]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/hist.c
Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19                                        struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21                                           struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23                                           struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25                                           struct hist_entry *he);
26
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29         return hists->col_len[col];
30 }
31
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34         hists->col_len[col] = len;
35 }
36
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39         if (len > hists__col_len(hists, col)) {
40                 hists__set_col_len(hists, col, len);
41                 return true;
42         }
43         return false;
44 }
45
46 void hists__reset_col_len(struct hists *hists)
47 {
48         enum hist_column col;
49
50         for (col = 0; col < HISTC_NR_COLS; ++col)
51                 hists__set_col_len(hists, col, 0);
52 }
53
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57
58         if (hists__col_len(hists, dso) < unresolved_col_width &&
59             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60             !symbol_conf.dso_list)
61                 hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67         int symlen;
68         u16 len;
69
70         /*
71          * +4 accounts for '[x] ' priv level info
72          * +2 accounts for 0x prefix on raw addresses
73          * +3 accounts for ' y ' symtab origin info
74          */
75         if (h->ms.sym) {
76                 symlen = h->ms.sym->namelen + 4;
77                 if (verbose > 0)
78                         symlen += BITS_PER_LONG / 4 + 2 + 3;
79                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80         } else {
81                 symlen = unresolved_col_width + 4 + 2;
82                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
84         }
85
86         len = thread__comm_len(h->thread);
87         if (hists__new_col_len(hists, HISTC_COMM, len))
88                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
89
90         if (h->ms.map) {
91                 len = dso__name_len(h->ms.map->dso);
92                 hists__new_col_len(hists, HISTC_DSO, len);
93         }
94
95         if (h->parent)
96                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97
98         if (h->branch_info) {
99                 if (h->branch_info->from.sym) {
100                         symlen = (int)h->branch_info->from.sym->namelen + 4;
101                         if (verbose > 0)
102                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
103                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104
105                         symlen = dso__name_len(h->branch_info->from.map->dso);
106                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107                 } else {
108                         symlen = unresolved_col_width + 4 + 2;
109                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111                 }
112
113                 if (h->branch_info->to.sym) {
114                         symlen = (int)h->branch_info->to.sym->namelen + 4;
115                         if (verbose > 0)
116                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
117                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118
119                         symlen = dso__name_len(h->branch_info->to.map->dso);
120                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121                 } else {
122                         symlen = unresolved_col_width + 4 + 2;
123                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125                 }
126
127                 if (h->branch_info->srcline_from)
128                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129                                         strlen(h->branch_info->srcline_from));
130                 if (h->branch_info->srcline_to)
131                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
132                                         strlen(h->branch_info->srcline_to));
133         }
134
135         if (h->mem_info) {
136                 if (h->mem_info->daddr.sym) {
137                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
138                                + unresolved_col_width + 2;
139                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140                                            symlen);
141                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142                                            symlen + 1);
143                 } else {
144                         symlen = unresolved_col_width + 4 + 2;
145                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146                                            symlen);
147                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148                                            symlen);
149                 }
150
151                 if (h->mem_info->iaddr.sym) {
152                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153                                + unresolved_col_width + 2;
154                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155                                            symlen);
156                 } else {
157                         symlen = unresolved_col_width + 4 + 2;
158                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159                                            symlen);
160                 }
161
162                 if (h->mem_info->daddr.map) {
163                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
164                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165                                            symlen);
166                 } else {
167                         symlen = unresolved_col_width + 4 + 2;
168                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169                 }
170         } else {
171                 symlen = unresolved_col_width + 4 + 2;
172                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
173                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
174                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
175         }
176
177         hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
178         hists__new_col_len(hists, HISTC_CPU, 3);
179         hists__new_col_len(hists, HISTC_SOCKET, 6);
180         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
181         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
182         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
183         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
184         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
185         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
186
187         if (h->srcline) {
188                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
189                 hists__new_col_len(hists, HISTC_SRCLINE, len);
190         }
191
192         if (h->srcfile)
193                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
194
195         if (h->transaction)
196                 hists__new_col_len(hists, HISTC_TRANSACTION,
197                                    hist_entry__transaction_len());
198
199         if (h->trace_output)
200                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
201 }
202
203 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
204 {
205         struct rb_node *next = rb_first(&hists->entries);
206         struct hist_entry *n;
207         int row = 0;
208
209         hists__reset_col_len(hists);
210
211         while (next && row++ < max_rows) {
212                 n = rb_entry(next, struct hist_entry, rb_node);
213                 if (!n->filtered)
214                         hists__calc_col_len(hists, n);
215                 next = rb_next(&n->rb_node);
216         }
217 }
218
219 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
220                                         unsigned int cpumode, u64 period)
221 {
222         switch (cpumode) {
223         case PERF_RECORD_MISC_KERNEL:
224                 he_stat->period_sys += period;
225                 break;
226         case PERF_RECORD_MISC_USER:
227                 he_stat->period_us += period;
228                 break;
229         case PERF_RECORD_MISC_GUEST_KERNEL:
230                 he_stat->period_guest_sys += period;
231                 break;
232         case PERF_RECORD_MISC_GUEST_USER:
233                 he_stat->period_guest_us += period;
234                 break;
235         default:
236                 break;
237         }
238 }
239
240 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
241                                 u64 weight)
242 {
243
244         he_stat->period         += period;
245         he_stat->weight         += weight;
246         he_stat->nr_events      += 1;
247 }
248
249 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
250 {
251         dest->period            += src->period;
252         dest->period_sys        += src->period_sys;
253         dest->period_us         += src->period_us;
254         dest->period_guest_sys  += src->period_guest_sys;
255         dest->period_guest_us   += src->period_guest_us;
256         dest->nr_events         += src->nr_events;
257         dest->weight            += src->weight;
258 }
259
260 static void he_stat__decay(struct he_stat *he_stat)
261 {
262         he_stat->period = (he_stat->period * 7) / 8;
263         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
264         /* XXX need decay for weight too? */
265 }
266
267 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
268
269 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
270 {
271         u64 prev_period = he->stat.period;
272         u64 diff;
273
274         if (prev_period == 0)
275                 return true;
276
277         he_stat__decay(&he->stat);
278         if (symbol_conf.cumulate_callchain)
279                 he_stat__decay(he->stat_acc);
280         decay_callchain(he->callchain);
281
282         diff = prev_period - he->stat.period;
283
284         if (!he->depth) {
285                 hists->stats.total_period -= diff;
286                 if (!he->filtered)
287                         hists->stats.total_non_filtered_period -= diff;
288         }
289
290         if (!he->leaf) {
291                 struct hist_entry *child;
292                 struct rb_node *node = rb_first(&he->hroot_out);
293                 while (node) {
294                         child = rb_entry(node, struct hist_entry, rb_node);
295                         node = rb_next(node);
296
297                         if (hists__decay_entry(hists, child))
298                                 hists__delete_entry(hists, child);
299                 }
300         }
301
302         return he->stat.period == 0;
303 }
304
305 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
306 {
307         struct rb_root *root_in;
308         struct rb_root *root_out;
309
310         if (he->parent_he) {
311                 root_in  = &he->parent_he->hroot_in;
312                 root_out = &he->parent_he->hroot_out;
313         } else {
314                 if (hists__has(hists, need_collapse))
315                         root_in = &hists->entries_collapsed;
316                 else
317                         root_in = hists->entries_in;
318                 root_out = &hists->entries;
319         }
320
321         rb_erase(&he->rb_node_in, root_in);
322         rb_erase(&he->rb_node, root_out);
323
324         --hists->nr_entries;
325         if (!he->filtered)
326                 --hists->nr_non_filtered_entries;
327
328         hist_entry__delete(he);
329 }
330
331 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
332 {
333         struct rb_node *next = rb_first(&hists->entries);
334         struct hist_entry *n;
335
336         while (next) {
337                 n = rb_entry(next, struct hist_entry, rb_node);
338                 next = rb_next(&n->rb_node);
339                 if (((zap_user && n->level == '.') ||
340                      (zap_kernel && n->level != '.') ||
341                      hists__decay_entry(hists, n))) {
342                         hists__delete_entry(hists, n);
343                 }
344         }
345 }
346
347 void hists__delete_entries(struct hists *hists)
348 {
349         struct rb_node *next = rb_first(&hists->entries);
350         struct hist_entry *n;
351
352         while (next) {
353                 n = rb_entry(next, struct hist_entry, rb_node);
354                 next = rb_next(&n->rb_node);
355
356                 hists__delete_entry(hists, n);
357         }
358 }
359
360 /*
361  * histogram, sorted on item, collects periods
362  */
363
364 static int hist_entry__init(struct hist_entry *he,
365                             struct hist_entry *template,
366                             bool sample_self)
367 {
368         *he = *template;
369
370         if (symbol_conf.cumulate_callchain) {
371                 he->stat_acc = malloc(sizeof(he->stat));
372                 if (he->stat_acc == NULL)
373                         return -ENOMEM;
374                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
375                 if (!sample_self)
376                         memset(&he->stat, 0, sizeof(he->stat));
377         }
378
379         map__get(he->ms.map);
380
381         if (he->branch_info) {
382                 /*
383                  * This branch info is (a part of) allocated from
384                  * sample__resolve_bstack() and will be freed after
385                  * adding new entries.  So we need to save a copy.
