]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/hist.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[karo-tx-linux.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "sort.h"
7 #include "evlist.h"
8 #include "evsel.h"
9 #include "annotate.h"
10 #include "ui/progress.h"
11 #include <math.h>
12
13 static bool hists__filter_entry_by_dso(struct hists *hists,
14                                        struct hist_entry *he);
15 static bool hists__filter_entry_by_thread(struct hists *hists,
16                                           struct hist_entry *he);
17 static bool hists__filter_entry_by_symbol(struct hists *hists,
18                                           struct hist_entry *he);
19 static bool hists__filter_entry_by_socket(struct hists *hists,
20                                           struct hist_entry *he);
21
22 u16 hists__col_len(struct hists *hists, enum hist_column col)
23 {
24         return hists->col_len[col];
25 }
26
27 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
28 {
29         hists->col_len[col] = len;
30 }
31
32 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34         if (len > hists__col_len(hists, col)) {
35                 hists__set_col_len(hists, col, len);
36                 return true;
37         }
38         return false;
39 }
40
41 void hists__reset_col_len(struct hists *hists)
42 {
43         enum hist_column col;
44
45         for (col = 0; col < HISTC_NR_COLS; ++col)
46                 hists__set_col_len(hists, col, 0);
47 }
48
49 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
50 {
51         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
52
53         if (hists__col_len(hists, dso) < unresolved_col_width &&
54             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
55             !symbol_conf.dso_list)
56                 hists__set_col_len(hists, dso, unresolved_col_width);
57 }
58
59 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
60 {
61         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
62         int symlen;
63         u16 len;
64
65         /*
66          * +4 accounts for '[x] ' priv level info
67          * +2 accounts for 0x prefix on raw addresses
68          * +3 accounts for ' y ' symtab origin info
69          */
70         if (h->ms.sym) {
71                 symlen = h->ms.sym->namelen + 4;
72                 if (verbose)
73                         symlen += BITS_PER_LONG / 4 + 2 + 3;
74                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
75         } else {
76                 symlen = unresolved_col_width + 4 + 2;
77                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
78                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
79         }
80
81         len = thread__comm_len(h->thread);
82         if (hists__new_col_len(hists, HISTC_COMM, len))
83                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
84
85         if (h->ms.map) {
86                 len = dso__name_len(h->ms.map->dso);
87                 hists__new_col_len(hists, HISTC_DSO, len);
88         }
89
90         if (h->parent)
91                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
92
93         if (h->branch_info) {
94                 if (h->branch_info->from.sym) {
95                         symlen = (int)h->branch_info->from.sym->namelen + 4;
96                         if (verbose)
97                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
98                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
99
100                         symlen = dso__name_len(h->branch_info->from.map->dso);
101                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
102                 } else {
103                         symlen = unresolved_col_width + 4 + 2;
104                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
106                 }
107
108                 if (h->branch_info->to.sym) {
109                         symlen = (int)h->branch_info->to.sym->namelen + 4;
110                         if (verbose)
111                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
112                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
113
114                         symlen = dso__name_len(h->branch_info->to.map->dso);
115                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
116                 } else {
117                         symlen = unresolved_col_width + 4 + 2;
118                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
120                 }
121
122                 if (h->branch_info->srcline_from)
123                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
124                                         strlen(h->branch_info->srcline_from));
125                 if (h->branch_info->srcline_to)
126                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
127                                         strlen(h->branch_info->srcline_to));
128         }
129
130         if (h->mem_info) {
131                 if (h->mem_info->daddr.sym) {
132                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
133                                + unresolved_col_width + 2;
134                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
135                                            symlen);
136                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
137                                            symlen + 1);
138                 } else {
139                         symlen = unresolved_col_width + 4 + 2;
140                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141                                            symlen);
142                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143                                            symlen);
144                 }
145
146                 if (h->mem_info->iaddr.sym) {
147                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
148                                + unresolved_col_width + 2;
149                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
150                                            symlen);
151                 } else {
152                         symlen = unresolved_col_width + 4 + 2;
153                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
154                                            symlen);
155                 }
156
157                 if (h->mem_info->daddr.map) {
158                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
159                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
160                                            symlen);
161                 } else {
162                         symlen = unresolved_col_width + 4 + 2;
163                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
164                 }
165         } else {
166                 symlen = unresolved_col_width + 4 + 2;
167                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
168                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
169                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170         }
171
172         hists__new_col_len(hists, HISTC_CPU, 3);
173         hists__new_col_len(hists, HISTC_SOCKET, 6);
174         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
175         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
176         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
177         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
178         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
179         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
180
181         if (h->srcline) {
182                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
183                 hists__new_col_len(hists, HISTC_SRCLINE, len);
184         }
185
186         if (h->srcfile)
187                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
188
189         if (h->transaction)
190                 hists__new_col_len(hists, HISTC_TRANSACTION,
191                                    hist_entry__transaction_len());
192
193         if (h->trace_output)
194                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
195 }
196
197 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
198 {
199         struct rb_node *next = rb_first(&hists->entries);
200         struct hist_entry *n;
201         int row = 0;
202
203         hists__reset_col_len(hists);
204
205         while (next && row++ < max_rows) {
206                 n = rb_entry(next, struct hist_entry, rb_node);
207                 if (!n->filtered)
208                         hists__calc_col_len(hists, n);
209                 next = rb_next(&n->rb_node);
210         }
211 }
212
213 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
214                                         unsigned int cpumode, u64 period)
215 {
216         switch (cpumode) {
217         case PERF_RECORD_MISC_KERNEL:
218                 he_stat->period_sys += period;
219                 break;
220         case PERF_RECORD_MISC_USER:
221                 he_stat->period_us += period;
222                 break;
223         case PERF_RECORD_MISC_GUEST_KERNEL:
224                 he_stat->period_guest_sys += period;
225                 break;
226         case PERF_RECORD_MISC_GUEST_USER:
227                 he_stat->period_guest_us += period;
228                 break;
229         default:
230                 break;
231         }
232 }
233
234 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
235                                 u64 weight)
236 {
237
238         he_stat->period         += period;
239         he_stat->weight         += weight;
240         he_stat->nr_events      += 1;
241 }
242
243 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
244 {
245         dest->period            += src->period;
246         dest->period_sys        += src->period_sys;
247         dest->period_us         += src->period_us;
248         dest->period_guest_sys  += src->period_guest_sys;
249         dest->period_guest_us   += src->period_guest_us;
250         dest->nr_events         += src->nr_events;
251         dest->weight            += src->weight;
252 }
253
254 static void he_stat__decay(struct he_stat *he_stat)
255 {
256         he_stat->period = (he_stat->period * 7) / 8;
257         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
258         /* XXX need decay for weight too? */
259 }
260
261 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
262
263 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
264 {
265         u64 prev_period = he->stat.period;
266         u64 diff;
267
268         if (prev_period == 0)
269                 return true;
270
271         he_stat__decay(&he->stat);
272         if (symbol_conf.cumulate_callchain)
273                 he_stat__decay(he->stat_acc);
274         decay_callchain(he->callchain);
275
276         diff = prev_period - he->stat.period;
277
278         if (!he->depth) {
279                 hists->stats.total_period -= diff;
280                 if (!he->filtered)
281                         hists->stats.total_non_filtered_period -= diff;
282         }
283
284         if (!he->leaf) {
285                 struct hist_entry *child;
286                 struct rb_node *node = rb_first(&he->hroot_out);
287                 while (node) {
288                         child = rb_entry(node, struct hist_entry, rb_node);
289                         node = rb_next(node);
290
291                         if (hists__decay_entry(hists, child))
292                                 hists__delete_entry(hists, child);
293                 }
294         }
295
296         return he->stat.period == 0;
297 }
298
299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
300 {
301         struct rb_root *root_in;
302         struct rb_root *root_out;
303
304         if (he->parent_he) {
305                 root_in  = &he->parent_he->hroot_in;
306                 root_out = &he->parent_he->hroot_out;
307         } else {
308                 if (hists__has(hists, need_collapse))
309                         root_in = &hists->entries_collapsed;
310                 else
311                         root_in = hists->entries_in;
312                 root_out = &hists->entries;
313         }
314
315         rb_erase(&he->rb_node_in, root_in);
316         rb_erase(&he->rb_node, root_out);
317
318         --hists->nr_entries;
319         if (!he->filtered)
320                 --hists->nr_non_filtered_entries;
321
322         hist_entry__delete(he);
323 }
324
325 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
326 {
327         struct rb_node *next = rb_first(&hists->entries);
328         struct hist_entry *n;
329
330         while (next) {
331                 n = rb_entry(next, struct hist_entry, rb_node);
332                 next = rb_next(&n->rb_node);
333                 if (((zap_user && n->level == '.') ||
334                      (zap_kernel && n->level != '.') ||
335                      hists__decay_entry(hists, n))) {
336                         hists__delete_entry(hists, n);
337                 }
338         }
339 }
340
341 void hists__delete_entries(struct hists *hists)
342 {
343         struct rb_node *next = rb_first(&hists->entries);
344         struct hist_entry *n;
345
346         while (next) {
347                 n = rb_entry(next, struct hist_entry, rb_node);
348                 next = rb_next(&n->rb_node);
349
350                 hists__delete_entry(hists, n);
351         }
352 }
353
354 /*
355  * histogram, sorted on item, collects periods
356  */
357
358 static int hist_entry__init(struct hist_entry *he,
359                             struct hist_entry *template,
360                             bool sample_self)
361 {
362         *he = *template;
363
364         if (symbol_conf.cumulate_callchain) {
365                 he->stat_acc = malloc(sizeof(he->stat));
366                 if (he->stat_acc == NULL)
367                         return -ENOMEM;
368                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369                 if (!sample_self)
370                         memset(&he->stat, 0, sizeof(he->stat));
371         }
372
373         map__get(he->ms.map);
374
375         if (he->branch_info) {
376                 /*
377                  * This branch info is (a part of) allocated from
378                  * sample__resolve_bstack() and will be freed after
379                  * adding new entries.  So we need to save a copy.
