);
1364         }
1365 }
1366
1367 static void print_pmu_mappings(struct perf_header *ph, int fd __maybe_unused,
1368                                FILE *fp)
1369 {
1370         const char *delimiter = "# pmu mappings: ";
1371         char *str, *tmp;
1372         u32 pmu_num;
1373         u32 type;
1374
1375         pmu_num = ph->env.nr_pmu_mappings;
1376         if (!pmu_num) {
1377                 fprintf(fp, "# pmu mappings: not available\n");
1378                 return;
1379         }
1380
1381         str = ph->env.pmu_mappings;
1382
1383         while (pmu_num) {
1384                 type = strtoul(str, &tmp, 0);
1385                 if (*tmp != ':')
1386                         goto error;
1387
1388                 str = tmp + 1;
1389                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1390
1391                 delimiter = ", ";
1392                 str += strlen(str) + 1;
1393                 pmu_num--;
1394         }
1395
1396         fprintf(fp, "\n");
1397
1398         if (!pmu_num)
1399                 return;
1400 error:
1401         fprintf(fp, "# pmu mappings: unable to read\n");
1402 }
1403
1404 static void print_group_desc(struct perf_header *ph, int fd __maybe_unused,
1405                              FILE *fp)
1406 {
1407         struct perf_session *session;
1408         struct perf_evsel *evsel;
1409         u32 nr = 0;
1410
1411         session = container_of(ph, struct perf_session, header);
1412
1413         evlist__for_each_entry(session->evlist, evsel) {
1414                 if (perf_evsel__is_group_leader(evsel) &&
1415                     evsel->nr_members > 1) {
1416                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1417                                 perf_evsel__name(evsel));
1418
1419                         nr = evsel->nr_members - 1;
1420                 } else if (nr) {
1421                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1422
1423                         if (--nr == 0)
1424                                 fprintf(fp, "}\n");
1425                 }
1426         }
1427 }
1428
1429 static int __event_process_build_id(struct build_id_event *bev,
1430                                     char *filename,
1431                                     struct perf_session *session)
1432 {
1433         int err = -1;
1434         struct machine *machine;
1435         u16 cpumode;
1436         struct dso *dso;
1437         enum dso_kernel_type dso_type;
1438
1439         machine = perf_session__findnew_machine(session, bev->pid);
1440         if (!machine)
1441                 goto out;
1442
1443         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1444
1445         switch (cpumode) {
1446         case PERF_RECORD_MISC_KERNEL:
1447                 dso_type = DSO_TYPE_KERNEL;
1448                 break;
1449         case PERF_RECORD_MISC_GUEST_KERNEL:
1450                 dso_type = DSO_TYPE_GUEST_KERNEL;
1451                 break;
1452         case PERF_RECORD_MISC_USER:
1453         case PERF_RECORD_MISC_GUEST_USER:
1454                 dso_type = DSO_TYPE_USER;
1455                 break;
1456         default:
1457                 goto out;
1458         }
1459
1460         dso = machine__findnew_dso(machine, filename);
1461         if (dso != NULL) {
1462                 char sbuild_id[SBUILD_ID_SIZE];
1463
1464                 dso__set_build_id(dso, &bev->build_id);
1465
1466                 if (!is_kernel_module(filename, cpumode))
1467                         dso->kernel = dso_type;
1468
1469                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1470                                   sbuild_id);
1471                 pr_debug("build id event received for %s: %s\n",
1472                          dso->long_name, sbuild_id);
1473                 dso__put(dso);
1474         }
1475
1476         err = 0;
1477 out:
1478         return err;
1479 }
1480
1481 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1482                                                  int input, u64 offset, u64 size)
1483 {
1484         struct perf_session *session = container_of(header, struct perf_session, header);
1485         struct {
1486                 struct perf_event_header   header;
1487                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1488                 char                       filename[0];
1489         } old_bev;
1490         struct build_id_event bev;
1491         char filename[PATH_MAX];
1492         u64 limit = offset + size;
1493
1494         while (offset < limit) {
1495                 ssize_t len;
1496
1497                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1498                         return -1;
1499
1500                 if (header->needs_swap)
1501                         perf_event_header__bswap(&old_bev.header);
1502
1503                 len = old_bev.header.size - sizeof(old_bev);
1504                 if (readn(input, filename, len) != len)
1505                         return -1;
1506
1507                 bev.header = old_bev.header;
1508
1509                 /*
1510                  * As the pid is the missing value, we need to fill
1511                  * it properly. The header.misc value give us nice hint.
1512                  */
1513                 bev.pid = HOST_KERNEL_ID;
1514                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1515                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1516                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1517
1518                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1519                 __event_process_build_id(&bev, filename, session);
1520
1521                 offset += bev.header.size;
1522         }
1523
1524         return 0;
1525 }
1526
1527 static int perf_header__read_build_ids(struct perf_header *header,
1528                                        int input, u64 offset, u64 size)
1529 {
1530         struct perf_session *session = container_of(header, struct perf_session, header);
1531         struct build_id_event bev;
1532         char filename[PATH_MAX];
1533         u64 limit = offset + size, orig_offset = offset;
1534         int err = -1;
1535
1536         while (offset < limit) {
1537                 ssize_t len;
1538
1539                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1540                         goto out;
1541
1542                 if (header->needs_swap)
1543                         perf_event_header__bswap(&bev.header);
1544
1545                 len = bev.header.size - sizeof(bev);
1546                 if (readn(input, filename, len) != len)
1547                         goto out;
1548                 /*
1549                  * The a1645ce1 changeset:
1550                  *
1551                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1552                  *
1553                  * Added a field to struct build_id_event that broke the file
1554                  * format.
1555                  *
1556                  * Since the kernel build-id is the first entry, process the
1557                  * table using the old format if the well known
1558                  * '[kernel.kallsyms]' string for the kernel build-id has the
1559                  * first 4 characters chopped off (where the pid_t sits).