386                  */
387                 he->branch_info = malloc(sizeof(*he->branch_info));
388                 if (he->branch_info == NULL) {
389                         map__zput(he->ms.map);
390                         free(he->stat_acc);
391                         return -ENOMEM;
392                 }
393
394                 memcpy(he->branch_info, template->branch_info,
395                        sizeof(*he->branch_info));
396
397                 map__get(he->branch_info->from.map);
398                 map__get(he->branch_info->to.map);
399         }
400
401         if (he->mem_info) {
402                 map__get(he->mem_info->iaddr.map);
403                 map__get(he->mem_info->daddr.map);
404         }
405
406         if (symbol_conf.use_callchain)
407                 callchain_init(he->callchain);
408
409         if (he->raw_data) {
410                 he->raw_data = memdup(he->raw_data, he->raw_size);
411
412                 if (he->raw_data == NULL) {
413                         map__put(he->ms.map);
414                         if (he->branch_info) {
415                                 map__put(he->branch_info->from.map);
416                                 map__put(he->branch_info->to.map);
417                                 free(he->branch_info);
418                         }
419                         if (he->mem_info) {
420                                 map__put(he->mem_info->iaddr.map);
421                                 map__put(he->mem_info->daddr.map);
422                         }
423                         free(he->stat_acc);
424                         return -ENOMEM;
425                 }
426         }
427         INIT_LIST_HEAD(&he->pairs.node);
428         thread__get(he->thread);
429         he->hroot_in  = RB_ROOT;
430         he->hroot_out = RB_ROOT;
431
432         if (!symbol_conf.report_hierarchy)
433                 he->leaf = true;
434
435         return 0;
436 }
437
438 static void *hist_entry__zalloc(size_t size)
439 {
440         return zalloc(size + sizeof(struct hist_entry));
441 }
442
443 static void hist_entry__free(void *ptr)
444 {
445         free(ptr);
446 }
447
448 static struct hist_entry_ops default_ops = {
449         .new    = hist_entry__zalloc,
450         .free   = hist_entry__free,
451 };
452
453 static struct hist_entry *hist_entry__new(struct hist_entry *template,
454                                           bool sample_self)
455 {
456         struct hist_entry_ops *ops = template->ops;
457         size_t callchain_size = 0;
458         struct hist_entry *he;
459         int err = 0;
460
461         if (!ops)
462                 ops = template->ops = &default_ops;
463
464         if (symbol_conf.use_callchain)
465                 callchain_size = sizeof(struct callchain_root);
466
467         he = ops->new(callchain_size);
468         if (he) {
469                 err = hist_entry__init(he, template, sample_self);
470                 if (err) {
471                         ops->free(he);
472                         he = NULL;
473                 }
474         }
475
476         return he;
477 }
478
479 static u8 symbol__parent_filter(const struct symbol *parent)
480 {
481         if (symbol_conf.exclude_other && parent == NULL)
482                 return 1 << HIST_FILTER__PARENT;
483         return 0;
484 }
485
486 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
487 {
488         if (!symbol_conf.use_callchain)
489                 return;
490
491         he->hists->callchain_period += period;
492         if (!he->filtered)
493                 he->hists->callchain_non_filtered_period += period;
494 }
495
496 static struct hist_entry *hists__findnew_entry(struct hists *hists,
497                                                struct hist_entry *entry,
498                                                struct addr_location *al,
499                                                bool sample_self)
500 {
501         struct rb_node **p;
502         struct rb_node *parent = NULL;
503         struct hist_entry *he;
504         int64_t cmp;
505         u64 period = entry->stat.period;
506         u64 weight = entry->stat.weight;
507
508         p = &hists->entries_in->rb_node;
509
510         while (*p != NULL) {
511                 parent = *p;
512                 he = rb_entry(parent, struct hist_entry, rb_node_in);
513
514                 /*
515                  * Make sure that it receives arguments in a same order as
516                  * hist_entry__collapse() so that we can use an appropriate
517                  * function when searching an entry regardless which sort
518                  * keys were used.
519                  */
520                 cmp = hist_entry__cmp(he, entry);
521
522                 if (!cmp) {
523                         if (sample_self) {
524                                 he_stat__add_period(&he->stat, period, weight);
525                                 hist_entry__add_callchain_period(he, period);
526                         }
527                         if (symbol_conf.cumulate_callchain)
528                                 he_stat__add_period(he->stat_acc, period, weight);
529
530                         /*
531                          * This mem info was allocated from sample__resolve_mem
532                          * and will not be used anymore.
533                          */
534                         zfree(&entry->mem_info);
535
536                         /* If the map of an existing hist_entry has
537                          * become out-of-date due to an exec() or
538                          * similar, update it.  Otherwise we will
539                          * mis-adjust symbol addresses when computing
540                          * the history counter to increment.
541                          */
542                         if (he->ms.map != entry->ms.map) {
543                                 map__put(he->ms.map);
544                                 he->ms.map = map__get(entry->ms.map);
545                         }
546                         goto out;
547                 }
548
549                 if (cmp < 0)
550                         p = &(*p)->rb_left;
551                 else
552                         p = &(*p)->rb_right;
553         }
554
555         he = hist_entry__new(entry, sample_self);
556         if (!he)
557                 return NULL;
558
559         if (sample_self)
560                 hist_entry__add_callchain_period(he, period);
561         hists->nr_entries++;
562
563         rb_link_node(&he->rb_node_in, parent, p);
564         rb_insert_color(&he->rb_node_in, hists->entries_in);
565 out:
566         if (sample_self)
567                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
568         if (symbol_conf.cumulate_callchain)
569                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
570         return he;
571 }
572
573 static struct hist_entry*
574 __hists__add_entry(struct hists *hists,
575                    struct addr_location *al,
576                    struct symbol *sym_parent,
577                    struct branch_info *bi,
578                    struct mem_info *mi,
579                    struct perf_sample *sample,
580                    bool sample_self,
581                    struct hist_entry_ops *ops)
582 {
583         struct namespaces *ns = thread__namespaces(al->thread);
584         struct hist_entry entry = {
585                 .thread = al->thread,
586                 .comm = thread__comm(al->thread),
587                 .cgroup_id = {
588                         .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
589                         .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
590                 },
591                 .ms = {
592                         .map    = al->map,
593                         .sym    = al->sym,
594                 },
595                 .socket  = al->socket,
596                 .cpu     = al->cpu,
597                 .cpumode = al->cpumode,
598                 .ip      = al->addr,
599                 .level   = al->level,
600                 .stat = {
601                         .nr_events = 1,
602                         .period = sample->period,
603                         .weight = sample->weight,
604                 },
605                 .parent = sym_parent,
606                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
607                 .hists  = hists,
608                 .branch_info = bi,
609                 .mem_info = mi,
610                 .transaction = sample->transaction,
611                 .raw_data = sample->raw_data,
612                 .raw_size = sample->raw_size,
613                 .ops = ops,
614         };
615
616         return hists__findnew_entry(hists, &entry, al, sample_self);
617 }
618
619 struct hist_entry *hists__add_entry(struct hists *hists,
620                                     struct addr_location *al,
621                                     struct symbol *sym_parent,
622                                     struct branch_info *bi,
623                                     struct mem_info *mi,
624                                     struct perf_sample *sample,
625                                     bool sample_self)
626 {
627         return __hists__add_entry(hists, al, sym_parent, bi, mi,
628                                   sample, sample_self, NULL);
629 }
630
631 struct hist_entry *hists__add_entry_ops(struct hists *hists,
632                                         struct hist_entry_ops *ops,
633                                         struct addr_location *al,
634                                         struct symbol *sym_parent,
635                                         struct branch_info *bi,
636                                         struct mem_info *mi,
637                                         struct perf_sample *sample,
638                                         bool sample_self)
639 {
640         return __hists__add_entry(hists, al, sym_parent, bi, mi,
641                                   sample, sample_self, ops);
642 }
643
644 static int
645 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
646                     struct addr_location *al __maybe_unused)
647 {
648         return 0;
649 }
650
651 static int
652 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
653                         struct addr_location *al __maybe_unused)
654 {
655         return 0;
656 }
657
658 static int
659 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
660 {
661         struct perf_sample *sample = iter->sample;
662         struct mem_info *mi;
663
664         mi = sample__resolve_mem(sample, al);
665         if (mi == NULL)
666                 return -ENOMEM;
667
668         iter->priv = mi;
669         return 0;
670 }
671
672 static int
673 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
674 {
675         u64 cost;
676         struct mem_info *mi = iter->priv;
677         struct hists *hists = evsel__hists(iter->evsel);
678         struct perf_sample *sample = iter->sample;
679         struct hist_entry *he;
680
681         if (mi == NULL)
682                 return -EINVAL;
683
684         cost = sample->weight;
685         if (!cost)
686                 cost = 1;
687
688         /*
689          * must pass period=weight in order to get the correct
690          * sorting from hists__collapse_resort() which is solely
691          * based on periods. We want sorting be done on nr_events * weight
692          * and this is indirectly achieved by passing period=weight here
693          * and the he_stat__add_period() function.