380                  */
381                 he->branch_info = malloc(sizeof(*he->branch_info));
382                 if (he->branch_info == NULL) {
383                         map__zput(he->ms.map);
384                         free(he->stat_acc);
385                         return -ENOMEM;
386                 }
387
388                 memcpy(he->branch_info, template->branch_info,
389                        sizeof(*he->branch_info));
390
391                 map__get(he->branch_info->from.map);
392                 map__get(he->branch_info->to.map);
393         }
394
395         if (he->mem_info) {
396                 map__get(he->mem_info->iaddr.map);
397                 map__get(he->mem_info->daddr.map);
398         }
399
400         if (symbol_conf.use_callchain)
401                 callchain_init(he->callchain);
402
403         if (he->raw_data) {
404                 he->raw_data = memdup(he->raw_data, he->raw_size);
405
406                 if (he->raw_data == NULL) {
407                         map__put(he->ms.map);
408                         if (he->branch_info) {
409                                 map__put(he->branch_info->from.map);
410                                 map__put(he->branch_info->to.map);
411                                 free(he->branch_info);
412                         }
413                         if (he->mem_info) {
414                                 map__put(he->mem_info->iaddr.map);
415                                 map__put(he->mem_info->daddr.map);
416                         }
417                         free(he->stat_acc);
418                         return -ENOMEM;
419                 }
420         }
421         INIT_LIST_HEAD(&he->pairs.node);
422         thread__get(he->thread);
423         he->hroot_in  = RB_ROOT;
424         he->hroot_out = RB_ROOT;
425
426         if (!symbol_conf.report_hierarchy)
427                 he->leaf = true;
428
429         return 0;
430 }
431
432 static void *hist_entry__zalloc(size_t size)
433 {
434         return zalloc(size + sizeof(struct hist_entry));
435 }
436
437 static void hist_entry__free(void *ptr)
438 {
439         free(ptr);
440 }
441
442 static struct hist_entry_ops default_ops = {
443         .new    = hist_entry__zalloc,
444         .free   = hist_entry__free,
445 };
446
447 static struct hist_entry *hist_entry__new(struct hist_entry *template,
448                                           bool sample_self)
449 {
450         struct hist_entry_ops *ops = template->ops;
451         size_t callchain_size = 0;
452         struct hist_entry *he;
453         int err = 0;
454
455         if (!ops)
456                 ops = template->ops = &default_ops;
457
458         if (symbol_conf.use_callchain)
459                 callchain_size = sizeof(struct callchain_root);
460
461         he = ops->new(callchain_size);
462         if (he) {
463                 err = hist_entry__init(he, template, sample_self);
464                 if (err) {
465                         ops->free(he);
466                         he = NULL;
467                 }
468         }
469
470         return he;
471 }
472
473 static u8 symbol__parent_filter(const struct symbol *parent)
474 {
475         if (symbol_conf.exclude_other && parent == NULL)
476                 return 1 << HIST_FILTER__PARENT;
477         return 0;
478 }
479
480 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
481 {
482         if (!symbol_conf.use_callchain)
483                 return;
484
485         he->hists->callchain_period += period;
486         if (!he->filtered)
487                 he->hists->callchain_non_filtered_period += period;
488 }
489
490 static struct hist_entry *hists__findnew_entry(struct hists *hists,
491                                                struct hist_entry *entry,
492                                                struct addr_location *al,
493                                                bool sample_self)
494 {
495         struct rb_node **p;
496         struct rb_node *parent = NULL;
497         struct hist_entry *he;
498         int64_t cmp;
499         u64 period = entry->stat.period;
500         u64 weight = entry->stat.weight;
501
502         p = &hists->entries_in->rb_node;
503
504         while (*p != NULL) {
505                 parent = *p;
506                 he = rb_entry(parent, struct hist_entry, rb_node_in);
507
508                 /*
509                  * Make sure that it receives arguments in a same order as
510                  * hist_entry__collapse() so that we can use an appropriate
511                  * function when searching an entry regardless which sort
512                  * keys were used.
513                  */
514                 cmp = hist_entry__cmp(he, entry);
515
516                 if (!cmp) {
517                         if (sample_self) {
518                                 he_stat__add_period(&he->stat, period, weight);
519                                 hist_entry__add_callchain_period(he, period);
520                         }
521                         if (symbol_conf.cumulate_callchain)
522                                 he_stat__add_period(he->stat_acc, period, weight);
523
524                         /*
525                          * This mem info was allocated from sample__resolve_mem
526                          * and will not be used anymore.
527                          */
528                         zfree(&entry->mem_info);
529
530                         /* If the map of an existing hist_entry has
531                          * become out-of-date due to an exec() or
532                          * similar, update it.  Otherwise we will
533                          * mis-adjust symbol addresses when computing
534                          * the history counter to increment.
535                          */
536                         if (he->ms.map != entry->ms.map) {
537                                 map__put(he->ms.map);
538                                 he->ms.map = map__get(entry->ms.map);
539                         }
540                         goto out;
541                 }
542
543                 if (cmp < 0)
544                         p = &(*p)->rb_left;
545                 else
546                         p = &(*p)->rb_right;
547         }
548
549         he = hist_entry__new(entry, sample_self);
550         if (!he)
551                 return NULL;
552
553         if (sample_self)
554                 hist_entry__add_callchain_period(he, period);
555         hists->nr_entries++;
556
557         rb_link_node(&he->rb_node_in, parent, p);
558         rb_insert_color(&he->rb_node_in, hists->entries_in);
559 out:
560         if (sample_self)
561                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
562         if (symbol_conf.cumulate_callchain)
563                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
564         return he;
565 }
566
567 static struct hist_entry*
568 __hists__add_entry(struct hists *hists,
569                    struct addr_location *al,
570                    struct symbol *sym_parent,
571                    struct branch_info *bi,
572                    struct mem_info *mi,
573                    struct perf_sample *sample,
574                    bool sample_self,
575                    struct hist_entry_ops *ops)
576 {
577         struct hist_entry entry = {
578                 .thread = al->thread,
579                 .comm = thread__comm(al->thread),
580                 .ms = {
581                         .map    = al->map,
582                         .sym    = al->sym,
583                 },
584                 .socket  = al->socket,
585                 .cpu     = al->cpu,
586                 .cpumode = al->cpumode,
587                 .ip      = al->addr,
588                 .level   = al->level,
589                 .stat = {
590                         .nr_events = 1,
591                         .period = sample->period,
592                         .weight = sample->weight,
593                 },
594                 .parent = sym_parent,
595                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
596                 .hists  = hists,
597                 .branch_info = bi,
598                 .mem_info = mi,
599                 .transaction = sample->transaction,
600                 .raw_data = sample->raw_data,
601                 .raw_size = sample->raw_size,
602                 .ops = ops,
603         };
604
605         return hists__findnew_entry(hists, &entry, al, sample_self);
606 }
607
608 struct hist_entry *hists__add_entry(struct hists *hists,
609                                     struct addr_location *al,
610                                     struct symbol *sym_parent,
611                                     struct branch_info *bi,
612                                     struct mem_info *mi,
613                                     struct perf_sample *sample,
614                                     bool sample_self)
615 {
616         return __hists__add_entry(hists, al, sym_parent, bi, mi,
617                                   sample, sample_self, NULL);
618 }
619
620 struct hist_entry *hists__add_entry_ops(struct hists *hists,
621                                         struct hist_entry_ops *ops,
622                                         struct addr_location *al,
623                                         struct symbol *sym_parent,
624                                         struct branch_info *bi,
625                                         struct mem_info *mi,
626                                         struct perf_sample *sample,
627                                         bool sample_self)
628 {
629         return __hists__add_entry(hists, al, sym_parent, bi, mi,
630                                   sample, sample_self, ops);
631 }
632
633 static int
634 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
635                     struct addr_location *al __maybe_unused)
636 {
637         return 0;
638 }
639
640 static int
641 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
642                         struct addr_location *al __maybe_unused)
643 {
644         return 0;
645 }
646
647 static int
648 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
649 {
650         struct perf_sample *sample = iter->sample;
651         struct mem_info *mi;
652
653         mi = sample__resolve_mem(sample, al);
654         if (mi == NULL)
655                 return -ENOMEM;
656
657         iter->priv = mi;
658         return 0;
659 }
660
661 static int
662 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
663 {
664         u64 cost;
665         struct mem_info *mi = iter->priv;
666         struct hists *hists = evsel__hists(iter->evsel);
667         struct perf_sample *sample = iter->sample;
668         struct hist_entry *he;
669
670         if (mi == NULL)
671                 return -EINVAL;
672
673         cost = sample->weight;
674         if (!cost)
675                 cost = 1;
676
677         /*
678          * must pass period=weight in order to get the correct
679          * sorting from hists__collapse_resort() which is solely
680          * based on periods. We want sorting be done on nr_events * weight
681          * and this is indirectly achieved by passing period=weight here
682          * and the he_stat__add_period() function.
