]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/machine.c
scsi: cxgb4i: libcxgbi: in error case RST tcp conn
[karo-tx-linux.git] / tools / perf / util / machine.c
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28
29 static void dsos__init(struct dsos *dsos)
30 {
31         INIT_LIST_HEAD(&dsos->head);
32         dsos->root = RB_ROOT;
33         pthread_rwlock_init(&dsos->lock, NULL);
34 }
35
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38         memset(machine, 0, sizeof(*machine));
39         map_groups__init(&machine->kmaps, machine);
40         RB_CLEAR_NODE(&machine->rb_node);
41         dsos__init(&machine->dsos);
42
43         machine->threads = RB_ROOT;
44         pthread_rwlock_init(&machine->threads_lock, NULL);
45         machine->nr_threads = 0;
46         INIT_LIST_HEAD(&machine->dead_threads);
47         machine->last_match = NULL;
48
49         machine->vdso_info = NULL;
50         machine->env = NULL;
51
52         machine->pid = pid;
53
54         machine->id_hdr_size = 0;
55         machine->kptr_restrict_warned = false;
56         machine->comm_exec = false;
57         machine->kernel_start = 0;
58
59         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60
61         machine->root_dir = strdup(root_dir);
62         if (machine->root_dir == NULL)
63                 return -ENOMEM;
64
65         if (pid != HOST_KERNEL_ID) {
66                 struct thread *thread = machine__findnew_thread(machine, -1,
67                                                                 pid);
68                 char comm[64];
69
70                 if (thread == NULL)
71                         return -ENOMEM;
72
73                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74                 thread__set_comm(thread, comm, 0);
75                 thread__put(thread);
76         }
77
78         machine->current_tid = NULL;
79
80         return 0;
81 }
82
83 struct machine *machine__new_host(void)
84 {
85         struct machine *machine = malloc(sizeof(*machine));
86
87         if (machine != NULL) {
88                 machine__init(machine, "", HOST_KERNEL_ID);
89
90                 if (machine__create_kernel_maps(machine) < 0)
91                         goto out_delete;
92         }
93
94         return machine;
95 out_delete:
96         free(machine);
97         return NULL;
98 }
99
100 struct machine *machine__new_kallsyms(void)
101 {
102         struct machine *machine = machine__new_host();
103         /*
104          * FIXME:
105          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106          *    functions and data objects.
107          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108          *    ask for not using the kcore parsing code, once this one is fixed
109          *    to create a map per module.
110          */
111         if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112                 machine__delete(machine);
113                 machine = NULL;
114         }
115
116         return machine;
117 }
118
119 static void dsos__purge(struct dsos *dsos)
120 {
121         struct dso *pos, *n;
122
123         pthread_rwlock_wrlock(&dsos->lock);
124
125         list_for_each_entry_safe(pos, n, &dsos->head, node) {
126                 RB_CLEAR_NODE(&pos->rb_node);
127                 pos->root = NULL;
128                 list_del_init(&pos->node);
129                 dso__put(pos);
130         }
131
132         pthread_rwlock_unlock(&dsos->lock);
133 }
134
135 static void dsos__exit(struct dsos *dsos)
136 {
137         dsos__purge(dsos);
138         pthread_rwlock_destroy(&dsos->lock);
139 }
140
141 void machine__delete_threads(struct machine *machine)
142 {
143         struct rb_node *nd;
144
145         pthread_rwlock_wrlock(&machine->threads_lock);
146         nd = rb_first(&machine->threads);
147         while (nd) {
148                 struct thread *t = rb_entry(nd, struct thread, rb_node);
149
150                 nd = rb_next(nd);
151                 __machine__remove_thread(machine, t, false);
152         }
153         pthread_rwlock_unlock(&machine->threads_lock);
154 }
155
156 void machine__exit(struct machine *machine)
157 {
158         machine__destroy_kernel_maps(machine);
159         map_groups__exit(&machine->kmaps);
160         dsos__exit(&machine->dsos);
161         machine__exit_vdso(machine);
162         zfree(&machine->root_dir);
163         zfree(&machine->current_tid);
164         pthread_rwlock_destroy(&machine->threads_lock);
165 }
166
167 void machine__delete(struct machine *machine)
168 {
169         if (machine) {
170                 machine__exit(machine);
171                 free(machine);
172         }
173 }
174
175 void machines__init(struct machines *machines)
176 {
177         machine__init(&machines->host, "", HOST_KERNEL_ID);
178         machines->guests = RB_ROOT;
179 }
180
181 void machines__exit(struct machines *machines)
182 {
183         machine__exit(&machines->host);
184         /* XXX exit guest */
185 }
186
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188                               const char *root_dir)
189 {
190         struct rb_node **p = &machines->guests.rb_node;
191         struct rb_node *parent = NULL;
192         struct machine *pos, *machine = malloc(sizeof(*machine));
193
194         if (machine == NULL)
195                 return NULL;
196
197         if (machine__init(machine, root_dir, pid) != 0) {
198                 free(machine);
199                 return NULL;
200         }
201
202         while (*p != NULL) {
203                 parent = *p;
204                 pos = rb_entry(parent, struct machine, rb_node);
205                 if (pid < pos->pid)
206                         p = &(*p)->rb_left;
207                 else
208                         p = &(*p)->rb_right;
209         }
210
211         rb_link_node(&machine->rb_node, parent, p);
212         rb_insert_color(&machine->rb_node, &machines->guests);
213
214         return machine;
215 }
216
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219         struct rb_node *nd;
220
221         machines->host.comm_exec = comm_exec;
222
223         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
225
226                 machine->comm_exec = comm_exec;
227         }
228 }
229
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232         struct rb_node **p = &machines->guests.rb_node;
233         struct rb_node *parent = NULL;
234         struct machine *machine;
235         struct machine *default_machine = NULL;
236
237         if (pid == HOST_KERNEL_ID)
238                 return &machines->host;
239
240         while (*p != NULL) {
241                 parent = *p;
242                 machine = rb_entry(parent, struct machine, rb_node);
243                 if (pid < machine->pid)
244                         p = &(*p)->rb_left;
245                 else if (pid > machine->pid)
246                         p = &(*p)->rb_right;
247                 else
248                         return machine;
249                 if (!machine->pid)
250                         default_machine = machine;
251         }
252
253         return default_machine;
254 }
255
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258         char path[PATH_MAX];
259         const char *root_dir = "";
260         struct machine *machine = machines__find(machines, pid);
261
262         if (machine && (machine->pid == pid))
263                 goto out;
264
265         if ((pid != HOST_KERNEL_ID) &&
266             (pid != DEFAULT_GUEST_KERNEL_ID) &&
267             (symbol_conf.guestmount)) {
268                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269                 if (access(path, R_OK)) {
270                         static struct strlist *seen;
271
272                         if (!seen)
273                                 seen = strlist__new(NULL, NULL);
274
275                         if (!strlist__has_entry(seen, path)) {
276                                 pr_err("Can't access file %s\n", path);
277                                 strlist__add(seen, path);
278                         }
279                         machine = NULL;
280                         goto out;
281                 }
282                 root_dir = path;
283         }
284
285         machine = machines__add(machines, pid, root_dir);
286 out:
287         return machine;
288 }
289
290 void machines__process_guests(struct machines *machines,
291                               machine__process_t process, void *data)
292 {
293         struct rb_node *nd;
294
295         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
297                 process(pos, data);
298         }
299 }
300
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303         if (machine__is_host(machine))
304                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
305         else if (machine__is_default_guest(machine))
306                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307         else {
308                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309                          machine->pid);
310         }
311
312         return bf;
313 }
314
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317         struct rb_node *node;
318         struct machine *machine;
319
320         machines->host.id_hdr_size = id_hdr_size;
321
322         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323                 machine = rb_entry(node, struct machine, rb_node);
324                 machine->id_hdr_size = id_hdr_size;
325         }
326
327         return;
328 }
329
330 static void machine__update_thread_pid(struct machine *machine,
331                                        struct thread *th, pid_t pid)
332 {
333         struct thread *leader;
334
335         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336                 return;
337
338         th->pid_ = pid;
339
340         if (th->pid_ == th->tid)
341                 return;
342
343         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344         if (!leader)
345                 goto out_err;
346
347         if (!leader->mg)
348                 leader->mg = map_groups__new(machine);
349
350         if (!leader->mg)
351                 goto out_err;
352
353         if (th->mg == leader->mg)
354                 return;
355
356         if (th->mg) {
357                 /*
358                  * Maps are created from MMAP events which provide the pid and
359                  * tid.  Consequently there never should be any maps on a thread
360                  * with an unknown pid.  Just print an error if there are.