1560                  */
1561                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1562                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1563                                 return -1;
1564                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1565                 }
1566
1567                 __event_process_build_id(&bev, filename, session);
1568
1569                 offset += bev.header.size;
1570         }
1571         err = 0;
1572 out:
1573         return err;
1574 }
1575
1576 static int process_tracing_data(struct perf_file_section *section __maybe_unused,
1577                                 struct perf_header *ph __maybe_unused,
1578                                 int fd, void *data)
1579 {
1580         ssize_t ret = trace_report(fd, data, false);
1581         return ret < 0 ? -1 : 0;
1582 }
1583
1584 static int process_build_id(struct perf_file_section *section,
1585                             struct perf_header *ph, int fd,
1586                             void *data __maybe_unused)
1587 {
1588         if (perf_header__read_build_ids(ph, fd, section->offset, section->size))
1589                 pr_debug("Failed to read buildids, continuing...\n");
1590         return 0;
1591 }
1592
1593 static int process_hostname(struct perf_file_section *section __maybe_unused,
1594                             struct perf_header *ph, int fd,
1595                             void *data __maybe_unused)
1596 {
1597         ph->env.hostname = do_read_string(fd, ph);
1598         return ph->env.hostname ? 0 : -ENOMEM;
1599 }
1600
1601 static int process_osrelease(struct perf_file_section *section __maybe_unused,
1602                              struct perf_header *ph, int fd,
1603                              void *data __maybe_unused)
1604 {
1605         ph->env.os_release = do_read_string(fd, ph);
1606         return ph->env.os_release ? 0 : -ENOMEM;
1607 }
1608
1609 static int process_version(struct perf_file_section *section __maybe_unused,
1610                            struct perf_header *ph, int fd,
1611                            void *data __maybe_unused)
1612 {
1613         ph->env.version = do_read_string(fd, ph);
1614         return ph->env.version ? 0 : -ENOMEM;
1615 }
1616
1617 static int process_arch(struct perf_file_section *section __maybe_unused,
1618                         struct perf_header *ph, int fd,
1619                         void *data __maybe_unused)
1620 {
1621         ph->env.arch = do_read_string(fd, ph);
1622         return ph->env.arch ? 0 : -ENOMEM;
1623 }
1624
1625 static int process_nrcpus(struct perf_file_section *section __maybe_unused,
1626                           struct perf_header *ph, int fd,
1627                           void *data __maybe_unused)
1628 {
1629         ssize_t ret;
1630         u32 nr;
1631
1632         ret = readn(fd, &nr, sizeof(nr));
1633         if (ret != sizeof(nr))
1634                 return -1;
1635
1636         if (ph->needs_swap)
1637                 nr = bswap_32(nr);
1638
1639         ph->env.nr_cpus_avail = nr;
1640
1641         ret = readn(fd, &nr, sizeof(nr));
1642         if (ret != sizeof(nr))
1643                 return -1;
1644
1645         if (ph->needs_swap)
1646                 nr = bswap_32(nr);
1647
1648         ph->env.nr_cpus_online = nr;
1649         return 0;
1650 }
1651
1652 static int process_cpudesc(struct perf_file_section *section __maybe_unused,
1653                            struct perf_header *ph, int fd,
1654                            void *data __maybe_unused)
1655 {
1656         ph->env.cpu_desc = do_read_string(fd, ph);
1657         return ph->env.cpu_desc ? 0 : -ENOMEM;
1658 }
1659
1660 static int process_cpuid(struct perf_file_section *section __maybe_unused,
1661                          struct perf_header *ph,  int fd,
1662                          void *data __maybe_unused)
1663 {
1664         ph->env.cpuid = do_read_string(fd, ph);
1665         return ph->env.cpuid ? 0 : -ENOMEM;
1666 }
1667
1668 static int process_total_mem(struct perf_file_section *section __maybe_unused,
1669                              struct perf_header *ph, int fd,
1670                              void *data __maybe_unused)
1671 {
1672         uint64_t mem;
1673         ssize_t ret;
1674
1675         ret = readn(fd, &mem, sizeof(mem));
1676         if (ret != sizeof(mem))
1677                 return -1;
1678
1679         if (ph->needs_swap)
1680                 mem = bswap_64(mem);
1681
1682         ph->env.total_mem = mem;
1683         return 0;
1684 }
1685
1686 static struct perf_evsel *
1687 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
1688 {
1689         struct perf_evsel *evsel;
1690
1691         evlist__for_each_entry(evlist, evsel) {
1692                 if (evsel->idx == idx)
1693                         return evsel;
1694         }
1695
1696         return NULL;
1697 }
1698
1699 static void
1700 perf_evlist__set_event_name(struct perf_evlist *evlist,
1701                             struct perf_evsel *event)
1702 {
1703         struct perf_evsel *evsel;
1704
1705         if (!event->name)
1706                 return;
1707
1708         evsel = perf_evlist__find_by_index(evlist, event->idx);
1709         if (!evsel)
1710                 return;
1711
1712         if (evsel->name)
1713                 return;
1714
1715         evsel->name = strdup(event->name);
1716 }
1717
1718 static int
1719 process_event_desc(struct perf_file_section *section __maybe_unused,
1720                    struct perf_header *header, int fd,
1721                    void *data __maybe_unused)
1722 {
1723         struct perf_session *session;
1724         struct perf_evsel *evsel, *events = read_event_desc(header, fd);
1725
1726         if (!events)
1727                 return 0;
1728
1729         session = container_of(header, struct perf_session, header);
1730         for (evsel = events; evsel->attr.size; evsel++)
1731                 perf_evlist__set_event_name(session->evlist, evsel);
1732
1733         free_event_desc(events);
1734
1735         return 0;
1736 }
1737
1738 static int process_cmdline(struct perf_file_section *section,
1739                            struct perf_header *ph, int fd,
1740                            void *data __maybe_unused)
1741 {
1742         ssize_t ret;
1743         char *str, *cmdline = NULL, **argv = NULL;
1744         u32 nr, i, len = 0;
1745
1746         ret = readn(fd, &nr, sizeof(nr));
1747         if (ret != sizeof(nr))
1748                 return -1;
1749
1750         if (ph->needs_swap)
1751                 nr = bswap_32(nr);
1752
1753         ph->env.nr_cmdline = nr;
1754
1755         cmdline = zalloc(section->size + nr + 1);
1756         if (!cmdline)
1757                 return -1;
1758
1759         argv = zalloc(sizeof(char *) * (nr + 1));
1760         if (!argv)
1761                 goto error;
1762
1763         for (i = 0; i < nr; i++) {
1764                 str = do_read_string(fd, ph);
1765                 if (!str)
1766                         goto error;
1767
1768                 argv[i] = cmdline + len;
1769                 memcpy(argv[i], str, strlen(str) + 1);
1770                 len += strlen(str) + 1;
1771                 free(str);
1772         }
1773         ph->env.cmdline = cmdline;
1774         ph->env.cmdline_argv = (const char **) argv;
1775         return 0;
1776
1777 error:
1778         free(argv);
1779         free(cmdline);
1780         return -1;
1781 }
1782
1783 static int process_cpu_topology(struct perf_file_section *section,
1784                                 struct perf_header *ph, int fd,
1785                                 void *data __maybe_unused)
1786 {
1787         ssize_t ret;
1788         u32 nr, i;
1789         char *str;
1790         struct strbuf sb;
1791         int cpu_nr = ph->env.nr_cpus_avail;
1792         u64 size = 0;
1793
1794         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
1795         if (!ph->env.cpu)
1796                 return -1;
1797
1798         ret = readn(fd, &nr, sizeof(nr));
1799         if (ret != sizeof(nr))
1800                 goto free_cpu;
1801
1802         if (ph->needs_swap)
1803                 nr = bswap_32(nr);
1804
1805         ph->env.nr_sibling_cores = nr;
1806         size += sizeof(u32);
1807         if (strbuf_init(&sb, 128) < 0)
1808                 goto free_cpu;
1809
1810         for (i = 0; i < nr; i++) {
1811                 str = do_read_string(fd, ph);
1812                 if (!str)
1813                         goto error;
1814
1815                 /* include a NULL character at the end */
1816                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
1817                         goto error;
1818                 size += string_size(str);
1819                 free(str);
1820         }
1821         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
1822
1823         ret = readn(fd, &nr, sizeof(nr));
1824         if (ret != sizeof(nr))
1825                 return -1;
1826
1827         if (ph->needs_swap)
1828                 nr = bswap_32(nr);
1829
1830         ph->env.nr_sibling_threads = nr;
1831         size += sizeof(u32);
1832
1833         for (i = 0; i < nr; i++) {
1834                 str = do_read_string(fd, ph);
1835                 if (!str)
1836                         goto error;
1837
1838                 /* include a NULL character at the end */
1839                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
1840                         goto error;
1841                 size += string_size(str);
1842                 free(str);
1843         }
1844         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
1845
1846         /*
1847          * The header may be from old perf,
1848          * which doesn't include core id and socket id information.
1849          */
1850         if (section->size <= size) {
1851                 zfree(&ph->env.cpu);
1852                 return 0;
1853         }
1854
1855         for (i = 0; i < (u32)cpu_nr; i++) {
1856                 ret = readn(fd, &nr, sizeof(nr));
1857                 if (ret != sizeof(nr))
1858                         goto free_cpu;
1859
1860                 if (ph->needs_swap)
1861                         nr = bswap_32(nr);
1862
1863                 ph->env.cpu[i].core_id = nr;
1864
1865                 ret = readn(fd, &nr, sizeof(nr));
1866                 if (ret != sizeof(nr))
1867                         goto free_cpu;
1868
1869                 if (ph->needs_swap)
1870                         nr = bswap_32(nr);
1871
1872                 if (nr != (u32)-1 && nr > (u32)cpu_nr) {
1873                         pr_debug("socket_id number is too big."