683          */
684         sample->period = cost;
685
686         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
687                               sample, true);
688         if (!he)
689                 return -ENOMEM;
690
691         iter->he = he;
692         return 0;
693 }
694
695 static int
696 iter_finish_mem_entry(struct hist_entry_iter *iter,
697                       struct addr_location *al __maybe_unused)
698 {
699         struct perf_evsel *evsel = iter->evsel;
700         struct hists *hists = evsel__hists(evsel);
701         struct hist_entry *he = iter->he;
702         int err = -EINVAL;
703
704         if (he == NULL)
705                 goto out;
706
707         hists__inc_nr_samples(hists, he->filtered);
708
709         err = hist_entry__append_callchain(he, iter->sample);
710
711 out:
712         /*
713          * We don't need to free iter->priv (mem_info) here since the mem info
714          * was either already freed in hists__findnew_entry() or passed to a
715          * new hist entry by hist_entry__new().
716          */
717         iter->priv = NULL;
718
719         iter->he = NULL;
720         return err;
721 }
722
723 static int
724 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
725 {
726         struct branch_info *bi;
727         struct perf_sample *sample = iter->sample;
728
729         bi = sample__resolve_bstack(sample, al);
730         if (!bi)
731                 return -ENOMEM;
732
733         iter->curr = 0;
734         iter->total = sample->branch_stack->nr;
735
736         iter->priv = bi;
737         return 0;
738 }
739
740 static int
741 iter_add_single_branch_entry(struct hist_entry_iter *iter,
742                              struct addr_location *al __maybe_unused)
743 {
744         /* to avoid calling callback function */
745         iter->he = NULL;
746
747         return 0;
748 }
749
750 static int
751 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
752 {
753         struct branch_info *bi = iter->priv;
754         int i = iter->curr;
755
756         if (bi == NULL)
757                 return 0;
758
759         if (iter->curr >= iter->total)
760                 return 0;
761
762         al->map = bi[i].to.map;
763         al->sym = bi[i].to.sym;
764         al->addr = bi[i].to.addr;
765         return 1;
766 }
767
768 static int
769 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
770 {
771         struct branch_info *bi;
772         struct perf_evsel *evsel = iter->evsel;
773         struct hists *hists = evsel__hists(evsel);
774         struct perf_sample *sample = iter->sample;
775         struct hist_entry *he = NULL;
776         int i = iter->curr;
777         int err = 0;
778
779         bi = iter->priv;
780
781         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
782                 goto out;
783
784         /*
785          * The report shows the percentage of total branches captured
786          * and not events sampled. Thus we use a pseudo period of 1.
787          */
788         sample->period = 1;
789         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
790
791         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
792                               sample, true);
793         if (he == NULL)
794                 return -ENOMEM;
795
796         hists__inc_nr_samples(hists, he->filtered);
797
798 out:
799         iter->he = he;
800         iter->curr++;
801         return err;
802 }
803
804 static int
805 iter_finish_branch_entry(struct hist_entry_iter *iter,
806                          struct addr_location *al __maybe_unused)
807 {
808         zfree(&iter->priv);
809         iter->he = NULL;
810
811         return iter->curr >= iter->total ? 0 : -1;
812 }
813
814 static int
815 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
816                           struct addr_location *al __maybe_unused)
817 {
818         return 0;
819 }
820
821 static int
822 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
823 {
824         struct perf_evsel *evsel = iter->evsel;
825         struct perf_sample *sample = iter->sample;
826         struct hist_entry *he;
827
828         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
829                               sample, true);
830         if (he == NULL)
831                 return -ENOMEM;
832
833         iter->he = he;
834         return 0;
835 }
836
837 static int
838 iter_finish_normal_entry(struct hist_entry_iter *iter,
839                          struct addr_location *al __maybe_unused)
840 {
841         struct hist_entry *he = iter->he;
842         struct perf_evsel *evsel = iter->evsel;
843         struct perf_sample *sample = iter->sample;
844
845         if (he == NULL)
846                 return 0;
847
848         iter->he = NULL;
849
850         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
851
852         return hist_entry__append_callchain(he, sample);
853 }
854
855 static int
856 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
857                               struct addr_location *al __maybe_unused)
858 {
859         struct hist_entry **he_cache;
860
861         callchain_cursor_commit(&callchain_cursor);
862
863         /*
864          * This is for detecting cycles or recursions so that they're
865          * cumulated only one time to prevent entries more than 100%
866          * overhead.
867          */
868         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
869         if (he_cache == NULL)
870                 return -ENOMEM;
871
872         iter->priv = he_cache;
873         iter->curr = 0;
874
875         return 0;
876 }
877
878 static int
879 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
880                                  struct addr_location *al)
881 {
882         struct perf_evsel *evsel = iter->evsel;
883         struct hists *hists = evsel__hists(evsel);
884         struct perf_sample *sample = iter->sample;
885         struct hist_entry **he_cache = iter->priv;
886         struct hist_entry *he;
887         int err = 0;
888
889         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
890                               sample, true);
891         if (he == NULL)
892                 return -ENOMEM;
893
894         iter->he = he;
895         he_cache[iter->curr++] = he;
896
897         hist_entry__append_callchain(he, sample);
898
899         /*
900          * We need to re-initialize the cursor since callchain_append()
901          * advanced the cursor to the end.
902          */
903         callchain_cursor_commit(&callchain_cursor);
904
905         hists__inc_nr_samples(hists, he->filtered);
906
907         return err;
908 }
909
910 static int
911 iter_next_cumulative_entry(struct hist_entry_iter *iter,
912                            struct addr_location *al)
913 {
914         struct callchain_cursor_node *node;
915
916         node = callchain_cursor_current(&callchain_cursor);
917         if (node == NULL)
918                 return 0;
919
920         return fill_callchain_info(al, node, iter->hide_unresolved);
921 }
922
923 static int
924 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
925                                struct addr_location *al)
926 {
927         struct perf_evsel *evsel = iter->evsel;
928         struct perf_sample *sample = iter->sample;
929         struct hist_entry **he_cache = iter->priv;
930         struct hist_entry *he;
931         struct hist_entry he_tmp = {
932                 .hists = evsel__hists(evsel),
933                 .cpu = al->cpu,
934                 .thread = al->thread,
935                 .comm = thread__comm(al->thread),
936                 .ip = al->addr,
937                 .ms = {
938                         .map = al->map,
939                         .sym = al->sym,
940                 },
941                 .parent = iter->parent,
942                 .raw_data = sample->raw_data,
943                 .raw_size = sample->raw_size,
944         };
945         int i;
946         struct callchain_cursor cursor;
947
948         callchain_cursor_snapshot(&cursor, &callchain_cursor);
949
950         callchain_cursor_advance(&callchain_cursor);
951
952         /*
953          * Check if there's duplicate entries in the callchain.
954          * It's possible that it has cycles or recursive calls.