694          */
695         sample->period = cost;
696
697         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
698                               sample, true);
699         if (!he)
700                 return -ENOMEM;
701
702         iter->he = he;
703         return 0;
704 }
705
706 static int
707 iter_finish_mem_entry(struct hist_entry_iter *iter,
708                       struct addr_location *al __maybe_unused)
709 {
710         struct perf_evsel *evsel = iter->evsel;
711         struct hists *hists = evsel__hists(evsel);
712         struct hist_entry *he = iter->he;
713         int err = -EINVAL;
714
715         if (he == NULL)
716                 goto out;
717
718         hists__inc_nr_samples(hists, he->filtered);
719
720         err = hist_entry__append_callchain(he, iter->sample);
721
722 out:
723         /*
724          * We don't need to free iter->priv (mem_info) here since the mem info
725          * was either already freed in hists__findnew_entry() or passed to a
726          * new hist entry by hist_entry__new().
727          */
728         iter->priv = NULL;
729
730         iter->he = NULL;
731         return err;
732 }
733
734 static int
735 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
736 {
737         struct branch_info *bi;
738         struct perf_sample *sample = iter->sample;
739
740         bi = sample__resolve_bstack(sample, al);
741         if (!bi)
742                 return -ENOMEM;
743
744         iter->curr = 0;
745         iter->total = sample->branch_stack->nr;
746
747         iter->priv = bi;
748         return 0;
749 }
750
751 static int
752 iter_add_single_branch_entry(struct hist_entry_iter *iter,
753                              struct addr_location *al __maybe_unused)
754 {
755         /* to avoid calling callback function */
756         iter->he = NULL;
757
758         return 0;
759 }
760
761 static int
762 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
763 {
764         struct branch_info *bi = iter->priv;
765         int i = iter->curr;
766
767         if (bi == NULL)
768                 return 0;
769
770         if (iter->curr >= iter->total)
771                 return 0;
772
773         al->map = bi[i].to.map;
774         al->sym = bi[i].to.sym;
775         al->addr = bi[i].to.addr;
776         return 1;
777 }
778
779 static int
780 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
781 {
782         struct branch_info *bi;
783         struct perf_evsel *evsel = iter->evsel;
784         struct hists *hists = evsel__hists(evsel);
785         struct perf_sample *sample = iter->sample;
786         struct hist_entry *he = NULL;
787         int i = iter->curr;
788         int err = 0;
789
790         bi = iter->priv;
791
792         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
793                 goto out;
794
795         /*
796          * The report shows the percentage of total branches captured
797          * and not events sampled. Thus we use a pseudo period of 1.
798          */
799         sample->period = 1;
800         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
801
802         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
803                               sample, true);
804         if (he == NULL)
805                 return -ENOMEM;
806
807         hists__inc_nr_samples(hists, he->filtered);
808
809 out:
810         iter->he = he;
811         iter->curr++;
812         return err;
813 }
814
815 static int
816 iter_finish_branch_entry(struct hist_entry_iter *iter,
817                          struct addr_location *al __maybe_unused)
818 {
819         zfree(&iter->priv);
820         iter->he = NULL;
821
822         return iter->curr >= iter->total ? 0 : -1;
823 }
824
825 static int
826 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
827                           struct addr_location *al __maybe_unused)
828 {
829         return 0;
830 }
831
832 static int
833 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
834 {
835         struct perf_evsel *evsel = iter->evsel;
836         struct perf_sample *sample = iter->sample;
837         struct hist_entry *he;
838
839         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
840                               sample, true);
841         if (he == NULL)
842                 return -ENOMEM;
843
844         iter->he = he;
845         return 0;
846 }
847
848 static int
849 iter_finish_normal_entry(struct hist_entry_iter *iter,
850                          struct addr_location *al __maybe_unused)
851 {
852         struct hist_entry *he = iter->he;
853         struct perf_evsel *evsel = iter->evsel;
854         struct perf_sample *sample = iter->sample;
855
856         if (he == NULL)
857                 return 0;
858
859         iter->he = NULL;
860
861         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
862
863         return hist_entry__append_callchain(he, sample);
864 }
865
866 static int
867 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
868                               struct addr_location *al __maybe_unused)
869 {
870         struct hist_entry **he_cache;
871
872         callchain_cursor_commit(&callchain_cursor);
873
874         /*
875          * This is for detecting cycles or recursions so that they're
876          * cumulated only one time to prevent entries more than 100%
877          * overhead.
878          */
879         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
880         if (he_cache == NULL)
881                 return -ENOMEM;
882
883         iter->priv = he_cache;
884         iter->curr = 0;
885
886         return 0;
887 }
888
889 static int
890 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
891                                  struct addr_location *al)
892 {
893         struct perf_evsel *evsel = iter->evsel;
894         struct hists *hists = evsel__hists(evsel);
895         struct perf_sample *sample = iter->sample;
896         struct hist_entry **he_cache = iter->priv;
897         struct hist_entry *he;
898         int err = 0;
899
900         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
901                               sample, true);
902         if (he == NULL)
903                 return -ENOMEM;
904
905         iter->he = he;
906         he_cache[iter->curr++] = he;
907
908         hist_entry__append_callchain(he, sample);
909
910         /*
911          * We need to re-initialize the cursor since callchain_append()
912          * advanced the cursor to the end.
913          */
914         callchain_cursor_commit(&callchain_cursor);
915
916         hists__inc_nr_samples(hists, he->filtered);
917
918         return err;
919 }
920
921 static int
922 iter_next_cumulative_entry(struct hist_entry_iter *iter,
923                            struct addr_location *al)
924 {
925         struct callchain_cursor_node *node;
926
927         node = callchain_cursor_current(&callchain_cursor);
928         if (node == NULL)
929                 return 0;
930
931         return fill_callchain_info(al, node, iter->hide_unresolved);
932 }
933
934 static int
935 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
936                                struct addr_location *al)
937 {
938         struct perf_evsel *evsel = iter->evsel;
939         struct perf_sample *sample = iter->sample;
940         struct hist_entry **he_cache = iter->priv;
941         struct hist_entry *he;
942         struct hist_entry he_tmp = {
943                 .hists = evsel__hists(evsel),
944                 .cpu = al->cpu,
945                 .thread = al->thread,
946                 .comm = thread__comm(al->thread),
947                 .ip = al->addr,
948                 .ms = {
949                         .map = al->map,
950                         .sym = al->sym,
951                 },
952                 .parent = iter->parent,
953                 .raw_data = sample->raw_data,
954                 .raw_size = sample->raw_size,
955         };
956         int i;
957         struct callchain_cursor cursor;
958
959         callchain_cursor_snapshot(&cursor, &callchain_cursor);
960
961         callchain_cursor_advance(&callchain_cursor);
962
963         /*
964          * Check if there's duplicate entries in the callchain.
965          * It's possible that it has cycles or recursive calls.