361                  */
362                 if (!map_groups__empty(th->mg))
363                         pr_err("Discarding thread maps for %d:%d\n",
364                                th->pid_, th->tid);
365                 map_groups__put(th->mg);
366         }
367
368         th->mg = map_groups__get(leader->mg);
369 out_put:
370         thread__put(leader);
371         return;
372 out_err:
373         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374         goto out_put;
375 }
376
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382                                                   pid_t pid, pid_t tid,
383                                                   bool create)
384 {
385         struct rb_node **p = &machine->threads.rb_node;
386         struct rb_node *parent = NULL;
387         struct thread *th;
388
389         /*
390          * Front-end cache - TID lookups come in blocks,
391          * so most of the time we dont have to look up
392          * the full rbtree:
393          */
394         th = machine->last_match;
395         if (th != NULL) {
396                 if (th->tid == tid) {
397                         machine__update_thread_pid(machine, th, pid);
398                         return thread__get(th);
399                 }
400
401                 machine->last_match = NULL;
402         }
403
404         while (*p != NULL) {
405                 parent = *p;
406                 th = rb_entry(parent, struct thread, rb_node);
407
408                 if (th->tid == tid) {
409                         machine->last_match = th;
410                         machine__update_thread_pid(machine, th, pid);
411                         return thread__get(th);
412                 }
413
414                 if (tid < th->tid)
415                         p = &(*p)->rb_left;
416                 else
417                         p = &(*p)->rb_right;
418         }
419
420         if (!create)
421                 return NULL;
422
423         th = thread__new(pid, tid);
424         if (th != NULL) {
425                 rb_link_node(&th->rb_node, parent, p);
426                 rb_insert_color(&th->rb_node, &machine->threads);
427
428                 /*
429                  * We have to initialize map_groups separately
430                  * after rb tree is updated.
431                  *
432                  * The reason is that we call machine__findnew_thread
433                  * within thread__init_map_groups to find the thread
434                  * leader and that would screwed the rb tree.
435                  */
436                 if (thread__init_map_groups(th, machine)) {
437                         rb_erase_init(&th->rb_node, &machine->threads);
438                         RB_CLEAR_NODE(&th->rb_node);
439                         thread__put(th);
440                         return NULL;
441                 }
442                 /*
443                  * It is now in the rbtree, get a ref
444                  */
445                 thread__get(th);
446                 machine->last_match = th;
447                 ++machine->nr_threads;
448         }
449
450         return th;
451 }
452
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455         return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459                                        pid_t tid)
460 {
461         struct thread *th;
462
463         pthread_rwlock_wrlock(&machine->threads_lock);
464         th = __machine__findnew_thread(machine, pid, tid);
465         pthread_rwlock_unlock(&machine->threads_lock);
466         return th;
467 }
468
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470                                     pid_t tid)
471 {
472         struct thread *th;
473         pthread_rwlock_rdlock(&machine->threads_lock);
474         th =  ____machine__findnew_thread(machine, pid, tid, false);
475         pthread_rwlock_unlock(&machine->threads_lock);
476         return th;
477 }
478
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480                                        struct thread *thread)
481 {
482         if (machine->comm_exec)
483                 return thread__exec_comm(thread);
484         else
485                 return thread__comm(thread);
486 }
487
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489                                 struct perf_sample *sample)
490 {
491         struct thread *thread = machine__findnew_thread(machine,
492                                                         event->comm.pid,
493                                                         event->comm.tid);
494         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495         int err = 0;
496
497         if (exec)
498                 machine->comm_exec = true;
499
500         if (dump_trace)
501                 perf_event__fprintf_comm(event, stdout);
502
503         if (thread == NULL ||
504             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506                 err = -1;
507         }
508
509         thread__put(thread);
510
511         return err;
512 }
513
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515                                       union perf_event *event,
516                                       struct perf_sample *sample __maybe_unused)
517 {
518         struct thread *thread = machine__findnew_thread(machine,
519                                                         event->namespaces.pid,
520                                                         event->namespaces.tid);
521         int err = 0;
522
523         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524                   "\nWARNING: kernel seems to support more namespaces than perf"
525                   " tool.\nTry updating the perf tool..\n\n");
526
527         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528                   "\nWARNING: perf tool seems to support more namespaces than"
529                   " the kernel.\nTry updating the kernel..\n\n");
530
531         if (dump_trace)
532                 perf_event__fprintf_namespaces(event, stdout);
533
534         if (thread == NULL ||
535             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537                 err = -1;
538         }
539
540         thread__put(thread);
541
542         return err;
543 }
544
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549                     event->lost.id, event->lost.lost);
550         return 0;
551 }
552
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554                                         union perf_event *event, struct perf_sample *sample)
555 {
556         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557                     sample->id, event->lost_samples.lost);
558         return 0;
559 }
560
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562                                                struct kmod_path *m,
563                                                const char *filename)
564 {
565         struct dso *dso;
566
567         pthread_rwlock_wrlock(&machine->dsos.lock);
568
569         dso = __dsos__find(&machine->dsos, m->name, true);
570         if (!dso) {
571                 dso = __dsos__addnew(&machine->dsos, m->name);
572                 if (dso == NULL)
573                         goto out_unlock;
574
575                 if (machine__is_host(machine))
576                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
577                 else
578                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
579
580                 /* _KMODULE_COMP should be next to _KMODULE */
581                 if (m->kmod && m->comp)
582                         dso->symtab_type++;
583
584                 dso__set_short_name(dso, strdup(m->name), true);
585                 dso__set_long_name(dso, strdup(filename), true);
586         }
587
588         dso__get(dso);
589 out_unlock:
590         pthread_rwlock_unlock(&machine->dsos.lock);
591         return dso;
592 }
593
594 int machine__process_aux_event(struct machine *machine __maybe_unused,
595                                union perf_event *event)
596 {
597         if (dump_trace)
598                 perf_event__fprintf_aux(event, stdout);
599         return 0;
600 }
601
602 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
603                                         union perf_event *event)
604 {
605         if (dump_trace)
606                 perf_event__fprintf_itrace_start(event, stdout);
607         return 0;
608 }
609
610 int machine__process_switch_event(struct machine *machine __maybe_unused,
611                                   union perf_event *event)
612 {
613         if (dump_trace)
614                 perf_event__fprintf_switch(event, stdout);
615         return 0;
616 }
617
618 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
619 {
620         const char *dup_filename;
621
622         if (!filename || !dso || !dso->long_name)
623                 return;
624         if (dso->long_name[0] != '[')
625                 return;
626         if (!strchr(filename, '/'))
627                 return;
628
629         dup_filename = strdup(filename);
630         if (!dup_filename)
631                 return;
632
633         dso__set_long_name(dso, dup_filename, true);
634 }
635
636 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
637                                         const char *filename)
638 {
639         struct map *map = NULL;
640         struct dso *dso = NULL;
641         struct kmod_path m;
642
643         if (kmod_path__parse_name(&m, filename))
644                 return NULL;
645
646         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
647                                        m.name);
648         if (map) {
649                 /*
650                  * If the map's dso is an offline module, give dso__load()
651                  * a chance to find the file path of that module by fixing
652                  * long_name.