955          */
956         for (i = 0; i < iter->curr; i++) {
957                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
958                         /* to avoid calling callback function */
959                         iter->he = NULL;
960                         return 0;
961                 }
962         }
963
964         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
965                               sample, false);
966         if (he == NULL)
967                 return -ENOMEM;
968
969         iter->he = he;
970         he_cache[iter->curr++] = he;
971
972         if (symbol_conf.use_callchain)
973                 callchain_append(he->callchain, &cursor, sample->period);
974         return 0;
975 }
976
977 static int
978 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
979                              struct addr_location *al __maybe_unused)
980 {
981         zfree(&iter->priv);
982         iter->he = NULL;
983
984         return 0;
985 }
986
987 const struct hist_iter_ops hist_iter_mem = {
988         .prepare_entry          = iter_prepare_mem_entry,
989         .add_single_entry       = iter_add_single_mem_entry,
990         .next_entry             = iter_next_nop_entry,
991         .add_next_entry         = iter_add_next_nop_entry,
992         .finish_entry           = iter_finish_mem_entry,
993 };
994
995 const struct hist_iter_ops hist_iter_branch = {
996         .prepare_entry          = iter_prepare_branch_entry,
997         .add_single_entry       = iter_add_single_branch_entry,
998         .next_entry             = iter_next_branch_entry,
999         .add_next_entry         = iter_add_next_branch_entry,
1000         .finish_entry           = iter_finish_branch_entry,
1001 };
1002
1003 const struct hist_iter_ops hist_iter_normal = {
1004         .prepare_entry          = iter_prepare_normal_entry,
1005         .add_single_entry       = iter_add_single_normal_entry,
1006         .next_entry             = iter_next_nop_entry,
1007         .add_next_entry         = iter_add_next_nop_entry,
1008         .finish_entry           = iter_finish_normal_entry,
1009 };
1010
1011 const struct hist_iter_ops hist_iter_cumulative = {
1012         .prepare_entry          = iter_prepare_cumulative_entry,
1013         .add_single_entry       = iter_add_single_cumulative_entry,
1014         .next_entry             = iter_next_cumulative_entry,
1015         .add_next_entry         = iter_add_next_cumulative_entry,
1016         .finish_entry           = iter_finish_cumulative_entry,
1017 };
1018
1019 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1020                          int max_stack_depth, void *arg)
1021 {
1022         int err, err2;
1023         struct map *alm = NULL;
1024
1025         if (al && al->map)
1026                 alm = map__get(al->map);
1027
1028         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1029                                         iter->evsel, al, max_stack_depth);
1030         if (err)
1031                 return err;
1032
1033         iter->max_stack = max_stack_depth;
1034
1035         err = iter->ops->prepare_entry(iter, al);
1036         if (err)
1037                 goto out;
1038
1039         err = iter->ops->add_single_entry(iter, al);
1040         if (err)
1041                 goto out;
1042
1043         if (iter->he && iter->add_entry_cb) {
1044                 err = iter->add_entry_cb(iter, al, true, arg);
1045                 if (err)
1046                         goto out;
1047         }
1048
1049         while (iter->ops->next_entry(iter, al)) {
1050                 err = iter->ops->add_next_entry(iter, al);
1051                 if (err)
1052                         break;
1053
1054                 if (iter->he && iter->add_entry_cb) {
1055                         err = iter->add_entry_cb(iter, al, false, arg);
1056                         if (err)
1057                                 goto out;
1058                 }
1059         }
1060
1061 out:
1062         err2 = iter->ops->finish_entry(iter, al);
1063         if (!err)
1064                 err = err2;
1065
1066         map__put(alm);
1067
1068         return err;
1069 }
1070
1071 int64_t
1072 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1073 {
1074         struct hists *hists = left->hists;
1075         struct perf_hpp_fmt *fmt;
1076         int64_t cmp = 0;
1077
1078         hists__for_each_sort_list(hists, fmt) {
1079                 if (perf_hpp__is_dynamic_entry(fmt) &&
1080                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1081                         continue;
1082
1083                 cmp = fmt->cmp(fmt, left, right);
1084                 if (cmp)
1085                         break;
1086         }
1087
1088         return cmp;
1089 }
1090
1091 int64_t
1092 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1093 {
1094         struct hists *hists = left->hists;
1095         struct perf_hpp_fmt *fmt;
1096         int64_t cmp = 0;
1097
1098         hists__for_each_sort_list(hists, fmt) {
1099                 if (perf_hpp__is_dynamic_entry(fmt) &&
1100                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1101                         continue;
1102
1103                 cmp = fmt->collapse(fmt, left, right);
1104                 if (cmp)
1105                         break;
1106         }
1107
1108         return cmp;
1109 }
1110
1111 void hist_entry__delete(struct hist_entry *he)
1112 {
1113         struct hist_entry_ops *ops = he->ops;
1114
1115         thread__zput(he->thread);
1116         map__zput(he->ms.map);
1117
1118         if (he->branch_info) {
1119                 map__zput(he->branch_info->from.map);
1120                 map__zput(he->branch_info->to.map);
1121                 free_srcline(he->branch_info->srcline_from);
1122                 free_srcline(he->branch_info->srcline_to);
1123                 zfree(&he->branch_info);
1124         }
1125
1126         if (he->mem_info) {
1127                 map__zput(he->mem_info->iaddr.map);
1128                 map__zput(he->mem_info->daddr.map);
1129                 zfree(&he->mem_info);
1130         }
1131
1132         zfree(&he->stat_acc);
1133         free_srcline(he->srcline);
1134         if (he->srcfile && he->srcfile[0])
1135                 free(he->srcfile);
1136         free_callchain(he->callchain);
1137         free(he->trace_output);
1138         free(he->raw_data);
1139         ops->free(he);
1140 }
1141
1142 /*
1143  * If this is not the last column, then we need to pad it according to the
1144  * pre-calculated max lenght for this column, otherwise don't bother adding
1145  * spaces because that would break viewing this with, for instance, 'less',
1146  * that would show tons of trailing spaces when a long C++ demangled method
1147  * names is sampled.
1148 */
1149 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1150                                    struct perf_hpp_fmt *fmt, int printed)
1151 {
1152         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1153                 const int width = fmt->width(fmt, hpp, he->hists);
1154                 if (printed < width) {
1155                         advance_hpp(hpp, printed);
1156                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1157                 }
1158         }
1159
1160         return printed;
1161 }
1162
1163 /*
1164  * collapse the histogram
1165  */
1166
1167 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1168 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1169                                        enum hist_filter type);
1170
1171 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1172
1173 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1174 {
1175         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1176 }
1177
1178 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1179                                                 enum hist_filter type,
1180                                                 fmt_chk_fn check)
1181 {
1182         struct perf_hpp_fmt *fmt;
1183         bool type_match = false;
1184         struct hist_entry *parent = he->parent_he;
1185
1186         switch (type) {
1187         case HIST_FILTER__THREAD:
1188                 if (symbol_conf.comm_list == NULL &&
1189                     symbol_conf.pid_list == NULL &&
1190                     symbol_conf.tid_list == NULL)
1191                         return;
1192                 break;
1193         case HIST_FILTER__DSO:
1194                 if (symbol_conf.dso_list == NULL)
1195                         return;
1196                 break;
1197         case HIST_FILTER__SYMBOL:
1198                 if (symbol_conf.sym_list == NULL)
1199                         return;
1200                 break;
1201         case HIST_FILTER__PARENT:
1202         case HIST_FILTER__GUEST:
1203         case HIST_FILTER__HOST:
1204         case HIST_FILTER__SOCKET:
1205         case HIST_FILTER__C2C:
1206         default:
1207                 return;
1208         }
1209
1210         /* if it's filtered by own fmt, it has to have filter bits */
1211         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1212                 if (check(fmt)) {
1213                         type_match = true;
1214                         break;
1215                 }
1216         }
1217
1218         if (type_match) {
1219                 /*
1220                  * If the filter is for current level entry, propagate
1221                  * filter marker to parents.  The marker bit was
1222                  * already set by default so it only needs to clear
1223                  * non-filtered entries.
1224                  */
1225                 if (!(he->filtered & (1 << type))) {
1226                         while (parent) {
1227                                 parent->filtered &= ~(1 << type);
1228                                 parent = parent->parent_he;
1229                         }
1230                 }
1231         } else {
1232                 /*
1233                  * If current entry doesn't have matching formats, set
1234                  * filter marker for upper level entries.  it will be
1235                  * cleared if its lower level entries is not filtered.
1236                  *
1237                  * For lower-level entries, it inherits parent's
1238                  * filter bit so that lower level entries of a
1239                  * non-filtered entry won't set the filter marker.