1874                                  "You may need to upgrade the perf tool.\n");
1875                         goto free_cpu;
1876                 }
1877
1878                 ph->env.cpu[i].socket_id = nr;
1879         }
1880
1881         return 0;
1882
1883 error:
1884         strbuf_release(&sb);
1885 free_cpu:
1886         zfree(&ph->env.cpu);
1887         return -1;
1888 }
1889
1890 static int process_numa_topology(struct perf_file_section *section __maybe_unused,
1891                                  struct perf_header *ph, int fd,
1892                                  void *data __maybe_unused)
1893 {
1894         struct numa_node *nodes, *n;
1895         ssize_t ret;
1896         u32 nr, i;
1897         char *str;
1898
1899         /* nr nodes */
1900         ret = readn(fd, &nr, sizeof(nr));
1901         if (ret != sizeof(nr))
1902                 return -1;
1903
1904         if (ph->needs_swap)
1905                 nr = bswap_32(nr);
1906
1907         nodes = zalloc(sizeof(*nodes) * nr);
1908         if (!nodes)
1909                 return -ENOMEM;
1910
1911         for (i = 0; i < nr; i++) {
1912                 n = &nodes[i];
1913
1914                 /* node number */
1915                 ret = readn(fd, &n->node, sizeof(u32));
1916                 if (ret != sizeof(n->node))
1917                         goto error;
1918
1919                 ret = readn(fd, &n->mem_total, sizeof(u64));
1920                 if (ret != sizeof(u64))
1921                         goto error;
1922
1923                 ret = readn(fd, &n->mem_free, sizeof(u64));
1924                 if (ret != sizeof(u64))
1925                         goto error;
1926
1927                 if (ph->needs_swap) {
1928                         n->node      = bswap_32(n->node);
1929                         n->mem_total = bswap_64(n->mem_total);
1930                         n->mem_free  = bswap_64(n->mem_free);
1931                 }
1932
1933                 str = do_read_string(fd, ph);
1934                 if (!str)
1935                         goto error;
1936
1937                 n->map = cpu_map__new(str);
1938                 if (!n->map)
1939                         goto error;
1940
1941                 free(str);
1942         }
1943         ph->env.nr_numa_nodes = nr;
1944         ph->env.numa_nodes = nodes;
1945         return 0;
1946
1947 error:
1948         free(nodes);
1949         return -1;
1950 }
1951
1952 static int process_pmu_mappings(struct perf_file_section *section __maybe_unused,
1953                                 struct perf_header *ph, int fd,
1954                                 void *data __maybe_unused)
1955 {
1956         ssize_t ret;
1957         char *name;
1958         u32 pmu_num;
1959         u32 type;
1960         struct strbuf sb;
1961
1962         ret = readn(fd, &pmu_num, sizeof(pmu_num));
1963         if (ret != sizeof(pmu_num))
1964                 return -1;
1965
1966         if (ph->needs_swap)
1967                 pmu_num = bswap_32(pmu_num);
1968
1969         if (!pmu_num) {
1970                 pr_debug("pmu mappings not available\n");
1971                 return 0;
1972         }
1973
1974         ph->env.nr_pmu_mappings = pmu_num;
1975         if (strbuf_init(&sb, 128) < 0)
1976                 return -1;
1977
1978         while (pmu_num) {
1979                 if (readn(fd, &type, sizeof(type)) != sizeof(type))
1980                         goto error;
1981                 if (ph->needs_swap)
1982                         type = bswap_32(type);
1983
1984                 name = do_read_string(fd, ph);
1985                 if (!name)
1986                         goto error;
1987
1988                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
1989                         goto error;
1990                 /* include a NULL character at the end */
1991                 if (strbuf_add(&sb, "", 1) < 0)
1992                         goto error;
1993
1994                 if (!strcmp(name, "msr"))
1995                         ph->env.msr_pmu_type = type;
1996
1997                 free(name);
1998                 pmu_num--;
1999         }
2000         ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2001         return 0;
2002
2003 error:
2004         strbuf_release(&sb);
2005         return -1;
2006 }
2007
2008 static int process_group_desc(struct perf_file_section *section __maybe_unused,
2009                               struct perf_header *ph, int fd,
2010                               void *data __maybe_unused)
2011 {
2012         size_t ret = -1;
2013         u32 i, nr, nr_groups;
2014         struct perf_session *session;
2015         struct perf_evsel *evsel, *leader = NULL;
2016         struct group_desc {
2017                 char *name;
2018                 u32 leader_idx;
2019                 u32 nr_members;
2020         } *desc;
2021
2022         if (readn(fd, &nr_groups, sizeof(nr_groups)) != sizeof(nr_groups))
2023                 return -1;
2024
2025         if (ph->needs_swap)
2026                 nr_groups = bswap_32(nr_groups);
2027
2028         ph->env.nr_groups = nr_groups;
2029         if (!nr_groups) {
2030                 pr_debug("group desc not available\n");
2031                 return 0;
2032         }
2033
2034         desc = calloc(nr_groups, sizeof(*desc));
2035         if (!desc)
2036                 return -1;
2037
2038         for (i = 0; i < nr_groups; i++) {
2039                 desc[i].name = do_read_string(fd, ph);
2040                 if (!desc[i].name)
2041                         goto out_free;
2042
2043                 if (readn(fd, &desc[i].leader_idx, sizeof(u32)) != sizeof(u32))
2044                         goto out_free;
2045
2046                 if (readn(fd, &desc[i].nr_members, sizeof(u32)) != sizeof(u32))
2047                         goto out_free;
2048
2049                 if (ph->needs_swap) {
2050                         desc[i].leader_idx = bswap_32(desc[i].leader_idx);
2051                         desc[i].nr_members = bswap_32(desc[i].nr_members);
2052                 }
2053         }
2054
2055         /*
2056          * Rebuild group relationship based on the group_desc
2057          */
2058         session = container_of(ph, struct perf_session, header);
2059         session->evlist->nr_groups = nr_groups;
2060
2061         i = nr = 0;
2062         evlist__for_each_entry(session->evlist, evsel) {
2063                 if (evsel->idx == (int) desc[i].leader_idx) {
2064                         evsel->leader = evsel;
2065                         /* {anon_group} is a dummy name */
2066                         if (strcmp(desc[i].name, "{anon_group}")) {
2067                                 evsel->group_name = desc[i].name;
2068                                 desc[i].name = NULL;
2069                         }
2070                         evsel->nr_members = desc[i].nr_members;
2071
2072                         if (i >= nr_groups || nr > 0) {
2073                                 pr_debug("invalid group desc\n");
2074                                 goto out_free;
2075                         }
2076
2077                         leader = evsel;
2078                         nr = evsel->nr_members - 1;
2079                         i++;
2080                 } else if (nr) {
2081                         /* This is a group member */
2082                         evsel->leader = leader;
2083
2084                         nr--;
2085                 }
2086         }
2087
2088         if (i != nr_groups || nr != 0) {
2089                 pr_debug("invalid group desc\n");
2090                 goto out_free;
2091         }
2092
2093         ret = 0;
2094 out_free:
2095         for (i = 0; i < nr_groups; i++)
2096                 zfree(&desc[i].name);
2097         free(desc);
2098
2099         return ret;
2100 }
2101
2102 static int process_auxtrace(struct perf_file_section *section,
2103                             struct perf_header *ph, int fd,
2104                             void *data __maybe_unused)
2105 {
2106         struct perf_session *session;
2107         int err;
2108
2109         session = container_of(ph, struct perf_session, header);
2110
2111         err = auxtrace_index__process(fd, section->size, session,