653                  */
654                 dso__adjust_kmod_long_name(map->dso, filename);
655                 goto out;
656         }
657
658         dso = machine__findnew_module_dso(machine, &m, filename);
659         if (dso == NULL)
660                 goto out;
661
662         map = map__new2(start, dso, MAP__FUNCTION);
663         if (map == NULL)
664                 goto out;
665
666         map_groups__insert(&machine->kmaps, map);
667
668         /* Put the map here because map_groups__insert alread got it */
669         map__put(map);
670 out:
671         /* put the dso here, corresponding to  machine__findnew_module_dso */
672         dso__put(dso);
673         free(m.name);
674         return map;
675 }
676
677 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
678 {
679         struct rb_node *nd;
680         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
681
682         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
683                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
684                 ret += __dsos__fprintf(&pos->dsos.head, fp);
685         }
686
687         return ret;
688 }
689
690 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
691                                      bool (skip)(struct dso *dso, int parm), int parm)
692 {
693         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
694 }
695
696 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
697                                      bool (skip)(struct dso *dso, int parm), int parm)
698 {
699         struct rb_node *nd;
700         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
701
702         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
703                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
704                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
705         }
706         return ret;
707 }
708
709 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
710 {
711         int i;
712         size_t printed = 0;
713         struct dso *kdso = machine__kernel_map(machine)->dso;
714
715         if (kdso->has_build_id) {
716                 char filename[PATH_MAX];
717                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
718                         printed += fprintf(fp, "[0] %s\n", filename);
719         }
720
721         for (i = 0; i < vmlinux_path__nr_entries; ++i)
722                 printed += fprintf(fp, "[%d] %s\n",
723                                    i + kdso->has_build_id, vmlinux_path[i]);
724
725         return printed;
726 }
727
728 size_t machine__fprintf(struct machine *machine, FILE *fp)
729 {
730         size_t ret;
731         struct rb_node *nd;
732
733         pthread_rwlock_rdlock(&machine->threads_lock);
734
735         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
736
737         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
738                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
739
740                 ret += thread__fprintf(pos, fp);
741         }
742
743         pthread_rwlock_unlock(&machine->threads_lock);
744
745         return ret;
746 }
747
748 static struct dso *machine__get_kernel(struct machine *machine)
749 {
750         const char *vmlinux_name = NULL;
751         struct dso *kernel;
752
753         if (machine__is_host(machine)) {
754                 vmlinux_name = symbol_conf.vmlinux_name;
755                 if (!vmlinux_name)
756                         vmlinux_name = DSO__NAME_KALLSYMS;
757
758                 kernel = machine__findnew_kernel(machine, vmlinux_name,
759                                                  "[kernel]", DSO_TYPE_KERNEL);
760         } else {
761                 char bf[PATH_MAX];
762
763                 if (machine__is_default_guest(machine))
764                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
765                 if (!vmlinux_name)
766                         vmlinux_name = machine__mmap_name(machine, bf,
767                                                           sizeof(bf));
768
769                 kernel = machine__findnew_kernel(machine, vmlinux_name,
770                                                  "[guest.kernel]",
771                                                  DSO_TYPE_GUEST_KERNEL);
772         }
773
774         if (kernel != NULL && (!kernel->has_build_id))
775                 dso__read_running_kernel_build_id(kernel, machine);
776
777         return kernel;
778 }
779
780 struct process_args {
781         u64 start;
782 };
783
784 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
785                                            size_t bufsz)
786 {
787         if (machine__is_default_guest(machine))
788                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
789         else
790                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
791 }
792
793 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
794
795 /* Figure out the start address of kernel map from /proc/kallsyms.
796  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
797  * symbol_name if it's not that important.
798  */
799 static u64 machine__get_running_kernel_start(struct machine *machine,
800                                              const char **symbol_name)
801 {
802         char filename[PATH_MAX];
803         int i;
804         const char *name;
805         u64 addr = 0;
806
807         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
808
809         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
810                 return 0;
811
812         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
813                 addr = kallsyms__get_function_start(filename, name);
814                 if (addr)
815                         break;
816         }
817
818         if (symbol_name)
819                 *symbol_name = name;
820
821         return addr;
822 }
823
824 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
825 {
826         int type;
827         u64 start = machine__get_running_kernel_start(machine, NULL);
828
829         /* In case of renewal the kernel map, destroy previous one */
830         machine__destroy_kernel_maps(machine);
831
832         for (type = 0; type < MAP__NR_TYPES; ++type) {
833                 struct kmap *kmap;
834                 struct map *map;
835
836                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
837                 if (machine->vmlinux_maps[type] == NULL)
838                         return -1;
839
840                 machine->vmlinux_maps[type]->map_ip =
841                         machine->vmlinux_maps[type]->unmap_ip =
842                                 identity__map_ip;
843                 map = __machine__kernel_map(machine, type);
844                 kmap = map__kmap(map);
845                 if (!kmap)
846                         return -1;
847
848                 kmap->kmaps = &machine->kmaps;
849                 map_groups__insert(&machine->kmaps, map);
850         }
851
852         return 0;
853 }
854
855 void machine__destroy_kernel_maps(struct machine *machine)
856 {
857         int type;
858
859         for (type = 0; type < MAP__NR_TYPES; ++type) {
860                 struct kmap *kmap;
861                 struct map *map = __machine__kernel_map(machine, type);
862
863                 if (map == NULL)
864                         continue;
865
866                 kmap = map__kmap(map);
867                 map_groups__remove(&machine->kmaps, map);
868                 if (kmap && kmap->ref_reloc_sym) {
869                         /*
870                          * ref_reloc_sym is shared among all maps, so free just
871                          * on one of them.
872                          */
873                         if (type == MAP__FUNCTION) {
874                                 zfree((char **)&kmap->ref_reloc_sym->name);
875                                 zfree(&kmap->ref_reloc_sym);
876                         } else
877                                 kmap->ref_reloc_sym = NULL;
878                 }
879
880                 map__put(machine->vmlinux_maps[type]);
881                 machine->vmlinux_maps[type] = NULL;
882         }
883 }
884
885 int machines__create_guest_kernel_maps(struct machines *machines)
886 {
887         int ret = 0;
888         struct dirent **namelist = NULL;
889         int i, items = 0;
890         char path[PATH_MAX];
891         pid_t pid;
892         char *endp;
893
894         if (symbol_conf.default_guest_vmlinux_name ||
895             symbol_conf.default_guest_modules ||
896             symbol_conf.default_guest_kallsyms) {
897                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
898         }
899
900         if (symbol_conf.guestmount) {
901                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
902                 if (items <= 0)
903                         return -ENOENT;
904                 for (i = 0; i < items; i++) {
905                         if (!isdigit(namelist[i]->d_name[0])) {
906                                 /* Filter out . and .. */
907                                 continue;
908                         }
909                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
910                         if ((*endp != '\0') ||
911                             (endp == namelist[i]->d_name) ||
912                             (errno == ERANGE)) {
913                                 pr_debug("invalid directory (%s). Skipping.\n",
914                                          namelist[i]->d_name);
915                                 continue;
916                         }
917                         sprintf(path, "%s/%s/proc/kallsyms",
918                                 symbol_conf.guestmount,
919                                 namelist[i]->d_name);
920                         ret = access(path, R_OK);
921                         if (ret) {
922                                 pr_debug("Can't access file %s\n", path);
923                                 goto failure;
924                         }
925                         machines__create_kernel_maps(machines, pid);
926                 }
927 failure:
928                 free(namelist);
929         }
930
931         return ret;
932 }
933
934 void machines__destroy_kernel_maps(struct machines *machines)
935 {
936         struct rb_node *next = rb_first(&machines->guests);
937
938         machine__destroy_kernel_maps(&machines->host);
939
940         while (next) {
941                 struct machine *pos = rb_entry(next, struct machine, rb_node);
942
943                 next = rb_next(&pos->rb_node);
944                 rb_erase(&pos->rb_node, &machines->guests);
945                 machine__delete(pos);
946         }
947 }
948
949 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
950 {
951         struct machine *machine = machines__findnew(machines, pid);
952
953         if (machine == NULL)
954                 return -1;
955
956         return machine__create_kernel_maps(machine);
957 }
958
959 int __machine__load_kallsyms(struct machine *machine, const char *filename,
960                              enum map_type type, bool no_kcore)
961 {
962         struct map *map = machine__kernel_map(machine);
963         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
964
965         if (ret > 0) {
966                 dso__set_loaded(map->dso, type);
967                 /*
968                  * Since /proc/kallsyms will have multiple sessions for the
969                  * kernel, with modules between them, fixup the end of all
970                  * sections.