966          */
967         for (i = 0; i < iter->curr; i++) {
968                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
969                         /* to avoid calling callback function */
970                         iter->he = NULL;
971                         return 0;
972                 }
973         }
974
975         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
976                               sample, false);
977         if (he == NULL)
978                 return -ENOMEM;
979
980         iter->he = he;
981         he_cache[iter->curr++] = he;
982
983         if (symbol_conf.use_callchain)
984                 callchain_append(he->callchain, &cursor, sample->period);
985         return 0;
986 }
987
988 static int
989 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
990                              struct addr_location *al __maybe_unused)
991 {
992         zfree(&iter->priv);
993         iter->he = NULL;
994
995         return 0;
996 }
997
998 const struct hist_iter_ops hist_iter_mem = {
999         .prepare_entry          = iter_prepare_mem_entry,
1000         .add_single_entry       = iter_add_single_mem_entry,
1001         .next_entry             = iter_next_nop_entry,
1002         .add_next_entry         = iter_add_next_nop_entry,
1003         .finish_entry           = iter_finish_mem_entry,
1004 };
1005
1006 const struct hist_iter_ops hist_iter_branch = {
1007         .prepare_entry          = iter_prepare_branch_entry,
1008         .add_single_entry       = iter_add_single_branch_entry,
1009         .next_entry             = iter_next_branch_entry,
1010         .add_next_entry         = iter_add_next_branch_entry,
1011         .finish_entry           = iter_finish_branch_entry,
1012 };
1013
1014 const struct hist_iter_ops hist_iter_normal = {
1015         .prepare_entry          = iter_prepare_normal_entry,
1016         .add_single_entry       = iter_add_single_normal_entry,
1017         .next_entry             = iter_next_nop_entry,
1018         .add_next_entry         = iter_add_next_nop_entry,
1019         .finish_entry           = iter_finish_normal_entry,
1020 };
1021
1022 const struct hist_iter_ops hist_iter_cumulative = {
1023         .prepare_entry          = iter_prepare_cumulative_entry,
1024         .add_single_entry       = iter_add_single_cumulative_entry,
1025         .next_entry             = iter_next_cumulative_entry,
1026         .add_next_entry         = iter_add_next_cumulative_entry,
1027         .finish_entry           = iter_finish_cumulative_entry,
1028 };
1029
1030 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1031                          int max_stack_depth, void *arg)
1032 {
1033         int err, err2;
1034         struct map *alm = NULL;
1035
1036         if (al && al->map)
1037                 alm = map__get(al->map);
1038
1039         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1040                                         iter->evsel, al, max_stack_depth);
1041         if (err)
1042                 return err;
1043
1044         iter->max_stack = max_stack_depth;
1045
1046         err = iter->ops->prepare_entry(iter, al);
1047         if (err)
1048                 goto out;
1049
1050         err = iter->ops->add_single_entry(iter, al);
1051         if (err)
1052                 goto out;
1053
1054         if (iter->he && iter->add_entry_cb) {
1055                 err = iter->add_entry_cb(iter, al, true, arg);
1056                 if (err)
1057                         goto out;
1058         }
1059
1060         while (iter->ops->next_entry(iter, al)) {
1061                 err = iter->ops->add_next_entry(iter, al);
1062                 if (err)
1063                         break;
1064
1065                 if (iter->he && iter->add_entry_cb) {
1066                         err = iter->add_entry_cb(iter, al, false, arg);
1067                         if (err)
1068                                 goto out;
1069                 }
1070         }
1071
1072 out:
1073         err2 = iter->ops->finish_entry(iter, al);
1074         if (!err)
1075                 err = err2;
1076
1077         map__put(alm);
1078
1079         return err;
1080 }
1081
1082 int64_t
1083 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1084 {
1085         struct hists *hists = left->hists;
1086         struct perf_hpp_fmt *fmt;
1087         int64_t cmp = 0;
1088
1089         hists__for_each_sort_list(hists, fmt) {
1090                 if (perf_hpp__is_dynamic_entry(fmt) &&
1091                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1092                         continue;
1093
1094                 cmp = fmt->cmp(fmt, left, right);
1095                 if (cmp)
1096                         break;
1097         }
1098
1099         return cmp;
1100 }
1101
1102 int64_t
1103 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1104 {
1105         struct hists *hists = left->hists;
1106         struct perf_hpp_fmt *fmt;
1107         int64_t cmp = 0;
1108
1109         hists__for_each_sort_list(hists, fmt) {
1110                 if (perf_hpp__is_dynamic_entry(fmt) &&
1111                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1112                         continue;
1113
1114                 cmp = fmt->collapse(fmt, left, right);
1115                 if (cmp)
1116                         break;
1117         }
1118
1119         return cmp;
1120 }
1121
1122 void hist_entry__delete(struct hist_entry *he)
1123 {
1124         struct hist_entry_ops *ops = he->ops;
1125
1126         thread__zput(he->thread);
1127         map__zput(he->ms.map);
1128
1129         if (he->branch_info) {
1130                 map__zput(he->branch_info->from.map);
1131                 map__zput(he->branch_info->to.map);
1132                 free_srcline(he->branch_info->srcline_from);
1133                 free_srcline(he->branch_info->srcline_to);
1134                 zfree(&he->branch_info);
1135         }
1136
1137         if (he->mem_info) {
1138                 map__zput(he->mem_info->iaddr.map);
1139                 map__zput(he->mem_info->daddr.map);
1140                 zfree(&he->mem_info);
1141         }
1142
1143         if (he->inline_node) {
1144                 inline_node__delete(he->inline_node);
1145                 he->inline_node = NULL;
1146         }
1147
1148         zfree(&he->stat_acc);
1149         free_srcline(he->srcline);
1150         if (he->srcfile && he->srcfile[0])
1151                 free(he->srcfile);
1152         free_callchain(he->callchain);
1153         free(he->trace_output);
1154         free(he->raw_data);
1155         ops->free(he);
1156 }
1157
1158 /*
1159  * If this is not the last column, then we need to pad it according to the
1160  * pre-calculated max lenght for this column, otherwise don't bother adding
1161  * spaces because that would break viewing this with, for instance, 'less',
1162  * that would show tons of trailing spaces when a long C++ demangled method
1163  * names is sampled.
1164 */
1165 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1166                                    struct perf_hpp_fmt *fmt, int printed)
1167 {
1168         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1169                 const int width = fmt->width(fmt, hpp, he->hists);
1170                 if (printed < width) {
1171                         advance_hpp(hpp, printed);
1172                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1173                 }
1174         }
1175
1176         return printed;
1177 }
1178
1179 /*
1180  * collapse the histogram
1181  */
1182
1183 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1184 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1185                                        enum hist_filter type);
1186
1187 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1188
1189 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1190 {
1191         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1192 }
1193
1194 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1195                                                 enum hist_filter type,
1196                                                 fmt_chk_fn check)
1197 {
1198         struct perf_hpp_fmt *fmt;
1199         bool type_match = false;
1200         struct hist_entry *parent = he->parent_he;
1201
1202         switch (type) {
1203         case HIST_FILTER__THREAD:
1204                 if (symbol_conf.comm_list == NULL &&
1205                     symbol_conf.pid_list == NULL &&
1206                     symbol_conf.tid_list == NULL)
1207                         return;
1208                 break;
1209         case HIST_FILTER__DSO:
1210                 if (symbol_conf.dso_list == NULL)
1211                         return;
1212                 break;
1213         case HIST_FILTER__SYMBOL:
1214                 if (symbol_conf.sym_list == NULL)
1215                         return;
1216                 break;
1217         case HIST_FILTER__PARENT:
1218         case HIST_FILTER__GUEST:
1219         case HIST_FILTER__HOST:
1220         case HIST_FILTER__SOCKET:
1221         case HIST_FILTER__C2C:
1222         default:
1223                 return;
1224         }
1225
1226         /* if it's filtered by own fmt, it has to have filter bits */
1227         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1228                 if (check(fmt)) {
1229                         type_match = true;
1230                         break;
1231                 }
1232         }
1233
1234         if (type_match) {
1235                 /*
1236                  * If the filter is for current level entry, propagate
1237                  * filter marker to parents.  The marker bit was
1238                  * already set by default so it only needs to clear
1239                  * non-filtered entries.
1240                  */
1241                 if (!(he->filtered & (1 << type))) {
1242                         while (parent) {
1243                                 parent->filtered &= ~(1 << type);
1244                                 parent = parent->parent_he;
1245                         }
1246                 }
1247         } else {
1248                 /*
1249                  * If current entry doesn't have matching formats, set
1250                  * filter marker for upper level entries.  it will be
1251                  * cleared if its lower level entries is not filtered.
1252                  *
1253                  * For lower-level entries, it inherits parent's
1254                  * filter bit so that lower level entries of a
1255                  * non-filtered entry won't set the filter marker.