1240                  */
1241                 if (parent == NULL)
1242                         he->filtered |= (1 << type);
1243                 else
1244                         he->filtered |= (parent->filtered & (1 << type));
1245         }
1246 }
1247
1248 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1249 {
1250         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1251                                             check_thread_entry);
1252
1253         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1254                                             perf_hpp__is_dso_entry);
1255
1256         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1257                                             perf_hpp__is_sym_entry);
1258
1259         hists__apply_filters(he->hists, he);
1260 }
1261
1262 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1263                                                  struct rb_root *root,
1264                                                  struct hist_entry *he,
1265                                                  struct hist_entry *parent_he,
1266                                                  struct perf_hpp_list *hpp_list)
1267 {
1268         struct rb_node **p = &root->rb_node;
1269         struct rb_node *parent = NULL;
1270         struct hist_entry *iter, *new;
1271         struct perf_hpp_fmt *fmt;
1272         int64_t cmp;
1273
1274         while (*p != NULL) {
1275                 parent = *p;
1276                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1277
1278                 cmp = 0;
1279                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1280                         cmp = fmt->collapse(fmt, iter, he);
1281                         if (cmp)
1282                                 break;
1283                 }
1284
1285                 if (!cmp) {
1286                         he_stat__add_stat(&iter->stat, &he->stat);
1287                         return iter;
1288                 }
1289
1290                 if (cmp < 0)
1291                         p = &parent->rb_left;
1292                 else
1293                         p = &parent->rb_right;
1294         }
1295
1296         new = hist_entry__new(he, true);
1297         if (new == NULL)
1298                 return NULL;
1299
1300         hists->nr_entries++;
1301
1302         /* save related format list for output */
1303         new->hpp_list = hpp_list;
1304         new->parent_he = parent_he;
1305
1306         hist_entry__apply_hierarchy_filters(new);
1307
1308         /* some fields are now passed to 'new' */
1309         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1310                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1311                         he->trace_output = NULL;
1312                 else
1313                         new->trace_output = NULL;
1314
1315                 if (perf_hpp__is_srcline_entry(fmt))
1316                         he->srcline = NULL;
1317                 else
1318                         new->srcline = NULL;
1319
1320                 if (perf_hpp__is_srcfile_entry(fmt))
1321                         he->srcfile = NULL;
1322                 else
1323                         new->srcfile = NULL;
1324         }
1325
1326         rb_link_node(&new->rb_node_in, parent, p);
1327         rb_insert_color(&new->rb_node_in, root);
1328         return new;
1329 }
1330
1331 static int hists__hierarchy_insert_entry(struct hists *hists,
1332                                          struct rb_root *root,
1333                                          struct hist_entry *he)
1334 {
1335         struct perf_hpp_list_node *node;
1336         struct hist_entry *new_he = NULL;
1337         struct hist_entry *parent = NULL;
1338         int depth = 0;
1339         int ret = 0;
1340
1341         list_for_each_entry(node, &hists->hpp_formats, list) {
1342                 /* skip period (overhead) and elided columns */
1343                 if (node->level == 0 || node->skip)
1344                         continue;
1345
1346                 /* insert copy of 'he' for each fmt into the hierarchy */
1347                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1348                 if (new_he == NULL) {
1349                         ret = -1;
1350                         break;
1351                 }
1352
1353                 root = &new_he->hroot_in;
1354                 new_he->depth = depth++;
1355                 parent = new_he;
1356         }
1357
1358         if (new_he) {
1359                 new_he->leaf = true;
1360
1361                 if (symbol_conf.use_callchain) {
1362                         callchain_cursor_reset(&callchain_cursor);
1363                         if (callchain_merge(&callchain_cursor,
1364                                             new_he->callchain,
1365                                             he->callchain) < 0)
1366                                 ret = -1;
1367                 }
1368         }
1369
1370         /* 'he' is no longer used */
1371         hist_entry__delete(he);
1372
1373         /* return 0 (or -1) since it already applied filters */
1374         return ret;
1375 }
1376
1377 static int hists__collapse_insert_entry(struct hists *hists,
1378                                         struct rb_root *root,
1379                                         struct hist_entry *he)
1380 {
1381         struct rb_node **p = &root->rb_node;
1382         struct rb_node *parent = NULL;
1383         struct hist_entry *iter;
1384         int64_t cmp;
1385
1386         if (symbol_conf.report_hierarchy)
1387                 return hists__hierarchy_insert_entry(hists, root, he);
1388
1389         while (*p != NULL) {
1390                 parent = *p;
1391                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1392
1393                 cmp = hist_entry__collapse(iter, he);
1394
1395                 if (!cmp) {
1396                         int ret = 0;
1397
1398                         he_stat__add_stat(&iter->stat, &he->stat);
1399                         if (symbol_conf.cumulate_callchain)
1400                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1401
1402                         if (symbol_conf.use_callchain) {
1403                                 callchain_cursor_reset(&callchain_cursor);
1404                                 if (callchain_merge(&callchain_cursor,
1405                                                     iter->callchain,
1406                                                     he->callchain) < 0)
1407                                         ret = -1;
1408                         }
1409                         hist_entry__delete(he);
1410                         return ret;
1411                 }
1412
1413                 if (cmp < 0)
1414                         p = &(*p)->rb_left;
1415                 else
1416                         p = &(*p)->rb_right;
1417         }
1418         hists->nr_entries++;
1419
1420         rb_link_node(&he->rb_node_in, parent, p);
1421         rb_insert_color(&he->rb_node_in, root);
1422         return 1;
1423 }
1424
1425 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1426 {
1427         struct rb_root *root;
1428
1429         pthread_mutex_lock(&hists->lock);
1430
1431         root = hists->entries_in;
1432         if (++hists->entries_in > &hists->entries_in_array[1])
1433                 hists->entries_in = &hists->entries_in_array[0];
1434
1435         pthread_mutex_unlock(&hists->lock);
1436
1437         return root;
1438 }
1439
1440 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1441 {
1442         hists__filter_entry_by_dso(hists, he);
1443         hists__filter_entry_by_thread(hists, he);
1444         hists__filter_entry_by_symbol(hists, he);
1445         hists__filter_entry_by_socket(hists, he);
1446 }
1447
1448 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1449 {
1450         struct rb_root *root;
1451         struct rb_node *next;
1452         struct hist_entry *n;
1453         int ret;
1454
1455         if (!hists__has(hists, need_collapse))
1456                 return 0;
1457
1458         hists->nr_entries = 0;
1459
1460         root = hists__get_rotate_entries_in(hists);
1461
1462         next = rb_first(root);
1463
1464         while (next) {
1465                 if (session_done())
1466                         break;
1467                 n = rb_entry(next, struct hist_entry, rb_node_in);
1468                 next = rb_next(&n->rb_node_in);
1469
1470                 rb_erase(&n->rb_node_in, root);
1471                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1472                 if (ret < 0)
1473                         return -1;
1474
1475                 if (ret) {
1476                         /*
1477                          * If it wasn't combined with one of the entries already
1478                          * collapsed, we need to apply the filters that may have
1479                          * been set by, say, the hist_browser.
1480                          */
1481                         hists__apply_filters(hists, n);
1482                 }
1483                 if (prog)
1484                         ui_progress__update(prog, 1);
1485         }
1486         return 0;
1487 }
1488
1489 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1490 {
1491         struct hists *hists = a->hists;
1492         struct perf_hpp_fmt *fmt;
1493         int64_t cmp = 0;
1494
1495         hists__for_each_sort_list(hists, fmt) {
1496                 if (perf_hpp__should_skip(fmt, a->hists))
1497                         continue;
1498
1499                 cmp = fmt->sort(fmt, a, b);
1500                 if (cmp)
1501                         break;
1502         }
1503
1504         return cmp;
1505 }
1506
1507 static void hists__reset_filter_stats(struct hists *hists)
1508 {
1509         hists->nr_non_filtered_entries = 0;
1510         hists->stats.total_non_filtered_period = 0;
1511 }
1512
1513 void hists__reset_stats(struct hists *hists)
1514 {
1515         hists->nr_entries = 0;
1516         hists->stats.total_period = 0;
1517
1518         hists__reset_filter_stats(hists);
1519 }
1520
1521 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1522 {
1523         hists->nr_non_filtered_entries++;
1524         hists->stats.total_non_filtered_period += h->stat.period;
1525 }
1526
1527 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1528 {
1529         if (!h->filtered)
1530                 hists__inc_filter_stats(hists, h);
1531
1532         hists->nr_entries++;
1533         hists->stats.total_period += h->stat.period;
1534 }
1535
1536 static void hierarchy_recalc_total_periods(struct hists *hists)
1537 {
1538         struct rb_node *node;
1539         struct hist_entry *he;
1540
1541         node = rb_first(&hists->entries);
1542
1543         hists->stats.total_period = 0;
1544         hists->stats.total_non_filtered_period = 0;
1545
1546         /*
1547          * recalculate total period using top-level entries only
1548          * since lower level entries only see non-filtered entries
1549          * but upper level entries have sum of both entries.