971                  */
972                 __map_groups__fixup_end(&machine->kmaps, type);
973         }
974
975         return ret;
976 }
977
978 int machine__load_kallsyms(struct machine *machine, const char *filename,
979                            enum map_type type)
980 {
981         return __machine__load_kallsyms(machine, filename, type, false);
982 }
983
984 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
985 {
986         struct map *map = machine__kernel_map(machine);
987         int ret = dso__load_vmlinux_path(map->dso, map);
988
989         if (ret > 0)
990                 dso__set_loaded(map->dso, type);
991
992         return ret;
993 }
994
995 static void map_groups__fixup_end(struct map_groups *mg)
996 {
997         int i;
998         for (i = 0; i < MAP__NR_TYPES; ++i)
999                 __map_groups__fixup_end(mg, i);
1000 }
1001
1002 static char *get_kernel_version(const char *root_dir)
1003 {
1004         char version[PATH_MAX];
1005         FILE *file;
1006         char *name, *tmp;
1007         const char *prefix = "Linux version ";
1008
1009         sprintf(version, "%s/proc/version", root_dir);
1010         file = fopen(version, "r");
1011         if (!file)
1012                 return NULL;
1013
1014         version[0] = '\0';
1015         tmp = fgets(version, sizeof(version), file);
1016         fclose(file);
1017
1018         name = strstr(version, prefix);
1019         if (!name)
1020                 return NULL;
1021         name += strlen(prefix);
1022         tmp = strchr(name, ' ');
1023         if (tmp)
1024                 *tmp = '\0';
1025
1026         return strdup(name);
1027 }
1028
1029 static bool is_kmod_dso(struct dso *dso)
1030 {
1031         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1032                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1033 }
1034
1035 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1036                                        struct kmod_path *m)
1037 {
1038         struct map *map;
1039         char *long_name;
1040
1041         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1042         if (map == NULL)
1043                 return 0;
1044
1045         long_name = strdup(path);
1046         if (long_name == NULL)
1047                 return -ENOMEM;
1048
1049         dso__set_long_name(map->dso, long_name, true);
1050         dso__kernel_module_get_build_id(map->dso, "");
1051
1052         /*
1053          * Full name could reveal us kmod compression, so
1054          * we need to update the symtab_type if needed.
1055          */
1056         if (m->comp && is_kmod_dso(map->dso))
1057                 map->dso->symtab_type++;
1058
1059         return 0;
1060 }
1061
1062 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1063                                 const char *dir_name, int depth)
1064 {
1065         struct dirent *dent;
1066         DIR *dir = opendir(dir_name);
1067         int ret = 0;
1068
1069         if (!dir) {
1070                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1071                 return -1;
1072         }
1073
1074         while ((dent = readdir(dir)) != NULL) {
1075                 char path[PATH_MAX];
1076                 struct stat st;
1077
1078                 /*sshfs might return bad dent->d_type, so we have to stat*/
1079                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1080                 if (stat(path, &st))
1081                         continue;
1082
1083                 if (S_ISDIR(st.st_mode)) {
1084                         if (!strcmp(dent->d_name, ".") ||
1085                             !strcmp(dent->d_name, ".."))
1086                                 continue;
1087
1088                         /* Do not follow top-level source and build symlinks */
1089                         if (depth == 0) {
1090                                 if (!strcmp(dent->d_name, "source") ||
1091                                     !strcmp(dent->d_name, "build"))
1092                                         continue;
1093                         }
1094
1095                         ret = map_groups__set_modules_path_dir(mg, path,
1096                                                                depth + 1);
1097                         if (ret < 0)
1098                                 goto out;
1099                 } else {
1100                         struct kmod_path m;
1101
1102                         ret = kmod_path__parse_name(&m, dent->d_name);
1103                         if (ret)
1104                                 goto out;
1105
1106                         if (m.kmod)
1107                                 ret = map_groups__set_module_path(mg, path, &m);
1108
1109                         free(m.name);
1110
1111                         if (ret)
1112                                 goto out;
1113                 }
1114         }
1115
1116 out:
1117         closedir(dir);
1118         return ret;
1119 }
1120
1121 static int machine__set_modules_path(struct machine *machine)
1122 {
1123         char *version;
1124         char modules_path[PATH_MAX];
1125
1126         version = get_kernel_version(machine->root_dir);
1127         if (!version)
1128                 return -1;
1129
1130         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1131                  machine->root_dir, version);
1132         free(version);
1133
1134         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1135 }
1136 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1137                                 const char *name __maybe_unused)
1138 {
1139         return 0;
1140 }
1141
1142 static int machine__create_module(void *arg, const char *name, u64 start)
1143 {
1144         struct machine *machine = arg;
1145         struct map *map;
1146
1147         if (arch__fix_module_text_start(&start, name) < 0)
1148                 return -1;
1149
1150         map = machine__findnew_module_map(machine, start, name);
1151         if (map == NULL)
1152                 return -1;
1153
1154         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1155
1156         return 0;
1157 }
1158
1159 static int machine__create_modules(struct machine *machine)
1160 {
1161         const char *modules;
1162         char path[PATH_MAX];
1163
1164         if (machine__is_default_guest(machine)) {
1165                 modules = symbol_conf.default_guest_modules;
1166         } else {
1167                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1168                 modules = path;
1169         }
1170
1171         if (symbol__restricted_filename(modules, "/proc/modules"))
1172                 return -1;
1173
1174         if (modules__parse(modules, machine, machine__create_module))
1175                 return -1;
1176
1177         if (!machine__set_modules_path(machine))
1178                 return 0;
1179
1180         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1181
1182         return 0;
1183 }
1184
1185 int machine__create_kernel_maps(struct machine *machine)
1186 {
1187         struct dso *kernel = machine__get_kernel(machine);
1188         const char *name;
1189         u64 addr;
1190         int ret;
1191
1192         if (kernel == NULL)
1193                 return -1;
1194
1195         ret = __machine__create_kernel_maps(machine, kernel);
1196         dso__put(kernel);
1197         if (ret < 0)
1198                 return -1;
1199
1200         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1201                 if (machine__is_host(machine))
1202                         pr_debug("Problems creating module maps, "
1203                                  "continuing anyway...\n");
1204                 else
1205                         pr_debug("Problems creating module maps for guest %d, "
1206                                  "continuing anyway...\n", machine->pid);
1207         }
1208
1209         /*
1210          * Now that we have all the maps created, just set the ->end of them:
1211          */
1212         map_groups__fixup_end(&machine->kmaps);
1213
1214         addr = machine__get_running_kernel_start(machine, &name);
1215         if (!addr) {
1216         } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1217                 machine__destroy_kernel_maps(machine);
1218                 return -1;
1219         }
1220
1221         return 0;
1222 }
1223
1224 static void machine__set_kernel_mmap_len(struct machine *machine,
1225                                          union perf_event *event)
1226 {
1227         int i;
1228
1229         for (i = 0; i < MAP__NR_TYPES; i++) {
1230                 machine->vmlinux_maps[i]->start = event->mmap.start;
1231                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1232                                                    event->mmap.len);
1233                 /*
1234                  * Be a bit paranoid here, some perf.data file came with
1235                  * a zero sized synthesized MMAP event for the kernel.