2112                                       ph->needs_swap);
2113         if (err < 0)
2114                 pr_err("Failed to process auxtrace index\n");
2115         return err;
2116 }
2117
2118 static int process_cache(struct perf_file_section *section __maybe_unused,
2119                          struct perf_header *ph __maybe_unused, int fd __maybe_unused,
2120                          void *data __maybe_unused)
2121 {
2122         struct cpu_cache_level *caches;
2123         u32 cnt, i, version;
2124
2125         if (readn(fd, &version, sizeof(version)) != sizeof(version))
2126                 return -1;
2127
2128         if (ph->needs_swap)
2129                 version = bswap_32(version);
2130
2131         if (version != 1)
2132                 return -1;
2133
2134         if (readn(fd, &cnt, sizeof(cnt)) != sizeof(cnt))
2135                 return -1;
2136
2137         if (ph->needs_swap)
2138                 cnt = bswap_32(cnt);
2139
2140         caches = zalloc(sizeof(*caches) * cnt);
2141         if (!caches)
2142                 return -1;
2143
2144         for (i = 0; i < cnt; i++) {
2145                 struct cpu_cache_level c;
2146
2147                 #define _R(v)                                           \
2148                         if (readn(fd, &c.v, sizeof(u32)) != sizeof(u32))\
2149                                 goto out_free_caches;                   \
2150                         if (ph->needs_swap)                             \
2151                                 c.v = bswap_32(c.v);                    \
2152
2153                 _R(level)
2154                 _R(line_size)
2155                 _R(sets)
2156                 _R(ways)
2157                 #undef _R
2158
2159                 #define _R(v)                           \
2160                         c.v = do_read_string(fd, ph);   \
2161                         if (!c.v)                       \
2162                                 goto out_free_caches;
2163
2164                 _R(type)
2165                 _R(size)
2166                 _R(map)
2167                 #undef _R
2168
2169                 caches[i] = c;
2170         }
2171
2172         ph->env.caches = caches;
2173         ph->env.caches_cnt = cnt;
2174         return 0;
2175 out_free_caches:
2176         free(caches);
2177         return -1;
2178 }
2179
2180 struct feature_ops {
2181         int (*write)(int fd, struct perf_header *h, struct perf_evlist *evlist);
2182         void (*print)(struct perf_header *h, int fd, FILE *fp);
2183         int (*process)(struct perf_file_section *section,
2184                        struct perf_header *h, int fd, void *data);
2185         const char *name;
2186         bool full_only;
2187 };
2188
2189 #define FEAT_OPA(n, func) \
2190         [n] = { .name = #n, .write = write_##func, .print = print_##func }
2191 #define FEAT_OPP(n, func) \
2192         [n] = { .name = #n, .write = write_##func, .print = print_##func, \
2193                 .process = process_##func }
2194 #define FEAT_OPF(n, func) \
2195         [n] = { .name = #n, .write = write_##func, .print = print_##func, \
2196                 .process = process_##func, .full_only = true }
2197
2198 /* feature_ops not implemented: */
2199 #define print_tracing_data      NULL
2200 #define print_build_id          NULL
2201
2202 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2203         FEAT_OPP(HEADER_TRACING_DATA,   tracing_data),
2204         FEAT_OPP(HEADER_BUILD_ID,       build_id),
2205         FEAT_OPP(HEADER_HOSTNAME,       hostname),
2206         FEAT_OPP(HEADER_OSRELEASE,      osrelease),
2207         FEAT_OPP(HEADER_VERSION,        version),
2208         FEAT_OPP(HEADER_ARCH,           arch),
2209         FEAT_OPP(HEADER_NRCPUS,         nrcpus),
2210         FEAT_OPP(HEADER_CPUDESC,        cpudesc),
2211         FEAT_OPP(HEADER_CPUID,          cpuid),
2212         FEAT_OPP(HEADER_TOTAL_MEM,      total_mem),
2213         FEAT_OPP(HEADER_EVENT_DESC,     event_desc),
2214         FEAT_OPP(HEADER_CMDLINE,        cmdline),
2215         FEAT_OPF(HEADER_CPU_TOPOLOGY,   cpu_topology),
2216         FEAT_OPF(HEADER_NUMA_TOPOLOGY,  numa_topology),
2217         FEAT_OPA(HEADER_BRANCH_STACK,   branch_stack),
2218         FEAT_OPP(HEADER_PMU_MAPPINGS,   pmu_mappings),
2219         FEAT_OPP(HEADER_GROUP_DESC,     group_desc),
2220         FEAT_OPP(HEADER_AUXTRACE,       auxtrace),
2221         FEAT_OPA(HEADER_STAT,           stat),
2222         FEAT_OPF(HEADER_CACHE,          cache),
2223 };
2224
2225 struct header_print_data {
2226         FILE *fp;
2227         bool full; /* extended list of headers */
2228 };
2229
2230 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2231                                            struct perf_header *ph,
2232                                            int feat, int fd, void *data)
2233 {
2234         struct header_print_data *hd = data;
2235
2236         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2237                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2238                                 "%d, continuing...\n", section->offset, feat);
2239                 return 0;
2240         }
2241         if (feat >= HEADER_LAST_FEATURE) {
2242                 pr_warning("unknown feature %d\n", feat);
2243                 return 0;
2244         }
2245         if (!feat_ops[feat].print)
2246                 return 0;
2247
2248         if (!feat_ops[feat].full_only || hd->full)
2249                 feat_ops[feat].print(ph, fd, hd->fp);
2250         else
2251                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2252                         feat_ops[feat].name);
2253
2254         return 0;
2255 }
2256
2257 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2258 {
2259         struct header_print_data hd;
2260         struct perf_header *header = &session->header;
2261         int fd = perf_data_file__fd(session->file);
2262         struct stat st;
2263         int ret, bit;
2264
2265         hd.fp = fp;
2266         hd.full = full;
2267
2268         ret = fstat(fd, &st);
2269         if (ret == -1)
2270                 return -1;
2271
2272         fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
2273
2274         perf_header__process_sections(header, fd, &hd,
2275                                       perf_file_section__fprintf_info);
2276
2277         fprintf(fp, "# missing features: ");
2278         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2279                 if (bit)
2280                         fprintf(fp, "%s ", feat_ops[bit].name);
2281         }
2282
2283         fprintf(fp, "\n");
2284         return 0;
2285 }
2286
2287 static int do_write_feat(int fd, struct perf_header *h, int type,
2288                          struct perf_file_section **p,
2289                          struct perf_evlist *evlist)
2290 {
2291         int err;
2292         int ret = 0;
2293
2294         if (perf_header__has_feat(h, type)) {
2295                 if (!feat_ops[type].write)
2296                         return -1;
2297
2298                 (*p)->offset = lseek(fd, 0, SEEK_CUR);
2299
2300                 err = feat_ops[type].write(fd, h, evlist);
2301                 if (err < 0) {
2302                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2303
2304                         /* undo anything written */
2305                         lseek(fd, (*p)->offset, SEEK_SET);
2306
2307                         return -1;
2308                 }
2309                 (*p)->size = lseek(fd, 0, SEEK_CUR) - (*p)->offset;
2310                 (*p)++;
2311         }
2312         return ret;
2313 }
2314
2315 static int perf_header__adds_write(struct perf_header *header,
2316                                    struct perf_evlist *evlist, int fd)
2317 {
2318         int nr_sections;
2319         struct perf_file_section *feat_sec, *p;
2320         int sec_size;
2321         u64 sec_start;
2322         int feat;
2323         int err;
2324
2325         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2326         if (!nr_sections)
2327                 return 0;
2328
2329         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2330         if (feat_sec == NULL)