1256                  */
1257                 if (parent == NULL)
1258                         he->filtered |= (1 << type);
1259                 else
1260                         he->filtered |= (parent->filtered & (1 << type));
1261         }
1262 }
1263
1264 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1265 {
1266         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1267                                             check_thread_entry);
1268
1269         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1270                                             perf_hpp__is_dso_entry);
1271
1272         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1273                                             perf_hpp__is_sym_entry);
1274
1275         hists__apply_filters(he->hists, he);
1276 }
1277
1278 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1279                                                  struct rb_root *root,
1280                                                  struct hist_entry *he,
1281                                                  struct hist_entry *parent_he,
1282                                                  struct perf_hpp_list *hpp_list)
1283 {
1284         struct rb_node **p = &root->rb_node;
1285         struct rb_node *parent = NULL;
1286         struct hist_entry *iter, *new;
1287         struct perf_hpp_fmt *fmt;
1288         int64_t cmp;
1289
1290         while (*p != NULL) {
1291                 parent = *p;
1292                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1293
1294                 cmp = 0;
1295                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1296                         cmp = fmt->collapse(fmt, iter, he);
1297                         if (cmp)
1298                                 break;
1299                 }
1300
1301                 if (!cmp) {
1302                         he_stat__add_stat(&iter->stat, &he->stat);
1303                         return iter;
1304                 }
1305
1306                 if (cmp < 0)
1307                         p = &parent->rb_left;
1308                 else
1309                         p = &parent->rb_right;
1310         }
1311
1312         new = hist_entry__new(he, true);
1313         if (new == NULL)
1314                 return NULL;
1315
1316         hists->nr_entries++;
1317
1318         /* save related format list for output */
1319         new->hpp_list = hpp_list;
1320         new->parent_he = parent_he;
1321
1322         hist_entry__apply_hierarchy_filters(new);
1323
1324         /* some fields are now passed to 'new' */
1325         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1326                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1327                         he->trace_output = NULL;
1328                 else
1329                         new->trace_output = NULL;
1330
1331                 if (perf_hpp__is_srcline_entry(fmt))
1332                         he->srcline = NULL;
1333                 else
1334                         new->srcline = NULL;
1335
1336                 if (perf_hpp__is_srcfile_entry(fmt))
1337                         he->srcfile = NULL;
1338                 else
1339                         new->srcfile = NULL;
1340         }
1341
1342         rb_link_node(&new->rb_node_in, parent, p);
1343         rb_insert_color(&new->rb_node_in, root);
1344         return new;
1345 }
1346
1347 static int hists__hierarchy_insert_entry(struct hists *hists,
1348                                          struct rb_root *root,
1349                                          struct hist_entry *he)
1350 {
1351         struct perf_hpp_list_node *node;
1352         struct hist_entry *new_he = NULL;
1353         struct hist_entry *parent = NULL;
1354         int depth = 0;
1355         int ret = 0;
1356
1357         list_for_each_entry(node, &hists->hpp_formats, list) {
1358                 /* skip period (overhead) and elided columns */
1359                 if (node->level == 0 || node->skip)
1360                         continue;
1361
1362                 /* insert copy of 'he' for each fmt into the hierarchy */
1363                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1364                 if (new_he == NULL) {
1365                         ret = -1;
1366                         break;
1367                 }
1368
1369                 root = &new_he->hroot_in;
1370                 new_he->depth = depth++;
1371                 parent = new_he;
1372         }
1373
1374         if (new_he) {
1375                 new_he->leaf = true;
1376
1377                 if (symbol_conf.use_callchain) {
1378                         callchain_cursor_reset(&callchain_cursor);
1379                         if (callchain_merge(&callchain_cursor,
1380                                             new_he->callchain,
1381                                             he->callchain) < 0)
1382                                 ret = -1;
1383                 }
1384         }
1385
1386         /* 'he' is no longer used */
1387         hist_entry__delete(he);
1388
1389         /* return 0 (or -1) since it already applied filters */
1390         return ret;
1391 }
1392
1393 static int hists__collapse_insert_entry(struct hists *hists,
1394                                         struct rb_root *root,
1395                                         struct hist_entry *he)
1396 {
1397         struct rb_node **p = &root->rb_node;
1398         struct rb_node *parent = NULL;
1399         struct hist_entry *iter;
1400         int64_t cmp;
1401
1402         if (symbol_conf.report_hierarchy)
1403                 return hists__hierarchy_insert_entry(hists, root, he);
1404
1405         while (*p != NULL) {
1406                 parent = *p;
1407                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1408
1409                 cmp = hist_entry__collapse(iter, he);
1410
1411                 if (!cmp) {
1412                         int ret = 0;
1413
1414                         he_stat__add_stat(&iter->stat, &he->stat);
1415                         if (symbol_conf.cumulate_callchain)
1416                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1417
1418                         if (symbol_conf.use_callchain) {
1419                                 callchain_cursor_reset(&callchain_cursor);
1420                                 if (callchain_merge(&callchain_cursor,
1421                                                     iter->callchain,
1422                                                     he->callchain) < 0)
1423                                         ret = -1;
1424                         }
1425                         hist_entry__delete(he);
1426                         return ret;
1427                 }
1428
1429                 if (cmp < 0)
1430                         p = &(*p)->rb_left;
1431                 else
1432                         p = &(*p)->rb_right;
1433         }
1434         hists->nr_entries++;
1435
1436         rb_link_node(&he->rb_node_in, parent, p);
1437         rb_insert_color(&he->rb_node_in, root);
1438         return 1;
1439 }
1440
1441 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1442 {
1443         struct rb_root *root;
1444
1445         pthread_mutex_lock(&hists->lock);
1446
1447         root = hists->entries_in;
1448         if (++hists->entries_in > &hists->entries_in_array[1])
1449                 hists->entries_in = &hists->entries_in_array[0];
1450
1451         pthread_mutex_unlock(&hists->lock);
1452
1453         return root;
1454 }
1455
1456 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1457 {
1458         hists__filter_entry_by_dso(hists, he);
1459         hists__filter_entry_by_thread(hists, he);
1460         hists__filter_entry_by_symbol(hists, he);
1461         hists__filter_entry_by_socket(hists, he);
1462 }
1463
1464 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1465 {
1466         struct rb_root *root;
1467         struct rb_node *next;
1468         struct hist_entry *n;
1469         int ret;
1470
1471         if (!hists__has(hists, need_collapse))
1472                 return 0;
1473
1474         hists->nr_entries = 0;
1475
1476         root = hists__get_rotate_entries_in(hists);
1477
1478         next = rb_first(root);
1479
1480         while (next) {
1481                 if (session_done())
1482                         break;
1483                 n = rb_entry(next, struct hist_entry, rb_node_in);
1484                 next = rb_next(&n->rb_node_in);
1485
1486                 rb_erase(&n->rb_node_in, root);
1487                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1488                 if (ret < 0)
1489                         return -1;
1490
1491                 if (ret) {
1492                         /*
1493                          * If it wasn't combined with one of the entries already
1494                          * collapsed, we need to apply the filters that may have
1495                          * been set by, say, the hist_browser.
1496                          */
1497                         hists__apply_filters(hists, n);
1498                 }
1499                 if (prog)
1500                         ui_progress__update(prog, 1);
1501         }
1502         return 0;
1503 }
1504
1505 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1506 {
1507         struct hists *hists = a->hists;
1508         struct perf_hpp_fmt *fmt;
1509         int64_t cmp = 0;
1510
1511         hists__for_each_sort_list(hists, fmt) {
1512                 if (perf_hpp__should_skip(fmt, a->hists))
1513                         continue;
1514
1515                 cmp = fmt->sort(fmt, a, b);
1516                 if (cmp)
1517                         break;
1518         }
1519
1520         return cmp;
1521 }
1522
1523 static void hists__reset_filter_stats(struct hists *hists)
1524 {
1525         hists->nr_non_filtered_entries = 0;
1526         hists->stats.total_non_filtered_period = 0;
1527 }
1528
1529 void hists__reset_stats(struct hists *hists)
1530 {
1531         hists->nr_entries = 0;
1532         hists->stats.total_period = 0;
1533
1534         hists__reset_filter_stats(hists);
1535 }
1536
1537 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1538 {
1539         hists->nr_non_filtered_entries++;
1540         hists->stats.total_non_filtered_period += h->stat.period;
1541 }
1542
1543 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1544 {
1545         if (!h->filtered)
1546                 hists__inc_filter_stats(hists, h);
1547
1548         hists->nr_entries++;
1549         hists->stats.total_period += h->stat.period;
1550 }
1551
1552 static void hierarchy_recalc_total_periods(struct hists *hists)
1553 {
1554         struct rb_node *node;
1555         struct hist_entry *he;
1556
1557         node = rb_first(&hists->entries);
1558
1559         hists->stats.total_period = 0;
1560         hists->stats.total_non_filtered_period = 0;
1561
1562         /*
1563          * recalculate total period using top-level entries only
1564          * since lower level entries only see non-filtered entries
1565          * but upper level entries have sum of both entries.