1236                  */
1237                 if (machine->vmlinux_maps[i]->end == 0)
1238                         machine->vmlinux_maps[i]->end = ~0ULL;
1239         }
1240 }
1241
1242 static bool machine__uses_kcore(struct machine *machine)
1243 {
1244         struct dso *dso;
1245
1246         list_for_each_entry(dso, &machine->dsos.head, node) {
1247                 if (dso__is_kcore(dso))
1248                         return true;
1249         }
1250
1251         return false;
1252 }
1253
1254 static int machine__process_kernel_mmap_event(struct machine *machine,
1255                                               union perf_event *event)
1256 {
1257         struct map *map;
1258         char kmmap_prefix[PATH_MAX];
1259         enum dso_kernel_type kernel_type;
1260         bool is_kernel_mmap;
1261
1262         /* If we have maps from kcore then we do not need or want any others */
1263         if (machine__uses_kcore(machine))
1264                 return 0;
1265
1266         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1267         if (machine__is_host(machine))
1268                 kernel_type = DSO_TYPE_KERNEL;
1269         else
1270                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1271
1272         is_kernel_mmap = memcmp(event->mmap.filename,
1273                                 kmmap_prefix,
1274                                 strlen(kmmap_prefix) - 1) == 0;
1275         if (event->mmap.filename[0] == '/' ||
1276             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1277                 map = machine__findnew_module_map(machine, event->mmap.start,
1278                                                   event->mmap.filename);
1279                 if (map == NULL)
1280                         goto out_problem;
1281
1282                 map->end = map->start + event->mmap.len;
1283         } else if (is_kernel_mmap) {
1284                 const char *symbol_name = (event->mmap.filename +
1285                                 strlen(kmmap_prefix));
1286                 /*
1287                  * Should be there already, from the build-id table in
1288                  * the header.
1289                  */
1290                 struct dso *kernel = NULL;
1291                 struct dso *dso;
1292
1293                 pthread_rwlock_rdlock(&machine->dsos.lock);
1294
1295                 list_for_each_entry(dso, &machine->dsos.head, node) {
1296
1297                         /*
1298                          * The cpumode passed to is_kernel_module is not the
1299                          * cpumode of *this* event. If we insist on passing
1300                          * correct cpumode to is_kernel_module, we should
1301                          * record the cpumode when we adding this dso to the
1302                          * linked list.
1303                          *
1304                          * However we don't really need passing correct
1305                          * cpumode.  We know the correct cpumode must be kernel
1306                          * mode (if not, we should not link it onto kernel_dsos
1307                          * list).
1308                          *
1309                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1310                          * is_kernel_module() treats it as a kernel cpumode.
1311                          */
1312
1313                         if (!dso->kernel ||
1314                             is_kernel_module(dso->long_name,
1315                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1316                                 continue;
1317
1318
1319                         kernel = dso;
1320                         break;
1321                 }
1322
1323                 pthread_rwlock_unlock(&machine->dsos.lock);
1324
1325                 if (kernel == NULL)
1326                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1327                 if (kernel == NULL)
1328                         goto out_problem;
1329
1330                 kernel->kernel = kernel_type;
1331                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1332                         dso__put(kernel);
1333                         goto out_problem;
1334                 }
1335
1336                 if (strstr(kernel->long_name, "vmlinux"))
1337                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1338
1339                 machine__set_kernel_mmap_len(machine, event);
1340
1341                 /*
1342                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1343                  * symbol. Effectively having zero here means that at record
1344                  * time /proc/sys/kernel/kptr_restrict was non zero.
1345                  */
1346                 if (event->mmap.pgoff != 0) {
1347                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1348                                                          symbol_name,
1349                                                          event->mmap.pgoff);
1350                 }
1351
1352                 if (machine__is_default_guest(machine)) {
1353                         /*
1354                          * preload dso of guest kernel and modules
1355                          */
1356                         dso__load(kernel, machine__kernel_map(machine));
1357                 }
1358         }
1359         return 0;
1360 out_problem:
1361         return -1;
1362 }
1363
1364 int machine__process_mmap2_event(struct machine *machine,
1365                                  union perf_event *event,
1366                                  struct perf_sample *sample)
1367 {
1368         struct thread *thread;
1369         struct map *map;
1370         enum map_type type;
1371         int ret = 0;
1372
1373         if (dump_trace)
1374                 perf_event__fprintf_mmap2(event, stdout);
1375
1376         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1377             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1378                 ret = machine__process_kernel_mmap_event(machine, event);
1379                 if (ret < 0)
1380                         goto out_problem;
1381                 return 0;
1382         }
1383
1384         thread = machine__findnew_thread(machine, event->mmap2.pid,
1385                                         event->mmap2.tid);
1386         if (thread == NULL)
1387                 goto out_problem;
1388
1389         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1390                 type = MAP__VARIABLE;
1391         else
1392                 type = MAP__FUNCTION;
1393
1394         map = map__new(machine, event->mmap2.start,
1395                         event->mmap2.len, event->mmap2.pgoff,
1396                         event->mmap2.pid, event->mmap2.maj,
1397                         event->mmap2.min, event->mmap2.ino,
1398                         event->mmap2.ino_generation,
1399                         event->mmap2.prot,
1400                         event->mmap2.flags,
1401                         event->mmap2.filename, type, thread);
1402
1403         if (map == NULL)
1404                 goto out_problem_map;
1405
1406         ret = thread__insert_map(thread, map);
1407         if (ret)
1408                 goto out_problem_insert;
1409
1410         thread__put(thread);
1411         map__put(map);
1412         return 0;
1413
1414 out_problem_insert:
1415         map__put(map);
1416 out_problem_map:
1417         thread__put(thread);
1418 out_problem:
1419         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1420         return 0;
1421 }
1422
1423 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1424                                 struct perf_sample *sample)
1425 {
1426         struct thread *thread;
1427         struct map *map;
1428         enum map_type type;
1429         int ret = 0;
1430
1431         if (dump_trace)
1432                 perf_event__fprintf_mmap(event, stdout);
1433
1434         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1435             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1436                 ret = machine__process_kernel_mmap_event(machine, event);
1437                 if (ret < 0)
1438                         goto out_problem;
1439                 return 0;
1440         }
1441
1442         thread = machine__findnew_thread(machine, event->mmap.pid,
1443                                          event->mmap.tid);
1444         if (thread == NULL)
1445                 goto out_problem;
1446
1447         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1448                 type = MAP__VARIABLE;
1449         else
1450                 type = MAP__FUNCTION;
1451
1452         map = map__new(machine, event->mmap.start,
1453                         event->mmap.len, event->mmap.pgoff,
1454                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1455                         event->mmap.filename,
1456                         type, thread);
1457
1458         if (map == NULL)
1459                 goto out_problem_map;
1460
1461         ret = thread__insert_map(thread, map);
1462         if (ret)
1463                 goto out_problem_insert;
1464
1465         thread__put(thread);
1466         map__put(map);
1467         return 0;
1468
1469 out_problem_insert:
1470         map__put(map);
1471 out_problem_map:
1472         thread__put(thread);
1473 out_problem:
1474         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1475         return 0;
1476 }
1477
1478 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1479 {
1480         if (machine->last_match == th)
1481                 machine->last_match = NULL;
1482
1483         BUG_ON(refcount_read(&th->refcnt) == 0);
1484         if (lock)
1485                 pthread_rwlock_wrlock(&machine->threads_lock);
1486         rb_erase_init(&th->rb_node, &machine->threads);
1487         RB_CLEAR_NODE(&th->rb_node);
1488         --machine->nr_threads;
1489         /*
1490          * Move it first to the dead_threads list, then drop the reference,
1491          * if this is the last reference, then the thread__delete destructor
1492          * will be called and we will remove it from the dead_threads list.