2331                 return -ENOMEM;
2332
2333         sec_size = sizeof(*feat_sec) * nr_sections;
2334
2335         sec_start = header->feat_offset;
2336         lseek(fd, sec_start + sec_size, SEEK_SET);
2337
2338         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2339                 if (do_write_feat(fd, header, feat, &p, evlist))
2340                         perf_header__clear_feat(header, feat);
2341         }
2342
2343         lseek(fd, sec_start, SEEK_SET);
2344         /*
2345          * may write more than needed due to dropped feature, but
2346          * this is okay, reader will skip the mising entries
2347          */
2348         err = do_write(fd, feat_sec, sec_size);
2349         if (err < 0)
2350                 pr_debug("failed to write feature section\n");
2351         free(feat_sec);
2352         return err;
2353 }
2354
2355 int perf_header__write_pipe(int fd)
2356 {
2357         struct perf_pipe_file_header f_header;
2358         int err;
2359
2360         f_header = (struct perf_pipe_file_header){
2361                 .magic     = PERF_MAGIC,
2362                 .size      = sizeof(f_header),
2363         };
2364
2365         err = do_write(fd, &f_header, sizeof(f_header));
2366         if (err < 0) {
2367                 pr_debug("failed to write perf pipe header\n");
2368                 return err;
2369         }
2370
2371         return 0;
2372 }
2373
2374 int perf_session__write_header(struct perf_session *session,
2375                                struct perf_evlist *evlist,
2376                                int fd, bool at_exit)
2377 {
2378         struct perf_file_header f_header;
2379         struct perf_file_attr   f_attr;
2380         struct perf_header *header = &session->header;
2381         struct perf_evsel *evsel;
2382         u64 attr_offset;
2383         int err;
2384
2385         lseek(fd, sizeof(f_header), SEEK_SET);
2386
2387         evlist__for_each_entry(session->evlist, evsel) {
2388                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2389                 err = do_write(fd, evsel->id, evsel->ids * sizeof(u64));
2390                 if (err < 0) {
2391                         pr_debug("failed to write perf header\n");
2392                         return err;
2393                 }
2394         }
2395
2396         attr_offset = lseek(fd, 0, SEEK_CUR);
2397
2398         evlist__for_each_entry(evlist, evsel) {
2399                 f_attr = (struct perf_file_attr){
2400                         .attr = evsel->attr,
2401                         .ids  = {
2402                                 .offset = evsel->id_offset,
2403                                 .size   = evsel->ids * sizeof(u64),
2404                         }
2405                 };
2406                 err = do_write(fd, &f_attr, sizeof(f_attr));
2407                 if (err < 0) {
2408                         pr_debug("failed to write perf header attribute\n");
2409                         return err;
2410                 }
2411         }
2412
2413         if (!header->data_offset)
2414                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2415         header->feat_offset = header->data_offset + header->data_size;
2416
2417         if (at_exit) {
2418                 err = perf_header__adds_write(header, evlist, fd);
2419                 if (err < 0)
2420                         return err;
2421         }
2422
2423         f_header = (struct perf_file_header){
2424                 .magic     = PERF_MAGIC,
2425                 .size      = sizeof(f_header),
2426                 .attr_size = sizeof(f_attr),
2427                 .attrs = {
2428                         .offset = attr_offset,
2429                         .size   = evlist->nr_entries * sizeof(f_attr),
2430                 },
2431                 .data = {
2432                         .offset = header->data_offset,
2433                         .size   = header->data_size,
2434                 },
2435                 /* event_types is ignored, store zeros */
2436         };
2437
2438         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2439
2440         lseek(fd, 0, SEEK_SET);
2441         err = do_write(fd, &f_header, sizeof(f_header));
2442         if (err < 0) {
2443                 pr_debug("failed to write perf header\n");
2444                 return err;
2445         }
2446         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2447
2448         return 0;
2449 }
2450
2451 static int perf_header__getbuffer64(struct perf_header *header,
2452                                     int fd, void *buf, size_t size)
2453 {
2454         if (readn(fd, buf, size) <= 0)
2455                 return -1;
2456
2457         if (header->needs_swap)
2458                 mem_bswap_64(buf, size);
2459
2460         return 0;
2461 }
2462
2463 int perf_header__process_sections(struct perf_header *header, int fd,
2464                                   void *data,
2465                                   int (*process)(struct perf_file_section *section,
2466                                                  struct perf_header *ph,
2467                                                  int feat, int fd, void *data))
2468 {
2469         struct perf_file_section *feat_sec, *sec;
2470         int nr_sections;
2471         int sec_size;
2472         int feat;
2473         int err;
2474
2475         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2476         if (!nr_sections)
2477                 return 0;
2478
2479         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2480         if (!feat_sec)
2481                 return -1;
2482
2483         sec_size = sizeof(*feat_sec) * nr_sections;
2484
2485         lseek(fd, header->feat_offset, SEEK_SET);
2486
2487         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2488         if (err < 0)
2489                 goto out_free;
2490
2491         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2492                 err = process(sec++, header, feat, fd, data);
2493                 if (err < 0)
2494                         goto out_free;
2495         }
2496         err = 0;
2497 out_free:
2498         free(feat_sec);
2499         return err;
2500 }
2501
2502 static const int attr_file_abi_sizes[] = {
2503         [0] = PERF_ATTR_SIZE_VER0,
2504         [1] = PERF_ATTR_SIZE_VER1,
2505         [2] = PERF_ATTR_SIZE_VER2,
2506         [3] = PERF_ATTR_SIZE_VER3,
2507         [4] = PERF_ATTR_SIZE_VER4,
2508         0,
2509 };
2510
2511 /*
2512  * In the legacy file format, the magic number is not used to encode endianness.
2513  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2514  * on ABI revisions, we need to try all combinations for all endianness to
2515  * detect the endianness.
2516  */
2517 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2518 {
2519         uint64_t ref_size, attr_size;
2520         int i;
2521
2522         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2523                 ref_size = attr_file_abi_sizes[i]
2524                          + sizeof(struct perf_file_section);
2525                 if (hdr_sz != ref_size) {
2526                         attr_size = bswap_64(hdr_sz);
2527                         if (attr_size != ref_size)
2528                                 continue;
2529
2530                         ph->needs_swap = true;
2531                 }
2532                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2533                          i,
2534                          ph->needs_swap);
2535                 return 0;
2536         }
2537         /* could not determine endianness */
2538         return -1;
2539 }
2540
2541 #define PERF_PIPE_HDR_VER0      16
2542
2543 static const size_t attr_pipe_abi_sizes[] = {
2544         [0] = PERF_PIPE_HDR_VER0,
2545         0,
2546 };
2547
2548 /*
2549  * In the legacy pipe format, there is an implicit assumption that endiannesss
2550  * between host recording the samples, and host parsing the samples is the
2551  * same. This is not always the case given that the pipe output may always be
2552  * redirected into a file and analyzed on a different machine with possibly a
2553  * different endianness and perf_event ABI revsions in the perf tool itself.