1566          */
1567         while (node) {
1568                 he = rb_entry(node, struct hist_entry, rb_node);
1569                 node = rb_next(node);
1570
1571                 hists->stats.total_period += he->stat.period;
1572                 if (!he->filtered)
1573                         hists->stats.total_non_filtered_period += he->stat.period;
1574         }
1575 }
1576
1577 static void hierarchy_insert_output_entry(struct rb_root *root,
1578                                           struct hist_entry *he)
1579 {
1580         struct rb_node **p = &root->rb_node;
1581         struct rb_node *parent = NULL;
1582         struct hist_entry *iter;
1583         struct perf_hpp_fmt *fmt;
1584
1585         while (*p != NULL) {
1586                 parent = *p;
1587                 iter = rb_entry(parent, struct hist_entry, rb_node);
1588
1589                 if (hist_entry__sort(he, iter) > 0)
1590                         p = &parent->rb_left;
1591                 else
1592                         p = &parent->rb_right;
1593         }
1594
1595         rb_link_node(&he->rb_node, parent, p);
1596         rb_insert_color(&he->rb_node, root);
1597
1598         /* update column width of dynamic entry */
1599         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1600                 if (perf_hpp__is_dynamic_entry(fmt))
1601                         fmt->sort(fmt, he, NULL);
1602         }
1603 }
1604
1605 static void hists__hierarchy_output_resort(struct hists *hists,
1606                                            struct ui_progress *prog,
1607                                            struct rb_root *root_in,
1608                                            struct rb_root *root_out,
1609                                            u64 min_callchain_hits,
1610                                            bool use_callchain)
1611 {
1612         struct rb_node *node;
1613         struct hist_entry *he;
1614
1615         *root_out = RB_ROOT;
1616         node = rb_first(root_in);
1617
1618         while (node) {
1619                 he = rb_entry(node, struct hist_entry, rb_node_in);
1620                 node = rb_next(node);
1621
1622                 hierarchy_insert_output_entry(root_out, he);
1623
1624                 if (prog)
1625                         ui_progress__update(prog, 1);
1626
1627                 hists->nr_entries++;
1628                 if (!he->filtered) {
1629                         hists->nr_non_filtered_entries++;
1630                         hists__calc_col_len(hists, he);
1631                 }
1632
1633                 if (!he->leaf) {
1634                         hists__hierarchy_output_resort(hists, prog,
1635                                                        &he->hroot_in,
1636                                                        &he->hroot_out,
1637                                                        min_callchain_hits,
1638                                                        use_callchain);
1639                         continue;
1640                 }
1641
1642                 if (!use_callchain)
1643                         continue;
1644
1645                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1646                         u64 total = he->stat.period;
1647
1648                         if (symbol_conf.cumulate_callchain)
1649                                 total = he->stat_acc->period;
1650
1651                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1652                 }
1653
1654                 callchain_param.sort(&he->sorted_chain, he->callchain,
1655                                      min_callchain_hits, &callchain_param);
1656         }
1657 }
1658
1659 static void __hists__insert_output_entry(struct rb_root *entries,
1660                                          struct hist_entry *he,
1661                                          u64 min_callchain_hits,
1662                                          bool use_callchain)
1663 {
1664         struct rb_node **p = &entries->rb_node;
1665         struct rb_node *parent = NULL;
1666         struct hist_entry *iter;
1667         struct perf_hpp_fmt *fmt;
1668
1669         if (use_callchain) {
1670                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1671                         u64 total = he->stat.period;
1672
1673                         if (symbol_conf.cumulate_callchain)
1674                                 total = he->stat_acc->period;
1675
1676                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1677                 }
1678                 callchain_param.sort(&he->sorted_chain, he->callchain,
1679                                       min_callchain_hits, &callchain_param);
1680         }
1681
1682         while (*p != NULL) {
1683                 parent = *p;
1684                 iter = rb_entry(parent, struct hist_entry, rb_node);
1685
1686                 if (hist_entry__sort(he, iter) > 0)
1687                         p = &(*p)->rb_left;
1688                 else
1689                         p = &(*p)->rb_right;
1690         }
1691
1692         rb_link_node(&he->rb_node, parent, p);
1693         rb_insert_color(&he->rb_node, entries);
1694
1695         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1696                 if (perf_hpp__is_dynamic_entry(fmt) &&
1697                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1698                         fmt->sort(fmt, he, NULL);  /* update column width */
1699         }
1700 }
1701
1702 static void output_resort(struct hists *hists, struct ui_progress *prog,
1703                           bool use_callchain, hists__resort_cb_t cb)
1704 {
1705         struct rb_root *root;
1706         struct rb_node *next;
1707         struct hist_entry *n;
1708         u64 callchain_total;
1709         u64 min_callchain_hits;
1710
1711         callchain_total = hists->callchain_period;
1712         if (symbol_conf.filter_relative)
1713                 callchain_total = hists->callchain_non_filtered_period;
1714
1715         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1716
1717         hists__reset_stats(hists);
1718         hists__reset_col_len(hists);
1719
1720         if (symbol_conf.report_hierarchy) {
1721                 hists__hierarchy_output_resort(hists, prog,
1722                                                &hists->entries_collapsed,
1723                                                &hists->entries,
1724                                                min_callchain_hits,
1725                                                use_callchain);
1726                 hierarchy_recalc_total_periods(hists);
1727                 return;
1728         }
1729
1730         if (hists__has(hists, need_collapse))
1731                 root = &hists->entries_collapsed;
1732         else
1733                 root = hists->entries_in;
1734
1735         next = rb_first(root);
1736         hists->entries = RB_ROOT;
1737
1738         while (next) {
1739                 n = rb_entry(next, struct hist_entry, rb_node_in);
1740                 next = rb_next(&n->rb_node_in);
1741
1742                 if (cb && cb(n))
1743                         continue;
1744
1745                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1746                 hists__inc_stats(hists, n);
1747
1748                 if (!n->filtered)
1749                         hists__calc_col_len(hists, n);
1750
1751                 if (prog)
1752                         ui_progress__update(prog, 1);
1753         }
1754 }
1755
1756 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1757 {
1758         bool use_callchain;
1759
1760         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1761                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1762         else
1763                 use_callchain = symbol_conf.use_callchain;
1764
1765         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1766 }
1767
1768 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1769 {
1770         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1771 }
1772
1773 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1774                              hists__resort_cb_t cb)
1775 {
1776         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1777 }
1778
1779 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1780 {
1781         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1782                 return false;
1783
1784         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1785                 return true;
1786
1787         return false;
1788 }
1789
1790 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1791 {
1792         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1793
1794         while (can_goto_child(he, HMD_NORMAL)) {
1795                 node = rb_last(&he->hroot_out);
1796                 he = rb_entry(node, struct hist_entry, rb_node);
1797         }
1798         return node;
1799 }
1800
1801 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1802 {
1803         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1804
1805         if (can_goto_child(he, hmd))
1806                 node = rb_first(&he->hroot_out);
1807         else
1808                 node = rb_next(node);
1809
1810         while (node == NULL) {
1811                 he = he->parent_he;
1812                 if (he == NULL)
1813                         break;
1814
1815                 node = rb_next(&he->rb_node);
1816         }
1817         return node;
1818 }
1819
1820 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1821 {
1822         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1823
1824         node = rb_prev(node);
1825         if (node)
1826                 return rb_hierarchy_last(node);
1827
1828         he = he->parent_he;
1829         if (he == NULL)
1830                 return NULL;
1831
1832         return &he->rb_node;
1833 }
1834
1835 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1836 {
1837         struct rb_node *node;
1838         struct hist_entry *child;
1839         float percent;
1840
1841         if (he->leaf)
1842                 return false;
1843
1844         node = rb_first(&he->hroot_out);
1845         child = rb_entry(node, struct hist_entry, rb_node);
1846
1847         while (node && child->filtered) {
1848                 node = rb_next(node);
1849                 child = rb_entry(node, struct hist_entry, rb_node);
1850         }
1851
1852         if (node)
1853                 percent = hist_entry__get_percent_limit(child);
1854         else
1855                 percent = 0;
1856
1857         return node && percent >= limit;
1858 }
1859
1860 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1861                                        enum hist_filter filter)
1862 {
1863         h->filtered &= ~(1 << filter);
1864
1865         if (symbol_conf.report_hierarchy) {
1866                 struct hist_entry *parent = h->parent_he;
1867
1868                 while (parent) {
1869                         he_stat__add_stat(&parent->stat, &h->stat);
1870
1871                         parent->filtered &= ~(1 << filter);
1872
1873                         if (parent->filtered)
1874                                 goto next;
1875
1876                         /* force fold unfiltered entry for simplicity */
1877                         parent->unfolded = false;
1878                         parent->has_no_entry = false;
1879                         parent->row_offset = 0;
1880                         parent->nr_rows = 0;
1881 next:
1882                         parent = parent->parent_he;
1883                 }
1884         }
1885
1886         if (h->filtered)
1887                 return;
1888
1889         /* force fold unfiltered entry for simplicity */
1890         h->unfolded = false;
1891         h->has_no_entry = false;
1892         h->row_offset = 0;
1893         h->nr_rows = 0;
1894
1895         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1896