1550          */
1551         while (node) {
1552                 he = rb_entry(node, struct hist_entry, rb_node);
1553                 node = rb_next(node);
1554
1555                 hists->stats.total_period += he->stat.period;
1556                 if (!he->filtered)
1557                         hists->stats.total_non_filtered_period += he->stat.period;
1558         }
1559 }
1560
1561 static void hierarchy_insert_output_entry(struct rb_root *root,
1562                                           struct hist_entry *he)
1563 {
1564         struct rb_node **p = &root->rb_node;
1565         struct rb_node *parent = NULL;
1566         struct hist_entry *iter;
1567         struct perf_hpp_fmt *fmt;
1568
1569         while (*p != NULL) {
1570                 parent = *p;
1571                 iter = rb_entry(parent, struct hist_entry, rb_node);
1572
1573                 if (hist_entry__sort(he, iter) > 0)
1574                         p = &parent->rb_left;
1575                 else
1576                         p = &parent->rb_right;
1577         }
1578
1579         rb_link_node(&he->rb_node, parent, p);
1580         rb_insert_color(&he->rb_node, root);
1581
1582         /* update column width of dynamic entry */
1583         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1584                 if (perf_hpp__is_dynamic_entry(fmt))
1585                         fmt->sort(fmt, he, NULL);
1586         }
1587 }
1588
1589 static void hists__hierarchy_output_resort(struct hists *hists,
1590                                            struct ui_progress *prog,
1591                                            struct rb_root *root_in,
1592                                            struct rb_root *root_out,
1593                                            u64 min_callchain_hits,
1594                                            bool use_callchain)
1595 {
1596         struct rb_node *node;
1597         struct hist_entry *he;
1598
1599         *root_out = RB_ROOT;
1600         node = rb_first(root_in);
1601
1602         while (node) {
1603                 he = rb_entry(node, struct hist_entry, rb_node_in);
1604                 node = rb_next(node);
1605
1606                 hierarchy_insert_output_entry(root_out, he);
1607
1608                 if (prog)
1609                         ui_progress__update(prog, 1);
1610
1611                 hists->nr_entries++;
1612                 if (!he->filtered) {
1613                         hists->nr_non_filtered_entries++;
1614                         hists__calc_col_len(hists, he);
1615                 }
1616
1617                 if (!he->leaf) {
1618                         hists__hierarchy_output_resort(hists, prog,
1619                                                        &he->hroot_in,
1620                                                        &he->hroot_out,
1621                                                        min_callchain_hits,
1622                                                        use_callchain);
1623                         continue;
1624                 }
1625
1626                 if (!use_callchain)
1627                         continue;
1628
1629                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1630                         u64 total = he->stat.period;
1631
1632                         if (symbol_conf.cumulate_callchain)
1633                                 total = he->stat_acc->period;
1634
1635                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1636                 }
1637
1638                 callchain_param.sort(&he->sorted_chain, he->callchain,
1639                                      min_callchain_hits, &callchain_param);
1640         }
1641 }
1642
1643 static void __hists__insert_output_entry(struct rb_root *entries,
1644                                          struct hist_entry *he,
1645                                          u64 min_callchain_hits,
1646                                          bool use_callchain)
1647 {
1648         struct rb_node **p = &entries->rb_node;
1649         struct rb_node *parent = NULL;
1650         struct hist_entry *iter;
1651         struct perf_hpp_fmt *fmt;
1652
1653         if (use_callchain) {
1654                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1655                         u64 total = he->stat.period;
1656
1657                         if (symbol_conf.cumulate_callchain)
1658                                 total = he->stat_acc->period;
1659
1660                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1661                 }
1662                 callchain_param.sort(&he->sorted_chain, he->callchain,
1663                                       min_callchain_hits, &callchain_param);
1664         }
1665
1666         while (*p != NULL) {
1667                 parent = *p;
1668                 iter = rb_entry(parent, struct hist_entry, rb_node);
1669
1670                 if (hist_entry__sort(he, iter) > 0)
1671                         p = &(*p)->rb_left;
1672                 else
1673                         p = &(*p)->rb_right;
1674         }
1675
1676         rb_link_node(&he->rb_node, parent, p);
1677         rb_insert_color(&he->rb_node, entries);
1678
1679         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1680                 if (perf_hpp__is_dynamic_entry(fmt) &&
1681                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1682                         fmt->sort(fmt, he, NULL);  /* update column width */
1683         }
1684 }
1685
1686 static void output_resort(struct hists *hists, struct ui_progress *prog,
1687                           bool use_callchain, hists__resort_cb_t cb)
1688 {
1689         struct rb_root *root;
1690         struct rb_node *next;
1691         struct hist_entry *n;
1692         u64 callchain_total;
1693         u64 min_callchain_hits;
1694
1695         callchain_total = hists->callchain_period;
1696         if (symbol_conf.filter_relative)
1697                 callchain_total = hists->callchain_non_filtered_period;
1698
1699         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1700
1701         hists__reset_stats(hists);
1702         hists__reset_col_len(hists);
1703
1704         if (symbol_conf.report_hierarchy) {
1705                 hists__hierarchy_output_resort(hists, prog,
1706                                                &hists->entries_collapsed,
1707                                                &hists->entries,
1708                                                min_callchain_hits,
1709                                                use_callchain);
1710                 hierarchy_recalc_total_periods(hists);
1711                 return;
1712         }
1713
1714         if (hists__has(hists, need_collapse))
1715                 root = &hists->entries_collapsed;
1716         else
1717                 root = hists->entries_in;
1718
1719         next = rb_first(root);
1720         hists->entries = RB_ROOT;
1721
1722         while (next) {
1723                 n = rb_entry(next, struct hist_entry, rb_node_in);
1724                 next = rb_next(&n->rb_node_in);
1725
1726                 if (cb && cb(n))
1727                         continue;
1728
1729                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1730                 hists__inc_stats(hists, n);
1731
1732                 if (!n->filtered)
1733                         hists__calc_col_len(hists, n);
1734
1735                 if (prog)
1736                         ui_progress__update(prog, 1);
1737         }
1738 }
1739
1740 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1741 {
1742         bool use_callchain;
1743
1744         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1745                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1746         else
1747                 use_callchain = symbol_conf.use_callchain;
1748
1749         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1750 }
1751
1752 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1753 {
1754         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1755 }
1756
1757 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1758                              hists__resort_cb_t cb)
1759 {
1760         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1761 }
1762
1763 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1764 {
1765         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1766                 return false;
1767
1768         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1769                 return true;
1770
1771         return false;
1772 }
1773
1774 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1775 {
1776         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1777
1778         while (can_goto_child(he, HMD_NORMAL)) {
1779                 node = rb_last(&he->hroot_out);
1780                 he = rb_entry(node, struct hist_entry, rb_node);
1781         }
1782         return node;
1783 }
1784
1785 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1786 {
1787         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1788
1789         if (can_goto_child(he, hmd))
1790                 node = rb_first(&he->hroot_out);
1791         else
1792                 node = rb_next(node);
1793
1794         while (node == NULL) {
1795                 he = he->parent_he;
1796                 if (he == NULL)
1797                         break;
1798
1799                 node = rb_next(&he->rb_node);
1800         }
1801         return node;
1802 }
1803
1804 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1805 {
1806         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1807
1808         node = rb_prev(node);
1809         if (node)
1810                 return rb_hierarchy_last(node);
1811
1812         he = he->parent_he;
1813         if (he == NULL)
1814                 return NULL;
1815
1816         return &he->rb_node;
1817 }
1818
1819 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1820 {
1821         struct rb_node *node;
1822         struct hist_entry *child;
1823         float percent;
1824
1825         if (he->leaf)
1826                 return false;
1827
1828         node = rb_first(&he->hroot_out);
1829         child = rb_entry(node, struct hist_entry, rb_node);
1830
1831         while (node && child->filtered) {
1832                 node = rb_next(node);
1833                 child = rb_entry(node, struct hist_entry, rb_node);
1834         }
1835
1836         if (node)
1837                 percent = hist_entry__get_percent_limit(child);
1838         else
1839                 percent = 0;
1840
1841         return node && percent >= limit;
1842 }
1843
1844 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1845                                        enum hist_filter filter)
1846 {
1847         h->filtered &= ~(1 << filter);
1848
1849         if (symbol_conf.report_hierarchy) {
1850                 struct hist_entry *parent = h->parent_he;
1851
1852                 while (parent) {
1853                         he_stat__add_stat(&parent->stat, &h->stat);
1854
1855                         parent->filtered &= ~(1 << filter);
1856
1857                         if (parent->filtered)
1858                                 goto next;
1859
1860                         /* force fold unfiltered entry for simplicity */
1861                         parent->unfolded = false;
1862                         parent->has_no_entry = false;
1863                         parent->row_offset = 0;
1864                         parent->nr_rows = 0;
1865 next:
1866                         parent = parent->parent_he;
1867                 }
1868         }
1869
1870         if (h->filtered)
1871                 return;
1872
1873         /* force fold unfiltered entry for simplicity */
1874         h->unfolded = false;
1875         h->has_no_entry = false;
1876         h->row_offset = 0;
1877         h->nr_rows = 0;
1878
1879         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1880