2554  */
2555 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2556 {
2557         u64 attr_size;
2558         int i;
2559
2560         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2561                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
2562                         attr_size = bswap_64(hdr_sz);
2563                         if (attr_size != hdr_sz)
2564                                 continue;
2565
2566                         ph->needs_swap = true;
2567                 }
2568                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
2569                 return 0;
2570         }
2571         return -1;
2572 }
2573
2574 bool is_perf_magic(u64 magic)
2575 {
2576         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2577                 || magic == __perf_magic2
2578                 || magic == __perf_magic2_sw)
2579                 return true;
2580
2581         return false;
2582 }
2583
2584 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2585                               bool is_pipe, struct perf_header *ph)
2586 {
2587         int ret;
2588
2589         /* check for legacy format */
2590         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2591         if (ret == 0) {
2592                 ph->version = PERF_HEADER_VERSION_1;
2593                 pr_debug("legacy perf.data format\n");
2594                 if (is_pipe)
2595                         return try_all_pipe_abis(hdr_sz, ph);
2596
2597                 return try_all_file_abis(hdr_sz, ph);
2598         }
2599         /*
2600          * the new magic number serves two purposes:
2601          * - unique number to identify actual perf.data files
2602          * - encode endianness of file
2603          */
2604         ph->version = PERF_HEADER_VERSION_2;
2605
2606         /* check magic number with one endianness */
2607         if (magic == __perf_magic2)
2608                 return 0;
2609
2610         /* check magic number with opposite endianness */
2611         if (magic != __perf_magic2_sw)
2612                 return -1;
2613
2614         ph->needs_swap = true;
2615
2616         return 0;
2617 }
2618
2619 int perf_file_header__read(struct perf_file_header *header,
2620                            struct perf_header *ph, int fd)
2621 {
2622         ssize_t ret;
2623
2624         lseek(fd, 0, SEEK_SET);
2625
2626         ret = readn(fd, header, sizeof(*header));
2627         if (ret <= 0)
2628                 return -1;
2629
2630         if (check_magic_endian(header->magic,
2631                                header->attr_size, false, ph) < 0) {
2632                 pr_debug("magic/endian check failed\n");
2633                 return -1;
2634         }
2635
2636         if (ph->needs_swap) {
2637                 mem_bswap_64(header, offsetof(struct perf_file_header,
2638                              adds_features));
2639         }
2640
2641         if (header->size != sizeof(*header)) {
2642                 /* Support the previous format */
2643                 if (header->size == offsetof(typeof(*header), adds_features))
2644                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2645                 else
2646                         return -1;
2647         } else if (ph->needs_swap) {
2648                 /*
2649                  * feature bitmap is declared as an array of unsigned longs --
2650                  * not good since its size can differ between the host that
2651                  * generated the data file and the host analyzing the file.
2652                  *
2653                  * We need to handle endianness, but we don't know the size of
2654                  * the unsigned long where the file was generated. Take a best
2655                  * guess at determining it: try 64-bit swap first (ie., file
2656                  * created on a 64-bit host), and check if the hostname feature
2657                  * bit is set (this feature bit is forced on as of fbe96f2).
2658                  * If the bit is not, undo the 64-bit swap and try a 32-bit
2659                  * swap. If the hostname bit is still not set (e.g., older data
2660                  * file), punt and fallback to the original behavior --
2661                  * clearing all feature bits and setting buildid.
2662                  */
2663                 mem_bswap_64(&header->adds_features,
2664                             BITS_TO_U64(HEADER_FEAT_BITS));
2665
2666                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2667                         /* unswap as u64 */
2668                         mem_bswap_64(&header->adds_features,
2669                                     BITS_TO_U64(HEADER_FEAT_BITS));
2670
2671                         /* unswap as u32 */
2672                         mem_bswap_32(&header->adds_features,
2673                                     BITS_TO_U32(HEADER_FEAT_BITS));
2674                 }
2675
2676                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2677                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2678                         set_bit(HEADER_BUILD_ID, header->adds_features);
2679                 }
2680         }
2681
2682         memcpy(&ph->adds_features, &header->adds_features,
2683                sizeof(ph->adds_features));
2684
2685         ph->data_offset  = header->data.offset;
2686         ph->data_size    = header->data.size;
2687         ph->feat_offset  = header->data.offset + header->data.size;
2688         return 0;
2689 }
2690
2691 static int perf_file_section__process(struct perf_file_section *section,
2692                                       struct perf_header *ph,
2693                                       int feat, int fd, void *data)
2694 {
2695         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2696                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2697                           "%d, continuing...\n", section->offset, feat);
2698                 return 0;
2699         }
2700
2701         if (feat >= HEADER_LAST_FEATURE) {
2702                 pr_debug("unknown feature %d, continuing...\n", feat);
2703                 return 0;
2704         }
2705
2706         if (!feat_ops[feat].process)
2707                 return 0;
2708
2709         return feat_ops[feat].process(section, ph, fd, data);
2710 }
2711
2712 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
2713                                        struct perf_header *ph, int fd,
2714                                        bool repipe)
2715 {
2716         ssize_t ret;
2717
2718         ret = readn(fd, header, sizeof(*header));
2719         if (ret <= 0)
2720                 return -1;
2721
2722         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
2723                 pr_debug("endian/magic failed\n");
2724                 return -1;
2725         }
2726
2727         if (ph->needs_swap)
2728                 header->size = bswap_64(header->size);
2729
2730         if (repipe && do_write(STDOUT_FILENO, header, sizeof(*header)) < 0)
2731                 return -1;
2732
2733         return 0;
2734 }
2735
2736 static int perf_header__read_pipe(struct perf_session *session)
2737 {
2738         struct perf_header *header = &session->header;
2739         struct perf_pipe_file_header f_header;
2740
2741         if (perf_file_header__read_pipe(&f_header, header,
2742                                         perf_data_file__fd(session->file),
2743                                         session->repipe) < 0) {
2744                 pr_debug("incompatible file format\n");
2745                 return -EINVAL;
2746         }
2747
2748         return 0;
2749 }
2750
2751 static int read_attr(int fd, struct perf_header *ph,
2752                      struct perf_file_attr *f_attr)
2753 {
2754         struct perf_event_attr *attr = &f_attr->attr;
2755         size_t sz, left;
2756         size_t our_sz = sizeof(f_attr->attr);
2757         ssize_t ret;
2758
2759         memset(f_attr, 0, sizeof(*f_attr));
2760
2761         /* read minimal guaranteed structure */
2762         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
2763         if (ret <= 0) {
2764                 pr_debug("cannot read %d bytes of header attr\n",
2765                          PERF_ATTR_SIZE_VER0);
2766                 return -1;
2767         }
2768
2769         /* on file perf_event_attr size */
2770         sz = attr->size;
2771
2772         if (ph->needs_swap)
2773                 sz = bswap_32(sz);
2774
2775         if (sz == 0) {
2776                 /* assume ABI0 */
2777                 sz =  PERF_ATTR_SIZE_VER0;
2778         } else if (sz > our_sz) {
2779                 pr_debug("file uses a more recent and unsupported ABI"
2780                          " (%zu bytes extra)\n", sz - our_sz);
2781                 return -1;
2782         }
2783         /* what we have not yet read and that we know about */
2784         left = sz - PERF_ATTR_SIZE_VER0;
2785         if (left) {
2786                 void *ptr = attr;
2787                 ptr += PERF_ATTR_SIZE_VER0;
2788
2789                 ret = readn(fd, ptr, left);
2790         }
2791         /* read perf_file_section, ids are read in caller */
2792         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
2793
2794         return ret <= 0 ? -1 : 0;
2795 }
2796
2797 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
2798                                                 struct pevent *pevent)
2799 {
2800         struct event_format *event;
2801         char bf[128];
2802
2803         /* already prepared */
2804         if (evsel->tp_format)
2805                 return 0;
2806
2807         if (pevent == NULL) {
2808                 pr_debug("broken or missing trace data\n");
2809                 return -1;
2810         }
2811
2812         event = pevent_find_event(pevent, evsel->attr.config);
2813         if (event == NULL) {
2814                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
2815                 return -1;
2816         }
2817
2818         if (!evsel->name) {
2819                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
2820                 evsel->name = strdup(bf);
2821                 if (evsel->name == NULL)
2822                         return -1;
2823         }
2824
2825         evsel->tp_format = event;
2826         return 0;
2827 }
2828
2829 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
2830                                                   struct pevent *pevent)
2831 {
2832         struct perf_evsel *pos;
2833
2834         evlist__for_each_entry(evlist, pos) {
2835                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
2836                     perf_evsel__prepare_tracepoint_event(pos, pevent))
2837                         return -1;
2838         }
2839
2840         return 0;
2841 }
2842
2843 int perf_session__read_header(struct perf_session *session)
2844 {
2845         struct perf_data_file *file = session->file;
2846         struct perf_header *header = &session->header;
2847         struct perf_file_header f_header;
2848         struct perf_file_attr   f_attr;
2849         u64                     f_id;
2850         int nr_attrs, nr_ids, i, j;
2851         int fd = perf_data_file__fd(file);
2852
2853         session->evlist = perf_evlist__new();
2854         if (session->evlist == NULL)
2855                 return -ENOMEM;
2856
2857         session->evlist->env = &header->env;
2858         session->machines.host.env = &header->env;
2859         if (perf_data_file__is_pipe(file))
2860                 return perf_header__read_pipe(session);
2861
2862         if (perf_file_header__read(&f_header, header, fd) < 0)
2863                 return -EINVAL;
2864
2865         /*
2866          * Sanity check that perf.data was written cleanly; data size is
2867          * initialized to 0 and updated only if the on_exit function is run.