1897         hists__inc_filter_stats(hists, h);
1898         hists__calc_col_len(hists, h);
1899 }
1900
1901
1902 static bool hists__filter_entry_by_dso(struct hists *hists,
1903                                        struct hist_entry *he)
1904 {
1905         if (hists->dso_filter != NULL &&
1906             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1907                 he->filtered |= (1 << HIST_FILTER__DSO);
1908                 return true;
1909         }
1910
1911         return false;
1912 }
1913
1914 static bool hists__filter_entry_by_thread(struct hists *hists,
1915                                           struct hist_entry *he)
1916 {
1917         if (hists->thread_filter != NULL &&
1918             he->thread != hists->thread_filter) {
1919                 he->filtered |= (1 << HIST_FILTER__THREAD);
1920                 return true;
1921         }
1922
1923         return false;
1924 }
1925
1926 static bool hists__filter_entry_by_symbol(struct hists *hists,
1927                                           struct hist_entry *he)
1928 {
1929         if (hists->symbol_filter_str != NULL &&
1930             (!he->ms.sym || strstr(he->ms.sym->name,
1931                                    hists->symbol_filter_str) == NULL)) {
1932                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1933                 return true;
1934         }
1935
1936         return false;
1937 }
1938
1939 static bool hists__filter_entry_by_socket(struct hists *hists,
1940                                           struct hist_entry *he)
1941 {
1942         if ((hists->socket_filter > -1) &&
1943             (he->socket != hists->socket_filter)) {
1944                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1945                 return true;
1946         }
1947
1948         return false;
1949 }
1950
1951 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1952
1953 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1954 {
1955         struct rb_node *nd;
1956
1957         hists->stats.nr_non_filtered_samples = 0;
1958
1959         hists__reset_filter_stats(hists);
1960         hists__reset_col_len(hists);
1961
1962         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1963                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1964
1965                 if (filter(hists, h))
1966                         continue;
1967
1968                 hists__remove_entry_filter(hists, h, type);
1969         }
1970 }
1971
1972 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1973 {
1974         struct rb_node **p = &root->rb_node;
1975         struct rb_node *parent = NULL;
1976         struct hist_entry *iter;
1977         struct rb_root new_root = RB_ROOT;
1978         struct rb_node *nd;
1979
1980         while (*p != NULL) {
1981                 parent = *p;
1982                 iter = rb_entry(parent, struct hist_entry, rb_node);
1983
1984                 if (hist_entry__sort(he, iter) > 0)
1985                         p = &(*p)->rb_left;
1986                 else
1987                         p = &(*p)->rb_right;
1988         }
1989
1990         rb_link_node(&he->rb_node, parent, p);
1991         rb_insert_color(&he->rb_node, root);
1992
1993         if (he->leaf || he->filtered)
1994                 return;
1995
1996         nd = rb_first(&he->hroot_out);
1997         while (nd) {
1998                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1999
2000                 nd = rb_next(nd);
2001                 rb_erase(&h->rb_node, &he->hroot_out);
2002
2003                 resort_filtered_entry(&new_root, h);
2004         }
2005
2006         he->hroot_out = new_root;
2007 }
2008
2009 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2010 {
2011         struct rb_node *nd;
2012         struct rb_root new_root = RB_ROOT;
2013
2014         hists->stats.nr_non_filtered_samples = 0;
2015
2016         hists__reset_filter_stats(hists);
2017         hists__reset_col_len(hists);
2018
2019         nd = rb_first(&hists->entries);
2020         while (nd) {
2021                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2022                 int ret;
2023
2024                 ret = hist_entry__filter(h, type, arg);
2025
2026                 /*
2027                  * case 1. non-matching type
2028                  * zero out the period, set filter marker and move to child
2029                  */
2030                 if (ret < 0) {
2031                         memset(&h->stat, 0, sizeof(h->stat));
2032                         h->filtered |= (1 << type);
2033
2034                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2035                 }
2036                 /*
2037                  * case 2. matched type (filter out)
2038                  * set filter marker and move to next
2039                  */
2040                 else if (ret == 1) {
2041                         h->filtered |= (1 << type);
2042
2043                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2044                 }
2045                 /*
2046                  * case 3. ok (not filtered)
2047                  * add period to hists and parents, erase the filter marker
2048                  * and move to next sibling
2049                  */
2050                 else {
2051                         hists__remove_entry_filter(hists, h, type);
2052
2053                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2054                 }
2055         }
2056
2057         hierarchy_recalc_total_periods(hists);
2058
2059         /*
2060          * resort output after applying a new filter since filter in a lower
2061          * hierarchy can change periods in a upper hierarchy.
2062          */
2063         nd = rb_first(&hists->entries);
2064         while (nd) {
2065                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2066
2067                 nd = rb_next(nd);
2068                 rb_erase(&h->rb_node, &hists->entries);
2069
2070                 resort_filtered_entry(&new_root, h);
2071         }
2072
2073         hists->entries = new_root;
2074 }
2075
2076 void hists__filter_by_thread(struct hists *hists)
2077 {
2078         if (symbol_conf.report_hierarchy)
2079                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2080                                         hists->thread_filter);
2081         else
2082                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2083                                       hists__filter_entry_by_thread);
2084 }
2085
2086 void hists__filter_by_dso(struct hists *hists)
2087 {
2088         if (symbol_conf.report_hierarchy)
2089                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2090                                         hists->dso_filter);
2091         else
2092                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2093                                       hists__filter_entry_by_dso);
2094 }
2095
2096 void hists__filter_by_symbol(struct hists *hists)
2097 {
2098         if (symbol_conf.report_hierarchy)
2099                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2100                                         hists->symbol_filter_str);
2101         else
2102                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2103                                       hists__filter_entry_by_symbol);
2104 }
2105
2106 void hists__filter_by_socket(struct hists *hists)
2107 {
2108         if (symbol_conf.report_hierarchy)
2109                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2110                                         &hists->socket_filter);
2111         else
2112                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2113                                       hists__filter_entry_by_socket);
2114 }
2115
2116 void events_stats__inc(struct events_stats *stats, u32 type)
2117 {
2118         ++stats->nr_events[0];
2119         ++stats->nr_events[type];
2120 }
2121
2122 void hists__inc_nr_events(struct hists *hists, u32 type)
2123 {
2124         events_stats__inc(&hists->stats, type);
2125 }
2126
2127 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2128 {
2129         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2130         if (!filtered)
2131                 hists->stats.nr_non_filtered_samples++;
2132 }
2133
2134 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2135                                                  struct hist_entry *pair)
2136 {
2137         struct rb_root *root;
2138         struct rb_node **p;
2139         struct rb_node *parent = NULL;
2140         struct hist_entry *he;
2141         int64_t cmp;
2142
2143         if (hists__has(hists, need_collapse))
2144                 root = &hists->entries_collapsed;
2145         else
2146                 root = hists->entries_in;
2147
2148         p = &root->rb_node;
2149
2150         while (*p != NULL) {
2151                 parent = *p;
2152                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2153
2154                 cmp = hist_entry__collapse(he, pair);
2155
2156                 if (!cmp)
2157                         goto out;
2158
2159                 if (cmp < 0)
2160                         p = &(*p)->rb_left;
2161                 else
2162                         p = &(*p)->rb_right;
2163         }
2164
2165         he = hist_entry__new(pair, true);
2166         if (he) {
2167                 memset(&he->stat, 0, sizeof(he->stat));
2168                 he->hists = hists;
2169                 if (symbol_conf.cumulate_callchain)
2170                         memset(he->stat_acc, 0, sizeof(he->stat));
2171                 rb_link_node(&he->rb_node_in, parent, p);
2172                 rb_insert_color(&he->rb_node_in, root);
2173                 hists__inc_stats(hists, he);
2174                 he->dummy = true;
2175         }
2176 out:
2177         return he;
2178 }
2179
2180 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2181                                                     struct rb_root *root,
2182                                                     struct hist_entry *pair)
2183 {
2184         struct rb_node **p;
2185         struct rb_node *parent = NULL;
2186         struct hist_entry *he;
2187         struct perf_hpp_fmt *fmt;
2188
2189         p = &root->rb_node;
2190         while (*p != NULL) {
2191                 int64_t cmp = 0;
2192
2193                 parent = *p;
2194                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2195
2196                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2197                         cmp = fmt->collapse(fmt, he, pair);
2198                         if (cmp)
2199                                 break;
2200                 }
2201                 if (!cmp)
2202                         goto out;
2203
2204                 if (cmp < 0)
2205                         p = &parent->rb_left;
2206                 else
2207                         p = &parent->rb_right;
2208         }
2209
2210         he = hist_entry__new(pair, true);
2211         if (he) {
2212                 rb_link_node(&he->rb_node_in, parent, p);
2213                 rb_insert_color(&he->rb_node_in, root);
2214
2215                 he->dummy = true;
2216                 he->hists = hists;
2217                 memset(&he->stat, 0, sizeof(he->stat));
2218                 hists__inc_stats(hists, he);
2219         }
2220 out:
2221         return he;
2222 }
2223
2224 static struct hist_entry *hists__find_entry(struct hists *hists,
2225                                             struct hist_entry *he)
2226 {
2227         struct rb_node *n;
2228
2229         if (hists__has(hists, need_collapse))
2230                 n = hists->entries_collapsed.rb_node;
2231         else
2232                 n = hists->entries_in->rb_node;
2233
2234         while (n) {
2235                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2236                 int64_t cmp = hist_entry__collapse(iter, he);
2237