1493          */
1494         list_add_tail(&th->node, &machine->dead_threads);
1495         if (lock)
1496                 pthread_rwlock_unlock(&machine->threads_lock);
1497         thread__put(th);
1498 }
1499
1500 void machine__remove_thread(struct machine *machine, struct thread *th)
1501 {
1502         return __machine__remove_thread(machine, th, true);
1503 }
1504
1505 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1506                                 struct perf_sample *sample)
1507 {
1508         struct thread *thread = machine__find_thread(machine,
1509                                                      event->fork.pid,
1510                                                      event->fork.tid);
1511         struct thread *parent = machine__findnew_thread(machine,
1512                                                         event->fork.ppid,
1513                                                         event->fork.ptid);
1514         int err = 0;
1515
1516         if (dump_trace)
1517                 perf_event__fprintf_task(event, stdout);
1518
1519         /*
1520          * There may be an existing thread that is not actually the parent,
1521          * either because we are processing events out of order, or because the
1522          * (fork) event that would have removed the thread was lost. Assume the
1523          * latter case and continue on as best we can.
1524          */
1525         if (parent->pid_ != (pid_t)event->fork.ppid) {
1526                 dump_printf("removing erroneous parent thread %d/%d\n",
1527                             parent->pid_, parent->tid);
1528                 machine__remove_thread(machine, parent);
1529                 thread__put(parent);
1530                 parent = machine__findnew_thread(machine, event->fork.ppid,
1531                                                  event->fork.ptid);
1532         }
1533
1534         /* if a thread currently exists for the thread id remove it */
1535         if (thread != NULL) {
1536                 machine__remove_thread(machine, thread);
1537                 thread__put(thread);
1538         }
1539
1540         thread = machine__findnew_thread(machine, event->fork.pid,
1541                                          event->fork.tid);
1542
1543         if (thread == NULL || parent == NULL ||
1544             thread__fork(thread, parent, sample->time) < 0) {
1545                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1546                 err = -1;
1547         }
1548         thread__put(thread);
1549         thread__put(parent);
1550
1551         return err;
1552 }
1553
1554 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1555                                 struct perf_sample *sample __maybe_unused)
1556 {
1557         struct thread *thread = machine__find_thread(machine,
1558                                                      event->fork.pid,
1559                                                      event->fork.tid);
1560
1561         if (dump_trace)
1562                 perf_event__fprintf_task(event, stdout);
1563
1564         if (thread != NULL) {
1565                 thread__exited(thread);
1566                 thread__put(thread);
1567         }
1568
1569         return 0;
1570 }
1571
1572 int machine__process_event(struct machine *machine, union perf_event *event,
1573                            struct perf_sample *sample)
1574 {
1575         int ret;
1576
1577         switch (event->header.type) {
1578         case PERF_RECORD_COMM:
1579                 ret = machine__process_comm_event(machine, event, sample); break;
1580         case PERF_RECORD_MMAP:
1581                 ret = machine__process_mmap_event(machine, event, sample); break;
1582         case PERF_RECORD_NAMESPACES:
1583                 ret = machine__process_namespaces_event(machine, event, sample); break;
1584         case PERF_RECORD_MMAP2:
1585                 ret = machine__process_mmap2_event(machine, event, sample); break;
1586         case PERF_RECORD_FORK:
1587                 ret = machine__process_fork_event(machine, event, sample); break;
1588         case PERF_RECORD_EXIT:
1589                 ret = machine__process_exit_event(machine, event, sample); break;
1590         case PERF_RECORD_LOST:
1591                 ret = machine__process_lost_event(machine, event, sample); break;
1592         case PERF_RECORD_AUX:
1593                 ret = machine__process_aux_event(machine, event); break;
1594         case PERF_RECORD_ITRACE_START:
1595                 ret = machine__process_itrace_start_event(machine, event); break;
1596         case PERF_RECORD_LOST_SAMPLES:
1597                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1598         case PERF_RECORD_SWITCH:
1599         case PERF_RECORD_SWITCH_CPU_WIDE:
1600                 ret = machine__process_switch_event(machine, event); break;
1601         default:
1602                 ret = -1;
1603                 break;
1604         }
1605
1606         return ret;
1607 }
1608
1609 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1610 {
1611         if (!regexec(regex, sym->name, 0, NULL, 0))
1612                 return 1;
1613         return 0;
1614 }
1615
1616 static void ip__resolve_ams(struct thread *thread,
1617                             struct addr_map_symbol *ams,
1618                             u64 ip)
1619 {
1620         struct addr_location al;
1621
1622         memset(&al, 0, sizeof(al));
1623         /*
1624          * We cannot use the header.misc hint to determine whether a
1625          * branch stack address is user, kernel, guest, hypervisor.
1626          * Branches may straddle the kernel/user/hypervisor boundaries.
1627          * Thus, we have to try consecutively until we find a match
1628          * or else, the symbol is unknown
1629          */
1630         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1631
1632         ams->addr = ip;
1633         ams->al_addr = al.addr;
1634         ams->sym = al.sym;
1635         ams->map = al.map;
1636 }
1637
1638 static void ip__resolve_data(struct thread *thread,
1639                              u8 m, struct addr_map_symbol *ams, u64 addr)
1640 {
1641         struct addr_location al;
1642
1643         memset(&al, 0, sizeof(al));
1644
1645         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1646         if (al.map == NULL) {
1647                 /*
1648                  * some shared data regions have execute bit set which puts
1649                  * their mapping in the MAP__FUNCTION type array.
1650                  * Check there as a fallback option before dropping the sample.
1651                  */
1652                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1653         }
1654
1655         ams->addr = addr;
1656         ams->al_addr = al.addr;
1657         ams->sym = al.sym;
1658         ams->map = al.map;
1659 }
1660
1661 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1662                                      struct addr_location *al)
1663 {
1664         struct mem_info *mi = zalloc(sizeof(*mi));
1665
1666         if (!mi)
1667                 return NULL;
1668
1669         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1670         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1671         mi->data_src.val = sample->data_src;
1672
1673         return mi;
1674 }
1675
1676 static int add_callchain_ip(struct thread *thread,
1677                             struct callchain_cursor *cursor,
1678                             struct symbol **parent,
1679                             struct addr_location *root_al,
1680                             u8 *cpumode,
1681                             u64 ip,
1682                             bool branch,
1683                             struct branch_flags *flags,
1684                             int nr_loop_iter,
1685                             int samples)
1686 {
1687         struct addr_location al;
1688
1689         al.filtered = 0;
1690         al.sym = NULL;
1691         if (!cpumode) {
1692                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1693                                                    ip, &al);
1694         } else {
1695                 if (ip >= PERF_CONTEXT_MAX) {
1696                         switch (ip) {
1697                         case PERF_CONTEXT_HV:
1698                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1699                                 break;
1700                         case PERF_CONTEXT_KERNEL:
1701                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1702                                 break;
1703                         case PERF_CONTEXT_USER:
1704                                 *cpumode = PERF_RECORD_MISC_USER;
1705                                 break;
1706                         default:
1707                                 pr_debug("invalid callchain context: "
1708                                          "%"PRId64"\n", (s64) ip);
1709                                 /*
1710                                  * It seems the callchain is corrupted.
1711                                  * Discard all.