2868          * If data size is still 0 then the file contains only partial
2869          * information.  Just warn user and process it as much as it can.
2870          */
2871         if (f_header.data.size == 0) {
2872                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
2873                            "Was the 'perf record' command properly terminated?\n",
2874                            file->path);
2875         }
2876
2877         nr_attrs = f_header.attrs.size / f_header.attr_size;
2878         lseek(fd, f_header.attrs.offset, SEEK_SET);
2879
2880         for (i = 0; i < nr_attrs; i++) {
2881                 struct perf_evsel *evsel;
2882                 off_t tmp;
2883
2884                 if (read_attr(fd, header, &f_attr) < 0)
2885                         goto out_errno;
2886
2887                 if (header->needs_swap) {
2888                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
2889                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
2890                         perf_event__attr_swap(&f_attr.attr);
2891                 }
2892
2893                 tmp = lseek(fd, 0, SEEK_CUR);
2894                 evsel = perf_evsel__new(&f_attr.attr);
2895
2896                 if (evsel == NULL)
2897                         goto out_delete_evlist;
2898
2899                 evsel->needs_swap = header->needs_swap;
2900                 /*
2901                  * Do it before so that if perf_evsel__alloc_id fails, this
2902                  * entry gets purged too at perf_evlist__delete().
2903                  */
2904                 perf_evlist__add(session->evlist, evsel);
2905
2906                 nr_ids = f_attr.ids.size / sizeof(u64);
2907                 /*
2908                  * We don't have the cpu and thread maps on the header, so
2909                  * for allocating the perf_sample_id table we fake 1 cpu and
2910                  * hattr->ids threads.
2911                  */
2912                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
2913                         goto out_delete_evlist;
2914
2915                 lseek(fd, f_attr.ids.offset, SEEK_SET);
2916
2917                 for (j = 0; j < nr_ids; j++) {
2918                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
2919                                 goto out_errno;
2920
2921                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
2922                 }
2923
2924                 lseek(fd, tmp, SEEK_SET);
2925         }
2926
2927         symbol_conf.nr_events = nr_attrs;
2928
2929         perf_header__process_sections(header, fd, &session->tevent,
2930                                       perf_file_section__process);
2931
2932         if (perf_evlist__prepare_tracepoint_events(session->evlist,
2933                                                    session->tevent.pevent))
2934                 goto out_delete_evlist;
2935
2936         return 0;
2937 out_errno:
2938         return -errno;
2939
2940 out_delete_evlist:
2941         perf_evlist__delete(session->evlist);
2942         session->evlist = NULL;
2943         return -ENOMEM;
2944 }
2945
2946 int perf_event__synthesize_attr(struct perf_tool *tool,
2947                                 struct perf_event_attr *attr, u32 ids, u64 *id,
2948                                 perf_event__handler_t process)
2949 {
2950         union perf_event *ev;
2951         size_t size;
2952         int err;
2953
2954         size = sizeof(struct perf_event_attr);
2955         size = PERF_ALIGN(size, sizeof(u64));
2956         size += sizeof(struct perf_event_header);
2957         size += ids * sizeof(u64);
2958
2959         ev = malloc(size);
2960
2961         if (ev == NULL)
2962                 return -ENOMEM;
2963
2964         ev->attr.attr = *attr;
2965         memcpy(ev->attr.id, id, ids * sizeof(u64));
2966
2967         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
2968         ev->attr.header.size = (u16)size;
2969
2970         if (ev->attr.header.size == size)
2971                 err = process(tool, ev, NULL, NULL);
2972         else
2973                 err = -E2BIG;
2974
2975         free(ev);
2976
2977         return err;
2978 }
2979
2980 static struct event_update_event *
2981 event_update_event__new(size_t size, u64 type, u64 id)
2982 {
2983         struct event_update_event *ev;
2984
2985         size += sizeof(*ev);
2986         size  = PERF_ALIGN(size, sizeof(u64));
2987
2988         ev = zalloc(size);
2989         if (ev) {
2990                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
2991                 ev->header.size = (u16)size;
2992                 ev->type = type;
2993                 ev->id = id;
2994         }
2995         return ev;
2996 }
2997
2998 int
2999 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3000                                          struct perf_evsel *evsel,
3001                                          perf_event__handler_t process)
3002 {
3003         struct event_update_event *ev;
3004         size_t size = strlen(evsel->unit);
3005         int err;
3006
3007         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3008         if (ev == NULL)
3009                 return -ENOMEM;
3010
3011         strncpy(ev->data, evsel->unit, size);
3012         err = process(tool, (union perf_event *)ev, NULL, NULL);
3013         free(ev);
3014         return err;
3015 }
3016
3017 int
3018 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3019                                           struct perf_evsel *evsel,
3020                                           perf_event__handler_t process)
3021 {
3022         struct event_update_event *ev;
3023         struct event_update_event_scale *ev_data;
3024         int err;
3025
3026         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3027         if (ev == NULL)
3028                 return -ENOMEM;
3029
3030         ev_data = (struct event_update_event_scale *) ev->data;
3031         ev_data->scale = evsel->scale;
3032         err = process(tool, (union perf_event*) ev, NULL, NULL);
3033         free(ev);
3034         return err;
3035 }
3036
3037 int
3038 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3039                                          struct perf_evsel *evsel,
3040                                          perf_event__handler_t process)
3041 {
3042         struct event_update_event *ev;
3043         size_t len = strlen(evsel->name);
3044         int err;
3045
3046         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3047         if (ev == NULL)
3048                 return -ENOMEM;
3049
3050         strncpy(ev->data, evsel->name, len);
3051         err = process(tool, (union perf_event*) ev, NULL, NULL);
3052         free(ev);
3053         return err;
3054 }
3055
3056 int
3057 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3058                                         struct perf_evsel *evsel,
3059                                         perf_event__handler_t process)
3060 {
3061         size_t size = sizeof(struct event_update_event);
3062         struct event_update_event *ev;
3063         int max, err;
3064         u16 type;
3065
3066         if (!evsel->own_cpus)
3067                 return 0;
3068
3069         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3070         if (!ev)
3071                 return -ENOMEM;
3072
3073         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3074         ev->header.size = (u16)size;
3075         ev->type = PERF_EVENT_UPDATE__CPUS;
3076         ev->id   = evsel->id[0];
3077
3078         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3079                                  evsel->own_cpus,
3080                                  type, max);
3081
3082         err = process(tool, (union perf_event*) ev, NULL, NULL);
3083         free(ev);
3084         return err;
3085 }
3086
3087 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3088 {
3089         struct event_update_event *ev = &event->event_update;
3090         struct event_update_event_scale *ev_scale;
3091         struct event_update_event_cpus *ev_cpus;
3092         struct cpu_map *map;
3093         size_t ret;
3094
3095         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3096
3097         switch (ev->type) {
3098         case PERF_EVENT_UPDATE__SCALE:
3099                 ev_scale = (struct event_update_event_scale *) ev->data;
3100                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3101                 break;
3102         case PERF_EVENT_UPDATE__UNIT:
3103                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3104                 break;
3105         case PERF_EVENT_UPDATE__NAME:
3106                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3107                 break;
3108         case PERF_EVENT_UPDATE__CPUS:
3109                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3110                 ret += fprintf(fp, "... ");
3111
3112                 map = cpu_map__new_data(&ev_cpus->cpus);
3113                 if (map)
3114                         ret += cpu_map__fprintf(map, fp);
3115                 else
3116                         ret += fprintf(fp, "failed to get cpus\n");
3117                 break;
3118         default:
3119                 ret += fprintf(fp, "... unknown type\n");
3120                 break;
3121         }
3122
3123         return ret;
3124 }
3125
3126 int perf_event__synthesize_attrs(struct perf_tool *tool,
3127                                    struct perf_session *session,
3128                                    perf_event__handler_t process)
3129 {
3130         struct perf_evsel *evsel;
3131         int err = 0;
3132
3133         evlist__for_each_entry(session->evlist, evsel) {
3134                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3135                                                   evsel->id, process);
3136                 if (err) {
3137                         pr_debug("failed to create perf header attribute\n");
3138                         return err;
3139                 }
3140         }
3141
3142         return err;
3143 }
3144
3145 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3146                              union perf_event *event,
3147                              struct perf_evlist **pevlist)
3148 {
3149         u32 i, ids, n_ids;
3150         struct perf_evsel *evsel;
3151         struct perf_evlist *evlist = *pevlist;
3152
3153         if (evlist == NULL) {
3154                 *pevlist = evlist = perf_evlist__new();
3155                 if (evlist == NULL)
3156                         return -ENOMEM;
3157         }
3158
3159         evsel = perf_evsel__new(&event->attr.attr);
3160         if (evsel == NULL)
3161                 return -ENOMEM;
3162
3163         perf_evlist__add(evlist, evsel);
3164
3165         ids = event->header.size;
3166         ids -= (void *)&event->attr.id - (void *)event;
3167         n_ids = ids / sizeof(u64);
3168         /*
3169          * We don't have the cpu and thread maps on the header, so
3170          * for allocating the perf_sample_id table we fake 1 cpu and
3171          * hattr->ids threads.