1881         hists__inc_filter_stats(hists, h);
1882         hists__calc_col_len(hists, h);
1883 }
1884
1885
1886 static bool hists__filter_entry_by_dso(struct hists *hists,
1887                                        struct hist_entry *he)
1888 {
1889         if (hists->dso_filter != NULL &&
1890             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1891                 he->filtered |= (1 << HIST_FILTER__DSO);
1892                 return true;
1893         }
1894
1895         return false;
1896 }
1897
1898 static bool hists__filter_entry_by_thread(struct hists *hists,
1899                                           struct hist_entry *he)
1900 {
1901         if (hists->thread_filter != NULL &&
1902             he->thread != hists->thread_filter) {
1903                 he->filtered |= (1 << HIST_FILTER__THREAD);
1904                 return true;
1905         }
1906
1907         return false;
1908 }
1909
1910 static bool hists__filter_entry_by_symbol(struct hists *hists,
1911                                           struct hist_entry *he)
1912 {
1913         if (hists->symbol_filter_str != NULL &&
1914             (!he->ms.sym || strstr(he->ms.sym->name,
1915                                    hists->symbol_filter_str) == NULL)) {
1916                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1917                 return true;
1918         }
1919
1920         return false;
1921 }
1922
1923 static bool hists__filter_entry_by_socket(struct hists *hists,
1924                                           struct hist_entry *he)
1925 {
1926         if ((hists->socket_filter > -1) &&
1927             (he->socket != hists->socket_filter)) {
1928                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1929                 return true;
1930         }
1931
1932         return false;
1933 }
1934
1935 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1936
1937 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1938 {
1939         struct rb_node *nd;
1940
1941         hists->stats.nr_non_filtered_samples = 0;
1942
1943         hists__reset_filter_stats(hists);
1944         hists__reset_col_len(hists);
1945
1946         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1947                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1948
1949                 if (filter(hists, h))
1950                         continue;
1951
1952                 hists__remove_entry_filter(hists, h, type);
1953         }
1954 }
1955
1956 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1957 {
1958         struct rb_node **p = &root->rb_node;
1959         struct rb_node *parent = NULL;
1960         struct hist_entry *iter;
1961         struct rb_root new_root = RB_ROOT;
1962         struct rb_node *nd;
1963
1964         while (*p != NULL) {
1965                 parent = *p;
1966                 iter = rb_entry(parent, struct hist_entry, rb_node);
1967
1968                 if (hist_entry__sort(he, iter) > 0)
1969                         p = &(*p)->rb_left;
1970                 else
1971                         p = &(*p)->rb_right;
1972         }
1973
1974         rb_link_node(&he->rb_node, parent, p);
1975         rb_insert_color(&he->rb_node, root);
1976
1977         if (he->leaf || he->filtered)
1978                 return;
1979
1980         nd = rb_first(&he->hroot_out);
1981         while (nd) {
1982                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1983
1984                 nd = rb_next(nd);
1985                 rb_erase(&h->rb_node, &he->hroot_out);
1986
1987                 resort_filtered_entry(&new_root, h);
1988         }
1989
1990         he->hroot_out = new_root;
1991 }
1992
1993 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1994 {
1995         struct rb_node *nd;
1996         struct rb_root new_root = RB_ROOT;
1997
1998         hists->stats.nr_non_filtered_samples = 0;
1999
2000         hists__reset_filter_stats(hists);
2001         hists__reset_col_len(hists);
2002
2003         nd = rb_first(&hists->entries);
2004         while (nd) {
2005                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2006                 int ret;
2007
2008                 ret = hist_entry__filter(h, type, arg);
2009
2010                 /*
2011                  * case 1. non-matching type
2012                  * zero out the period, set filter marker and move to child
2013                  */
2014                 if (ret < 0) {
2015                         memset(&h->stat, 0, sizeof(h->stat));
2016                         h->filtered |= (1 << type);
2017
2018                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2019                 }
2020                 /*
2021                  * case 2. matched type (filter out)
2022                  * set filter marker and move to next
2023                  */
2024                 else if (ret == 1) {
2025                         h->filtered |= (1 << type);
2026
2027                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2028                 }
2029                 /*
2030                  * case 3. ok (not filtered)
2031                  * add period to hists and parents, erase the filter marker
2032                  * and move to next sibling
2033                  */
2034                 else {
2035                         hists__remove_entry_filter(hists, h, type);
2036
2037                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2038                 }
2039         }
2040
2041         hierarchy_recalc_total_periods(hists);
2042
2043         /*
2044          * resort output after applying a new filter since filter in a lower
2045          * hierarchy can change periods in a upper hierarchy.
2046          */
2047         nd = rb_first(&hists->entries);
2048         while (nd) {
2049                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2050
2051                 nd = rb_next(nd);
2052                 rb_erase(&h->rb_node, &hists->entries);
2053
2054                 resort_filtered_entry(&new_root, h);
2055         }
2056
2057         hists->entries = new_root;
2058 }
2059
2060 void hists__filter_by_thread(struct hists *hists)
2061 {
2062         if (symbol_conf.report_hierarchy)
2063                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2064                                         hists->thread_filter);
2065         else
2066                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2067                                       hists__filter_entry_by_thread);
2068 }
2069
2070 void hists__filter_by_dso(struct hists *hists)
2071 {
2072         if (symbol_conf.report_hierarchy)
2073                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2074                                         hists->dso_filter);
2075         else
2076                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2077                                       hists__filter_entry_by_dso);
2078 }
2079
2080 void hists__filter_by_symbol(struct hists *hists)
2081 {
2082         if (symbol_conf.report_hierarchy)
2083                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2084                                         hists->symbol_filter_str);
2085         else
2086                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2087                                       hists__filter_entry_by_symbol);
2088 }
2089
2090 void hists__filter_by_socket(struct hists *hists)
2091 {
2092         if (symbol_conf.report_hierarchy)
2093                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2094                                         &hists->socket_filter);
2095         else
2096                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2097                                       hists__filter_entry_by_socket);
2098 }
2099
2100 void events_stats__inc(struct events_stats *stats, u32 type)
2101 {
2102         ++stats->nr_events[0];
2103         ++stats->nr_events[type];
2104 }
2105
2106 void hists__inc_nr_events(struct hists *hists, u32 type)
2107 {
2108         events_stats__inc(&hists->stats, type);
2109 }
2110
2111 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2112 {
2113         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2114         if (!filtered)
2115                 hists->stats.nr_non_filtered_samples++;
2116 }
2117
2118 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2119                                                  struct hist_entry *pair)
2120 {
2121         struct rb_root *root;
2122         struct rb_node **p;
2123         struct rb_node *parent = NULL;
2124         struct hist_entry *he;
2125         int64_t cmp;
2126
2127         if (hists__has(hists, need_collapse))
2128                 root = &hists->entries_collapsed;
2129         else
2130                 root = hists->entries_in;
2131
2132         p = &root->rb_node;
2133
2134         while (*p != NULL) {
2135                 parent = *p;
2136                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2137
2138                 cmp = hist_entry__collapse(he, pair);
2139
2140                 if (!cmp)
2141                         goto out;
2142
2143                 if (cmp < 0)
2144                         p = &(*p)->rb_left;
2145                 else
2146                         p = &(*p)->rb_right;
2147         }
2148
2149         he = hist_entry__new(pair, true);
2150         if (he) {
2151                 memset(&he->stat, 0, sizeof(he->stat));
2152                 he->hists = hists;
2153                 if (symbol_conf.cumulate_callchain)
2154                         memset(he->stat_acc, 0, sizeof(he->stat));
2155                 rb_link_node(&he->rb_node_in, parent, p);
2156                 rb_insert_color(&he->rb_node_in, root);
2157                 hists__inc_stats(hists, he);
2158                 he->dummy = true;
2159         }
2160 out:
2161         return he;
2162 }
2163
2164 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2165                                                     struct rb_root *root,
2166                                                     struct hist_entry *pair)
2167 {
2168         struct rb_node **p;
2169         struct rb_node *parent = NULL;
2170         struct hist_entry *he;
2171         struct perf_hpp_fmt *fmt;
2172
2173         p = &root->rb_node;
2174         while (*p != NULL) {
2175                 int64_t cmp = 0;
2176
2177                 parent = *p;
2178                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2179
2180                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2181                         cmp = fmt->collapse(fmt, he, pair);
2182                         if (cmp)
2183                                 break;
2184                 }
2185                 if (!cmp)
2186                         goto out;
2187
2188                 if (cmp < 0)
2189                         p = &parent->rb_left;
2190                 else
2191                         p = &parent->rb_right;
2192         }
2193
2194         he = hist_entry__new(pair, true);
2195         if (he) {
2196                 rb_link_node(&he->rb_node_in, parent, p);
2197                 rb_insert_color(&he->rb_node_in, root);
2198
2199                 he->dummy = true;
2200                 he->hists = hists;
2201                 memset(&he->stat, 0, sizeof(he->stat));
2202                 hists__inc_stats(hists, he);
2203         }
2204 out:
2205         return he;
2206 }
2207
2208 static struct hist_entry *hists__find_entry(struct hists *hists,
2209                                             struct hist_entry *he)
2210 {
2211         struct rb_node *n;
2212
2213         if (hists__has(hists, need_collapse))
2214                 n = hists->entries_collapsed.rb_node;
2215         else
2216                 n = hists->entries_in->rb_node;
2217
2218         while (n) {
2219                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2220                 int64_t cmp = hist_entry__collapse(iter, he);
2221