1712                                  */
1713                                 callchain_cursor_reset(cursor);
1714                                 return 1;
1715                         }
1716                         return 0;
1717                 }
1718                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1719                                            ip, &al);
1720         }
1721
1722         if (al.sym != NULL) {
1723                 if (perf_hpp_list.parent && !*parent &&
1724                     symbol__match_regex(al.sym, &parent_regex))
1725                         *parent = al.sym;
1726                 else if (have_ignore_callees && root_al &&
1727                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1728                         /* Treat this symbol as the root,
1729                            forgetting its callees. */
1730                         *root_al = al;
1731                         callchain_cursor_reset(cursor);
1732                 }
1733         }
1734
1735         if (symbol_conf.hide_unresolved && al.sym == NULL)
1736                 return 0;
1737         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1738                                        branch, flags, nr_loop_iter, samples);
1739 }
1740
1741 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1742                                            struct addr_location *al)
1743 {
1744         unsigned int i;
1745         const struct branch_stack *bs = sample->branch_stack;
1746         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1747
1748         if (!bi)
1749                 return NULL;
1750
1751         for (i = 0; i < bs->nr; i++) {
1752                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1753                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1754                 bi[i].flags = bs->entries[i].flags;
1755         }
1756         return bi;
1757 }
1758
1759 #define CHASHSZ 127
1760 #define CHASHBITS 7
1761 #define NO_ENTRY 0xff
1762
1763 #define PERF_MAX_BRANCH_DEPTH 127
1764
1765 /* Remove loops. */
1766 static int remove_loops(struct branch_entry *l, int nr)
1767 {
1768         int i, j, off;
1769         unsigned char chash[CHASHSZ];
1770
1771         memset(chash, NO_ENTRY, sizeof(chash));
1772
1773         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1774
1775         for (i = 0; i < nr; i++) {
1776                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1777
1778                 /* no collision handling for now */
1779                 if (chash[h] == NO_ENTRY) {
1780                         chash[h] = i;
1781                 } else if (l[chash[h]].from == l[i].from) {
1782                         bool is_loop = true;
1783                         /* check if it is a real loop */
1784                         off = 0;
1785                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1786                                 if (l[j].from != l[i + off].from) {
1787                                         is_loop = false;
1788                                         break;
1789                                 }
1790                         if (is_loop) {
1791                                 memmove(l + i, l + i + off,
1792                                         (nr - (i + off)) * sizeof(*l));
1793                                 nr -= off;
1794                         }
1795                 }
1796         }
1797         return nr;
1798 }
1799
1800 /*
1801  * Recolve LBR callstack chain sample
1802  * Return:
1803  * 1 on success get LBR callchain information
1804  * 0 no available LBR callchain information, should try fp
1805  * negative error code on other errors.
1806  */
1807 static int resolve_lbr_callchain_sample(struct thread *thread,
1808                                         struct callchain_cursor *cursor,
1809                                         struct perf_sample *sample,
1810                                         struct symbol **parent,
1811                                         struct addr_location *root_al,
1812                                         int max_stack)
1813 {
1814         struct ip_callchain *chain = sample->callchain;
1815         int chain_nr = min(max_stack, (int)chain->nr), i;
1816         u8 cpumode = PERF_RECORD_MISC_USER;
1817         u64 ip;
1818
1819         for (i = 0; i < chain_nr; i++) {
1820                 if (chain->ips[i] == PERF_CONTEXT_USER)
1821                         break;
1822         }
1823
1824         /* LBR only affects the user callchain */
1825         if (i != chain_nr) {
1826                 struct branch_stack *lbr_stack = sample->branch_stack;
1827                 int lbr_nr = lbr_stack->nr, j, k;
1828                 bool branch;
1829                 struct branch_flags *flags;
1830                 /*
1831                  * LBR callstack can only get user call chain.
1832                  * The mix_chain_nr is kernel call chain
1833                  * number plus LBR user call chain number.
1834                  * i is kernel call chain number,
1835                  * 1 is PERF_CONTEXT_USER,
1836                  * lbr_nr + 1 is the user call chain number.
1837                  * For details, please refer to the comments
1838                  * in callchain__printf
1839                  */
1840                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1841
1842                 for (j = 0; j < mix_chain_nr; j++) {
1843                         int err;
1844                         branch = false;
1845                         flags = NULL;
1846
1847                         if (callchain_param.order == ORDER_CALLEE) {
1848                                 if (j < i + 1)
1849                                         ip = chain->ips[j];
1850                                 else if (j > i + 1) {
1851                                         k = j - i - 2;
1852                                         ip = lbr_stack->entries[k].from;
1853                                         branch = true;
1854                                         flags = &lbr_stack->entries[k].flags;
1855                                 } else {
1856                                         ip = lbr_stack->entries[0].to;
1857                                         branch = true;
1858                                         flags = &lbr_stack->entries[0].flags;
1859                                 }
1860                         } else {
1861                                 if (j < lbr_nr) {
1862                                         k = lbr_nr - j - 1;
1863                                         ip = lbr_stack->entries[k].from;
1864                                         branch = true;
1865                                         flags = &lbr_stack->entries[k].flags;
1866                                 }
1867                                 else if (j > lbr_nr)
1868                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1869                                 else {
1870                                         ip = lbr_stack->entries[0].to;
1871                                         branch = true;
1872                                         flags = &lbr_stack->entries[0].flags;
1873                                 }
1874                         }
1875
1876                         err = add_callchain_ip(thread, cursor, parent,
1877                                                root_al, &cpumode, ip,
1878                                                branch, flags, 0, 0);
1879                         if (err)
1880                                 return (err < 0) ? err : 0;
1881                 }
1882                 return 1;
1883         }
1884
1885         return 0;
1886 }
1887
1888 static int thread__resolve_callchain_sample(struct thread *thread,
1889                                             struct callchain_cursor *cursor,
1890                                             struct perf_evsel *evsel,
1891                                             struct perf_sample *sample,
1892                                             struct symbol **parent,
1893                                             struct addr_location *root_al,
1894                                             int max_stack)
1895 {
1896         struct branch_stack *branch = sample->branch_stack;
1897         struct ip_callchain *chain = sample->callchain;
1898         int chain_nr = chain->nr;
1899         u8 cpumode = PERF_RECORD_MISC_USER;
1900         int i, j, err, nr_entries;
1901         int skip_idx = -1;
1902         int first_call = 0;
1903         int nr_loop_iter;
1904
1905         if (perf_evsel__has_branch_callstack(evsel)) {
1906                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1907                                                    root_al, max_stack);
1908                 if (err)
1909                         return (err < 0) ? err : 0;
1910         }
1911
1912         /*
1913          * Based on DWARF debug information, some architectures skip
1914          * a callchain entry saved by the kernel.
1915          */
1916         skip_idx = arch_skip_callchain_idx(thread, chain);
1917
1918         /*
1919          * Add branches to call stack for easier browsing. This gives
1920          * more context for a sample than just the callers.
1921          *
1922          * This uses individual histograms of paths compared to the
1923          * aggregated histograms the normal LBR mode uses.
1924          *
1925          * Limitations for now:
1926          * - No extra filters
1927          * - No annotations (should annotate somehow)
1928          */
1929
1930         if (branch && callchain_param.branch_callstack) {
1931                 int nr = min(max_stack, (int)branch->nr);
1932                 struct branch_entry be[nr];
1933
1934                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1935                         pr_warning("corrupted branch chain. skipping...\n");
1936                         goto check_calls;
1937                 }
1938
1939                 for (i = 0; i < nr; i++) {
1940                         if (callchain_param.order == ORDER_CALLEE) {
1941                                 be[i] = branch->entries[i];
1942                                 /*
1943                                  * Check for overlap into the callchain.
1944                                  * The return address is one off compared to
1945                                  * the branch entry. To adjust for this
1946                                  * assume the calling instruction is not longer
1947                                  * than 8 bytes.
1948                                  */
1949                                 if (i == skip_idx ||
1950                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1951                                         first_call++;
1952                                 else if (be[i].from < chain->ips[first_call] &&
1953                                     be[i].from >= chain->ips[first_call] - 8)
1954                                         first_call++;
1955                         } else
1956                                 be[i] = branch->entries[branch->nr - i - 1];
1957                 }
1958
1959                 nr_loop_iter = nr;
1960                 nr = remove_loops(be, nr);
1961
1962                 /*
1963                  * Get the number of iterations.
1964                  * It's only approximation, but good enough in practice.