3172          */
3173         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3174                 return -ENOMEM;
3175
3176         for (i = 0; i < n_ids; i++) {
3177                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3178         }
3179
3180         symbol_conf.nr_events = evlist->nr_entries;
3181
3182         return 0;
3183 }
3184
3185 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3186                                      union perf_event *event,
3187                                      struct perf_evlist **pevlist)
3188 {
3189         struct event_update_event *ev = &event->event_update;
3190         struct event_update_event_scale *ev_scale;
3191         struct event_update_event_cpus *ev_cpus;
3192         struct perf_evlist *evlist;
3193         struct perf_evsel *evsel;
3194         struct cpu_map *map;
3195
3196         if (!pevlist || *pevlist == NULL)
3197                 return -EINVAL;
3198
3199         evlist = *pevlist;
3200
3201         evsel = perf_evlist__id2evsel(evlist, ev->id);
3202         if (evsel == NULL)
3203                 return -EINVAL;
3204
3205         switch (ev->type) {
3206         case PERF_EVENT_UPDATE__UNIT:
3207                 evsel->unit = strdup(ev->data);
3208                 break;
3209         case PERF_EVENT_UPDATE__NAME:
3210                 evsel->name = strdup(ev->data);
3211                 break;
3212         case PERF_EVENT_UPDATE__SCALE:
3213                 ev_scale = (struct event_update_event_scale *) ev->data;
3214                 evsel->scale = ev_scale->scale;
3215                 break;
3216         case PERF_EVENT_UPDATE__CPUS:
3217                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3218
3219                 map = cpu_map__new_data(&ev_cpus->cpus);
3220                 if (map)
3221                         evsel->own_cpus = map;
3222                 else
3223                         pr_err("failed to get event_update cpus\n");
3224         default:
3225                 break;
3226         }
3227
3228         return 0;
3229 }
3230
3231 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3232                                         struct perf_evlist *evlist,
3233                                         perf_event__handler_t process)
3234 {
3235         union perf_event ev;
3236         struct tracing_data *tdata;
3237         ssize_t size = 0, aligned_size = 0, padding;
3238         int err __maybe_unused = 0;
3239
3240         /*
3241          * We are going to store the size of the data followed
3242          * by the data contents. Since the fd descriptor is a pipe,
3243          * we cannot seek back to store the size of the data once
3244          * we know it. Instead we:
3245          *
3246          * - write the tracing data to the temp file
3247          * - get/write the data size to pipe
3248          * - write the tracing data from the temp file
3249          *   to the pipe
3250          */
3251         tdata = tracing_data_get(&evlist->entries, fd, true);
3252         if (!tdata)
3253                 return -1;
3254
3255         memset(&ev, 0, sizeof(ev));
3256
3257         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3258         size = tdata->size;
3259         aligned_size = PERF_ALIGN(size, sizeof(u64));
3260         padding = aligned_size - size;
3261         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3262         ev.tracing_data.size = aligned_size;
3263
3264         process(tool, &ev, NULL, NULL);
3265
3266         /*
3267          * The put function will copy all the tracing data
3268          * stored in temp file to the pipe.
3269          */
3270         tracing_data_put(tdata);
3271
3272         write_padded(fd, NULL, 0, padding);
3273
3274         return aligned_size;
3275 }
3276
3277 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3278                                      union perf_event *event,
3279                                      struct perf_session *session)
3280 {
3281         ssize_t size_read, padding, size = event->tracing_data.size;
3282         int fd = perf_data_file__fd(session->file);
3283         off_t offset = lseek(fd, 0, SEEK_CUR);
3284         char buf[BUFSIZ];
3285
3286         /* setup for reading amidst mmap */
3287         lseek(fd, offset + sizeof(struct tracing_data_event),
3288               SEEK_SET);
3289
3290         size_read = trace_report(fd, &session->tevent,
3291                                  session->repipe);
3292         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3293
3294         if (readn(fd, buf, padding) < 0) {
3295                 pr_err("%s: reading input file", __func__);
3296                 return -1;
3297         }
3298         if (session->repipe) {
3299                 int retw = write(STDOUT_FILENO, buf, padding);
3300                 if (retw <= 0 || retw != padding) {
3301                         pr_err("%s: repiping tracing data padding", __func__);
3302                         return -1;
3303                 }
3304         }
3305
3306         if (size_read + padding != size) {
3307                 pr_err("%s: tracing data size mismatch", __func__);
3308                 return -1;
3309         }
3310
3311         perf_evlist__prepare_tracepoint_events(session->evlist,
3312                                                session->tevent.pevent);
3313
3314         return size_read + padding;
3315 }
3316
3317 int perf_event__synthesize_build_id(struct perf_tool *tool,
3318                                     struct dso *pos, u16 misc,
3319                                     perf_event__handler_t process,
3320                                     struct machine *machine)
3321 {
3322         union perf_event ev;
3323         size_t len;
3324         int err = 0;
3325
3326         if (!pos->hit)
3327                 return err;
3328
3329         memset(&ev, 0, sizeof(ev));
3330
3331         len = pos->long_name_len + 1;
3332         len = PERF_ALIGN(len, NAME_ALIGN);
3333         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3334         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3335         ev.build_id.header.misc = misc;
3336         ev.build_id.pid = machine->pid;
3337         ev.build_id.header.size = sizeof(ev.build_id) + len;
3338         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3339
3340         err = process(tool, &ev, NULL, machine);
3341
3342         return err;
3343 }
3344
3345 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3346                                  union perf_event *event,
3347                                  struct perf_session *session)
3348 {
3349         __event_process_build_id(&event->build_id,
3350                                  event->build_id.filename,
3351                                  session);
3352         return 0;
3353 }