2222                 if (cmp < 0)
2223                         n = n->rb_left;
2224                 else if (cmp > 0)
2225                         n = n->rb_right;
2226                 else
2227                         return iter;
2228         }
2229
2230         return NULL;
2231 }
2232
2233 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2234                                                       struct hist_entry *he)
2235 {
2236         struct rb_node *n = root->rb_node;
2237
2238         while (n) {
2239                 struct hist_entry *iter;
2240                 struct perf_hpp_fmt *fmt;
2241                 int64_t cmp = 0;
2242
2243                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2244                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2245                         cmp = fmt->collapse(fmt, iter, he);
2246                         if (cmp)
2247                                 break;
2248                 }
2249
2250                 if (cmp < 0)
2251                         n = n->rb_left;
2252                 else if (cmp > 0)
2253                         n = n->rb_right;
2254                 else
2255                         return iter;
2256         }
2257
2258         return NULL;
2259 }
2260
2261 static void hists__match_hierarchy(struct rb_root *leader_root,
2262                                    struct rb_root *other_root)
2263 {
2264         struct rb_node *nd;
2265         struct hist_entry *pos, *pair;
2266
2267         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2268                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2269                 pair = hists__find_hierarchy_entry(other_root, pos);
2270
2271                 if (pair) {
2272                         hist_entry__add_pair(pair, pos);
2273                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2274                 }
2275         }
2276 }
2277
2278 /*
2279  * Look for pairs to link to the leader buckets (hist_entries):
2280  */
2281 void hists__match(struct hists *leader, struct hists *other)
2282 {
2283         struct rb_root *root;
2284         struct rb_node *nd;
2285         struct hist_entry *pos, *pair;
2286
2287         if (symbol_conf.report_hierarchy) {
2288                 /* hierarchy report always collapses entries */
2289                 return hists__match_hierarchy(&leader->entries_collapsed,
2290                                               &other->entries_collapsed);
2291         }
2292
2293         if (hists__has(leader, need_collapse))
2294                 root = &leader->entries_collapsed;
2295         else
2296                 root = leader->entries_in;
2297
2298         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2299                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2300                 pair = hists__find_entry(other, pos);
2301
2302                 if (pair)
2303                         hist_entry__add_pair(pair, pos);
2304         }
2305 }
2306
2307 static int hists__link_hierarchy(struct hists *leader_hists,
2308                                  struct hist_entry *parent,
2309                                  struct rb_root *leader_root,
2310                                  struct rb_root *other_root)
2311 {
2312         struct rb_node *nd;
2313         struct hist_entry *pos, *leader;
2314
2315         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2316                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2317
2318                 if (hist_entry__has_pairs(pos)) {
2319                         bool found = false;
2320
2321                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2322                                 if (leader->hists == leader_hists) {
2323                                         found = true;
2324                                         break;
2325                                 }
2326                         }
2327                         if (!found)
2328                                 return -1;
2329                 } else {
2330                         leader = add_dummy_hierarchy_entry(leader_hists,
2331                                                            leader_root, pos);
2332                         if (leader == NULL)
2333                                 return -1;
2334
2335                         /* do not point parent in the pos */
2336                         leader->parent_he = parent;
2337
2338                         hist_entry__add_pair(pos, leader);
2339                 }
2340
2341                 if (!pos->leaf) {
2342                         if (hists__link_hierarchy(leader_hists, leader,
2343                                                   &leader->hroot_in,
2344                                                   &pos->hroot_in) < 0)
2345                                 return -1;
2346                 }
2347         }
2348         return 0;
2349 }
2350
2351 /*
2352  * Look for entries in the other hists that are not present in the leader, if
2353  * we find them, just add a dummy entry on the leader hists, with period=0,
2354  * nr_events=0, to serve as the list header.
2355  */
2356 int hists__link(struct hists *leader, struct hists *other)
2357 {
2358         struct rb_root *root;
2359         struct rb_node *nd;
2360         struct hist_entry *pos, *pair;
2361
2362         if (symbol_conf.report_hierarchy) {
2363                 /* hierarchy report always collapses entries */
2364                 return hists__link_hierarchy(leader, NULL,
2365                                              &leader->entries_collapsed,
2366                                              &other->entries_collapsed);
2367         }
2368
2369         if (hists__has(other, need_collapse))
2370                 root = &other->entries_collapsed;
2371         else
2372                 root = other->entries_in;
2373
2374         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2375                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2376
2377                 if (!hist_entry__has_pairs(pos)) {
2378                         pair = hists__add_dummy_entry(leader, pos);
2379                         if (pair == NULL)
2380                                 return -1;
2381                         hist_entry__add_pair(pos, pair);
2382                 }
2383         }
2384
2385         return 0;
2386 }
2387
2388 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2389                           struct perf_sample *sample, bool nonany_branch_mode)
2390 {
2391         struct branch_info *bi;
2392
2393         /* If we have branch cycles always annotate them. */
2394         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2395                 int i;
2396
2397                 bi = sample__resolve_bstack(sample, al);
2398                 if (bi) {
2399                         struct addr_map_symbol *prev = NULL;
2400
2401                         /*
2402                          * Ignore errors, still want to process the
2403                          * other entries.
2404                          *
2405                          * For non standard branch modes always
2406                          * force no IPC (prev == NULL)
2407                          *
2408                          * Note that perf stores branches reversed from
2409                          * program order!
2410                          */
2411                         for (i = bs->nr - 1; i >= 0; i--) {
2412                                 addr_map_symbol__account_cycles(&bi[i].from,
2413                                         nonany_branch_mode ? NULL : prev,
2414                                         bi[i].flags.cycles);
2415                                 prev = &bi[i].to;
2416                         }
2417                         free(bi);
2418                 }
2419         }
2420 }
2421
2422 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2423 {
2424         struct perf_evsel *pos;
2425         size_t ret = 0;
2426
2427         evlist__for_each_entry(evlist, pos) {
2428                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2429                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2430         }
2431
2432         return ret;
2433 }
2434
2435
2436 u64 hists__total_period(struct hists *hists)
2437 {
2438         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2439                 hists->stats.total_period;
2440 }
2441
2442 int parse_filter_percentage(const struct option *opt __maybe_unused,
2443                             const char *arg, int unset __maybe_unused)
2444 {
2445         if (!strcmp(arg, "relative"))
2446                 symbol_conf.filter_relative = true;
2447         else if (!strcmp(arg, "absolute"))
2448                 symbol_conf.filter_relative = false;
2449         else {
2450                 pr_debug("Invalud percentage: %s\n", arg);
2451                 return -1;
2452         }
2453
2454         return 0;
2455 }
2456
2457 int perf_hist_config(const char *var, const char *value)
2458 {
2459         if (!strcmp(var, "hist.percentage"))
2460                 return parse_filter_percentage(NULL, value, 0);
2461
2462         return 0;
2463 }
2464
2465 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2466 {
2467         memset(hists, 0, sizeof(*hists));
2468         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2469         hists->entries_in = &hists->entries_in_array[0];
2470         hists->entries_collapsed = RB_ROOT;
2471         hists->entries = RB_ROOT;
2472         pthread_mutex_init(&hists->lock, NULL);
2473         hists->socket_filter = -1;
2474         hists->hpp_list = hpp_list;
2475         INIT_LIST_HEAD(&hists->hpp_formats);
2476         return 0;
2477 }
2478
2479 static void hists__delete_remaining_entries(struct rb_root *root)
2480 {
2481         struct rb_node *node;
2482         struct hist_entry *he;
2483
2484         while (!RB_EMPTY_ROOT(root)) {
2485                 node = rb_first(root);
2486                 rb_erase(node, root);
2487
2488                 he = rb_entry(node, struct hist_entry, rb_node_in);
2489                 hist_entry__delete(he);
2490         }
2491 }
2492
2493 static void hists__delete_all_entries(struct hists *hists)
2494 {
2495         hists__delete_entries(hists);
2496         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2497         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2498         hists__delete_remaining_entries(&hists->entries_collapsed);
2499 }
2500
2501 static void hists_evsel__exit(struct perf_evsel *evsel)
2502 {
2503         struct hists *hists = evsel__hists(evsel);
2504         struct perf_hpp_fmt *fmt, *pos;
2505         struct perf_hpp_list_node *node, *tmp;
2506
2507         hists__delete_all_entries(hists);
2508
2509         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2510                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2511                         list_del(&fmt->list);
2512                         free(fmt);
2513                 }
2514                 list_del(&node->list);
2515                 free(node);
2516         }
2517 }
2518
2519 static int hists_evsel__init(struct perf_evsel *evsel)
2520 {
2521         struct hists *hists = evsel__hists(evsel);
2522
2523         __hists__init(hists, &perf_hpp_list);
2524         return 0;
2525 }
2526
2527 /*
2528  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2529  * stored in the rbtree...
2530  */
2531
2532 int hists__init(void)
2533 {
2534         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2535                                             hists_evsel__init,
2536                                             hists_evsel__exit);
2537         if (err)
2538                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2539
2540         return err;
2541 }
2542
2543 void perf_hpp_list__init(struct perf_hpp_list *list)
2544 {
2545         INIT_LIST_HEAD(&list->fields);
2546         INIT_LIST_HEAD(&list->sorts);
2547 }