1965                  */
1966                 if (nr_loop_iter > nr)
1967                         nr_loop_iter = nr_loop_iter - nr + 1;
1968                 else
1969                         nr_loop_iter = 0;
1970
1971                 for (i = 0; i < nr; i++) {
1972                         if (i == nr - 1)
1973                                 err = add_callchain_ip(thread, cursor, parent,
1974                                                        root_al,
1975                                                        NULL, be[i].to,
1976                                                        true, &be[i].flags,
1977                                                        nr_loop_iter, 1);
1978                         else
1979                                 err = add_callchain_ip(thread, cursor, parent,
1980                                                        root_al,
1981                                                        NULL, be[i].to,
1982                                                        true, &be[i].flags,
1983                                                        0, 0);
1984
1985                         if (!err)
1986                                 err = add_callchain_ip(thread, cursor, parent, root_al,
1987                                                        NULL, be[i].from,
1988                                                        true, &be[i].flags,
1989                                                        0, 0);
1990                         if (err == -EINVAL)
1991                                 break;
1992                         if (err)
1993                                 return err;
1994                 }
1995                 chain_nr -= nr;
1996         }
1997
1998 check_calls:
1999         for (i = first_call, nr_entries = 0;
2000              i < chain_nr && nr_entries < max_stack; i++) {
2001                 u64 ip;
2002
2003                 if (callchain_param.order == ORDER_CALLEE)
2004                         j = i;
2005                 else
2006                         j = chain->nr - i - 1;
2007
2008 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2009                 if (j == skip_idx)
2010                         continue;
2011 #endif
2012                 ip = chain->ips[j];
2013
2014                 if (ip < PERF_CONTEXT_MAX)
2015                        ++nr_entries;
2016
2017                 err = add_callchain_ip(thread, cursor, parent,
2018                                        root_al, &cpumode, ip,
2019                                        false, NULL, 0, 0);
2020
2021                 if (err)
2022                         return (err < 0) ? err : 0;
2023         }
2024
2025         return 0;
2026 }
2027
2028 static int unwind_entry(struct unwind_entry *entry, void *arg)
2029 {
2030         struct callchain_cursor *cursor = arg;
2031
2032         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2033                 return 0;
2034         return callchain_cursor_append(cursor, entry->ip,
2035                                        entry->map, entry->sym,
2036                                        false, NULL, 0, 0);
2037 }
2038
2039 static int thread__resolve_callchain_unwind(struct thread *thread,
2040                                             struct callchain_cursor *cursor,
2041                                             struct perf_evsel *evsel,
2042                                             struct perf_sample *sample,
2043                                             int max_stack)
2044 {
2045         /* Can we do dwarf post unwind? */
2046         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2047               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2048                 return 0;
2049
2050         /* Bail out if nothing was captured. */
2051         if ((!sample->user_regs.regs) ||
2052             (!sample->user_stack.size))
2053                 return 0;
2054
2055         return unwind__get_entries(unwind_entry, cursor,
2056                                    thread, sample, max_stack);
2057 }
2058
2059 int thread__resolve_callchain(struct thread *thread,
2060                               struct callchain_cursor *cursor,
2061                               struct perf_evsel *evsel,
2062                               struct perf_sample *sample,
2063                               struct symbol **parent,
2064                               struct addr_location *root_al,
2065                               int max_stack)
2066 {
2067         int ret = 0;
2068
2069         callchain_cursor_reset(&callchain_cursor);
2070
2071         if (callchain_param.order == ORDER_CALLEE) {
2072                 ret = thread__resolve_callchain_sample(thread, cursor,
2073                                                        evsel, sample,
2074                                                        parent, root_al,
2075                                                        max_stack);
2076                 if (ret)
2077                         return ret;
2078                 ret = thread__resolve_callchain_unwind(thread, cursor,
2079                                                        evsel, sample,
2080                                                        max_stack);
2081         } else {
2082                 ret = thread__resolve_callchain_unwind(thread, cursor,
2083                                                        evsel, sample,
2084                                                        max_stack);
2085                 if (ret)
2086                         return ret;
2087                 ret = thread__resolve_callchain_sample(thread, cursor,
2088                                                        evsel, sample,
2089                                                        parent, root_al,
2090                                                        max_stack);
2091         }
2092
2093         return ret;
2094 }
2095
2096 int machine__for_each_thread(struct machine *machine,
2097                              int (*fn)(struct thread *thread, void *p),
2098                              void *priv)
2099 {
2100         struct rb_node *nd;
2101         struct thread *thread;
2102         int rc = 0;
2103
2104         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2105                 thread = rb_entry(nd, struct thread, rb_node);
2106                 rc = fn(thread, priv);
2107                 if (rc != 0)
2108                         return rc;
2109         }
2110
2111         list_for_each_entry(thread, &machine->dead_threads, node) {
2112                 rc = fn(thread, priv);
2113                 if (rc != 0)
2114                         return rc;
2115         }
2116         return rc;
2117 }
2118
2119 int machines__for_each_thread(struct machines *machines,
2120                               int (*fn)(struct thread *thread, void *p),
2121                               void *priv)
2122 {
2123         struct rb_node *nd;
2124         int rc = 0;
2125
2126         rc = machine__for_each_thread(&machines->host, fn, priv);
2127         if (rc != 0)
2128                 return rc;
2129
2130         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2131                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2132
2133                 rc = machine__for_each_thread(machine, fn, priv);
2134                 if (rc != 0)
2135                         return rc;
2136         }
2137         return rc;
2138 }
2139
2140 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2141                                   struct target *target, struct thread_map *threads,
2142                                   perf_event__handler_t process, bool data_mmap,
2143                                   unsigned int proc_map_timeout)
2144 {
2145         if (target__has_task(target))
2146                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2147         else if (target__has_cpu(target))
2148                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2149         /* command specified */
2150         return 0;
2151 }
2152
2153 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2154 {
2155         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2156                 return -1;
2157
2158         return machine->current_tid[cpu];
2159 }
2160
2161 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2162                              pid_t tid)
2163 {
2164         struct thread *thread;
2165
2166         if (cpu < 0)
2167                 return -EINVAL;
2168
2169         if (!machine->current_tid) {
2170                 int i;
2171
2172                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2173                 if (!machine->current_tid)
2174                         return -ENOMEM;
2175                 for (i = 0; i < MAX_NR_CPUS; i++)
2176                         machine->current_tid[i] = -1;
2177         }
2178
2179         if (cpu >= MAX_NR_CPUS) {
2180                 pr_err("Requested CPU %d too large. ", cpu);
2181                 pr_err("Consider raising MAX_NR_CPUS\n");
2182                 return -EINVAL;
2183         }
2184
2185         machine->current_tid[cpu] = tid;
2186
2187         thread = machine__findnew_thread(machine, pid, tid);
2188         if (!thread)
2189                 return -ENOMEM;
2190
2191         thread->cpu = cpu;
2192         thread__put(thread);
2193
2194         return 0;
2195 }
2196
2197 int machine__get_kernel_start(struct machine *machine)
2198 {
2199         struct map *map = machine__kernel_map(machine);
2200         int err = 0;
2201
2202         /*
2203          * The only addresses above 2^63 are kernel addresses of a 64-bit
2204          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2205          * all addresses including kernel addresses are less than 2^32.  In
2206          * that case (32-bit system), if the kernel mapping is unknown, all
2207          * addresses will be assumed to be in user space - see
2208          * machine__kernel_ip().
2209          */
2210         machine->kernel_start = 1ULL << 63;
2211         if (map) {
2212                 err = map__load(map);
2213                 if (map->start)
2214                         machine->kernel_start = map->start;
2215         }
2216         return err;
2217 }
2218
2219 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2220 {
2221         return dsos__findnew(&machine->dsos, filename);
2222 }
2223
2224 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2225 {
2226         struct machine *machine = vmachine;
2227         struct map *map;
2228         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2229
2230         if (sym == NULL)
2231                 return NULL;
2232
2233         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2234         *addrp = map->unmap_ip(map, sym->start);
2235         return sym->name;
2236 }