2238                 if (cmp < 0)
2239                         n = n->rb_left;
2240                 else if (cmp > 0)
2241                         n = n->rb_right;
2242                 else
2243                         return iter;
2244         }
2245
2246         return NULL;
2247 }
2248
2249 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2250                                                       struct hist_entry *he)
2251 {
2252         struct rb_node *n = root->rb_node;
2253
2254         while (n) {
2255                 struct hist_entry *iter;
2256                 struct perf_hpp_fmt *fmt;
2257                 int64_t cmp = 0;
2258
2259                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2260                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2261                         cmp = fmt->collapse(fmt, iter, he);
2262                         if (cmp)
2263                                 break;
2264                 }
2265
2266                 if (cmp < 0)
2267                         n = n->rb_left;
2268                 else if (cmp > 0)
2269                         n = n->rb_right;
2270                 else
2271                         return iter;
2272         }
2273
2274         return NULL;
2275 }
2276
2277 static void hists__match_hierarchy(struct rb_root *leader_root,
2278                                    struct rb_root *other_root)
2279 {
2280         struct rb_node *nd;
2281         struct hist_entry *pos, *pair;
2282
2283         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2284                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2285                 pair = hists__find_hierarchy_entry(other_root, pos);
2286
2287                 if (pair) {
2288                         hist_entry__add_pair(pair, pos);
2289                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2290                 }
2291         }
2292 }
2293
2294 /*
2295  * Look for pairs to link to the leader buckets (hist_entries):
2296  */
2297 void hists__match(struct hists *leader, struct hists *other)
2298 {
2299         struct rb_root *root;
2300         struct rb_node *nd;
2301         struct hist_entry *pos, *pair;
2302
2303         if (symbol_conf.report_hierarchy) {
2304                 /* hierarchy report always collapses entries */
2305                 return hists__match_hierarchy(&leader->entries_collapsed,
2306                                               &other->entries_collapsed);
2307         }
2308
2309         if (hists__has(leader, need_collapse))
2310                 root = &leader->entries_collapsed;
2311         else
2312                 root = leader->entries_in;
2313
2314         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2315                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2316                 pair = hists__find_entry(other, pos);
2317
2318                 if (pair)
2319                         hist_entry__add_pair(pair, pos);
2320         }
2321 }
2322
2323 static int hists__link_hierarchy(struct hists *leader_hists,
2324                                  struct hist_entry *parent,
2325                                  struct rb_root *leader_root,
2326                                  struct rb_root *other_root)
2327 {
2328         struct rb_node *nd;
2329         struct hist_entry *pos, *leader;
2330
2331         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2332                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2333
2334                 if (hist_entry__has_pairs(pos)) {
2335                         bool found = false;
2336
2337                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2338                                 if (leader->hists == leader_hists) {
2339                                         found = true;
2340                                         break;
2341                                 }
2342                         }
2343                         if (!found)
2344                                 return -1;
2345                 } else {
2346                         leader = add_dummy_hierarchy_entry(leader_hists,
2347                                                            leader_root, pos);
2348                         if (leader == NULL)
2349                                 return -1;
2350
2351                         /* do not point parent in the pos */
2352                         leader->parent_he = parent;
2353
2354                         hist_entry__add_pair(pos, leader);
2355                 }
2356
2357                 if (!pos->leaf) {
2358                         if (hists__link_hierarchy(leader_hists, leader,
2359                                                   &leader->hroot_in,
2360                                                   &pos->hroot_in) < 0)
2361                                 return -1;
2362                 }
2363         }
2364         return 0;
2365 }
2366
2367 /*
2368  * Look for entries in the other hists that are not present in the leader, if
2369  * we find them, just add a dummy entry on the leader hists, with period=0,
2370  * nr_events=0, to serve as the list header.
2371  */
2372 int hists__link(struct hists *leader, struct hists *other)
2373 {
2374         struct rb_root *root;
2375         struct rb_node *nd;
2376         struct hist_entry *pos, *pair;
2377
2378         if (symbol_conf.report_hierarchy) {
2379                 /* hierarchy report always collapses entries */
2380                 return hists__link_hierarchy(leader, NULL,
2381                                              &leader->entries_collapsed,
2382                                              &other->entries_collapsed);
2383         }
2384
2385         if (hists__has(other, need_collapse))
2386                 root = &other->entries_collapsed;
2387         else
2388                 root = other->entries_in;
2389
2390         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2391                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2392
2393                 if (!hist_entry__has_pairs(pos)) {
2394                         pair = hists__add_dummy_entry(leader, pos);
2395                         if (pair == NULL)
2396                                 return -1;
2397                         hist_entry__add_pair(pos, pair);
2398                 }
2399         }
2400
2401         return 0;
2402 }
2403
2404 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2405                           struct perf_sample *sample, bool nonany_branch_mode)
2406 {
2407         struct branch_info *bi;
2408
2409         /* If we have branch cycles always annotate them. */
2410         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2411                 int i;
2412
2413                 bi = sample__resolve_bstack(sample, al);
2414                 if (bi) {
2415                         struct addr_map_symbol *prev = NULL;
2416
2417                         /*
2418                          * Ignore errors, still want to process the
2419                          * other entries.
2420                          *
2421                          * For non standard branch modes always
2422                          * force no IPC (prev == NULL)
2423                          *
2424                          * Note that perf stores branches reversed from
2425                          * program order!
2426                          */
2427                         for (i = bs->nr - 1; i >= 0; i--) {
2428                                 addr_map_symbol__account_cycles(&bi[i].from,
2429                                         nonany_branch_mode ? NULL : prev,
2430                                         bi[i].flags.cycles);
2431                                 prev = &bi[i].to;
2432                         }
2433                         free(bi);
2434                 }
2435         }
2436 }
2437
2438 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2439 {
2440         struct perf_evsel *pos;
2441         size_t ret = 0;
2442
2443         evlist__for_each_entry(evlist, pos) {
2444                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2445                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2446         }
2447
2448         return ret;
2449 }
2450
2451
2452 u64 hists__total_period(struct hists *hists)
2453 {
2454         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2455                 hists->stats.total_period;
2456 }
2457
2458 int parse_filter_percentage(const struct option *opt __maybe_unused,
2459                             const char *arg, int unset __maybe_unused)
2460 {
2461         if (!strcmp(arg, "relative"))
2462                 symbol_conf.filter_relative = true;
2463         else if (!strcmp(arg, "absolute"))
2464                 symbol_conf.filter_relative = false;
2465         else {
2466                 pr_debug("Invalid percentage: %s\n", arg);
2467                 return -1;
2468         }
2469
2470         return 0;
2471 }
2472
2473 int perf_hist_config(const char *var, const char *value)
2474 {
2475         if (!strcmp(var, "hist.percentage"))
2476                 return parse_filter_percentage(NULL, value, 0);
2477
2478         return 0;
2479 }
2480
2481 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2482 {
2483         memset(hists, 0, sizeof(*hists));
2484         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2485         hists->entries_in = &hists->entries_in_array[0];
2486         hists->entries_collapsed = RB_ROOT;
2487         hists->entries = RB_ROOT;
2488         pthread_mutex_init(&hists->lock, NULL);
2489         hists->socket_filter = -1;
2490         hists->hpp_list = hpp_list;
2491         INIT_LIST_HEAD(&hists->hpp_formats);
2492         return 0;
2493 }
2494
2495 static void hists__delete_remaining_entries(struct rb_root *root)
2496 {
2497         struct rb_node *node;
2498         struct hist_entry *he;
2499
2500         while (!RB_EMPTY_ROOT(root)) {
2501                 node = rb_first(root);
2502                 rb_erase(node, root);
2503
2504                 he = rb_entry(node, struct hist_entry, rb_node_in);
2505                 hist_entry__delete(he);
2506         }
2507 }
2508
2509 static void hists__delete_all_entries(struct hists *hists)
2510 {
2511         hists__delete_entries(hists);
2512         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2513         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2514         hists__delete_remaining_entries(&hists->entries_collapsed);
2515 }
2516
2517 static void hists_evsel__exit(struct perf_evsel *evsel)
2518 {
2519         struct hists *hists = evsel__hists(evsel);
2520         struct perf_hpp_fmt *fmt, *pos;
2521         struct perf_hpp_list_node *node, *tmp;
2522
2523         hists__delete_all_entries(hists);
2524
2525         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2526                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2527                         list_del(&fmt->list);
2528                         free(fmt);
2529                 }
2530                 list_del(&node->list);
2531                 free(node);
2532         }
2533 }
2534
2535 static int hists_evsel__init(struct perf_evsel *evsel)
2536 {
2537         struct hists *hists = evsel__hists(evsel);
2538
2539         __hists__init(hists, &perf_hpp_list);
2540         return 0;
2541 }
2542
2543 /*
2544  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2545  * stored in the rbtree...
2546  */
2547
2548 int hists__init(void)
2549 {
2550         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2551                                             hists_evsel__init,
2552                                             hists_evsel__exit);
2553         if (err)
2554                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2555
2556         return err;
2557 }
2558
2559 void perf_hpp_list__init(struct perf_hpp_list *list)
2560 {
2561         INIT_LIST_HEAD(&list->fields);
2562         INIT_LIST_HEAD(&list->sorts);
2563 }