]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/machine.c
Merge branch 'ufs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[karo-tx-linux.git] / tools / perf / util / machine.c
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28
29 static void dsos__init(struct dsos *dsos)
30 {
31         INIT_LIST_HEAD(&dsos->head);
32         dsos->root = RB_ROOT;
33         pthread_rwlock_init(&dsos->lock, NULL);
34 }
35
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38         memset(machine, 0, sizeof(*machine));
39         map_groups__init(&machine->kmaps, machine);
40         RB_CLEAR_NODE(&machine->rb_node);
41         dsos__init(&machine->dsos);
42
43         machine->threads = RB_ROOT;
44         pthread_rwlock_init(&machine->threads_lock, NULL);
45         machine->nr_threads = 0;
46         INIT_LIST_HEAD(&machine->dead_threads);
47         machine->last_match = NULL;
48
49         machine->vdso_info = NULL;
50         machine->env = NULL;
51
52         machine->pid = pid;
53
54         machine->id_hdr_size = 0;
55         machine->kptr_restrict_warned = false;
56         machine->comm_exec = false;
57         machine->kernel_start = 0;
58
59         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60
61         machine->root_dir = strdup(root_dir);
62         if (machine->root_dir == NULL)
63                 return -ENOMEM;
64
65         if (pid != HOST_KERNEL_ID) {
66                 struct thread *thread = machine__findnew_thread(machine, -1,
67                                                                 pid);
68                 char comm[64];
69
70                 if (thread == NULL)
71                         return -ENOMEM;
72
73                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74                 thread__set_comm(thread, comm, 0);
75                 thread__put(thread);
76         }
77
78         machine->current_tid = NULL;
79
80         return 0;
81 }
82
83 struct machine *machine__new_host(void)
84 {
85         struct machine *machine = malloc(sizeof(*machine));
86
87         if (machine != NULL) {
88                 machine__init(machine, "", HOST_KERNEL_ID);
89
90                 if (machine__create_kernel_maps(machine) < 0)
91                         goto out_delete;
92         }
93
94         return machine;
95 out_delete:
96         free(machine);
97         return NULL;
98 }
99
100 struct machine *machine__new_kallsyms(void)
101 {
102         struct machine *machine = machine__new_host();
103         /*
104          * FIXME:
105          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106          *    functions and data objects.
107          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108          *    ask for not using the kcore parsing code, once this one is fixed
109          *    to create a map per module.
110          */
111         if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112                 machine__delete(machine);
113                 machine = NULL;
114         }
115
116         return machine;
117 }
118
119 static void dsos__purge(struct dsos *dsos)
120 {
121         struct dso *pos, *n;
122
123         pthread_rwlock_wrlock(&dsos->lock);
124
125         list_for_each_entry_safe(pos, n, &dsos->head, node) {
126                 RB_CLEAR_NODE(&pos->rb_node);
127                 pos->root = NULL;
128                 list_del_init(&pos->node);
129                 dso__put(pos);
130         }
131
132         pthread_rwlock_unlock(&dsos->lock);
133 }
134
135 static void dsos__exit(struct dsos *dsos)
136 {
137         dsos__purge(dsos);
138         pthread_rwlock_destroy(&dsos->lock);
139 }
140
141 void machine__delete_threads(struct machine *machine)
142 {
143         struct rb_node *nd;
144
145         pthread_rwlock_wrlock(&machine->threads_lock);
146         nd = rb_first(&machine->threads);
147         while (nd) {
148                 struct thread *t = rb_entry(nd, struct thread, rb_node);
149
150                 nd = rb_next(nd);
151                 __machine__remove_thread(machine, t, false);
152         }
153         pthread_rwlock_unlock(&machine->threads_lock);
154 }
155
156 void machine__exit(struct machine *machine)
157 {
158         machine__destroy_kernel_maps(machine);
159         map_groups__exit(&machine->kmaps);
160         dsos__exit(&machine->dsos);
161         machine__exit_vdso(machine);
162         zfree(&machine->root_dir);
163         zfree(&machine->current_tid);
164         pthread_rwlock_destroy(&machine->threads_lock);
165 }
166
167 void machine__delete(struct machine *machine)
168 {
169         if (machine) {
170                 machine__exit(machine);
171                 free(machine);
172         }
173 }
174
175 void machines__init(struct machines *machines)
176 {
177         machine__init(&machines->host, "", HOST_KERNEL_ID);
178         machines->guests = RB_ROOT;
179 }
180
181 void machines__exit(struct machines *machines)
182 {
183         machine__exit(&machines->host);
184         /* XXX exit guest */
185 }
186
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188                               const char *root_dir)
189 {
190         struct rb_node **p = &machines->guests.rb_node;
191         struct rb_node *parent = NULL;
192         struct machine *pos, *machine = malloc(sizeof(*machine));
193
194         if (machine == NULL)
195                 return NULL;
196
197         if (machine__init(machine, root_dir, pid) != 0) {
198                 free(machine);
199                 return NULL;
200         }
201
202         while (*p != NULL) {
203                 parent = *p;
204                 pos = rb_entry(parent, struct machine, rb_node);
205                 if (pid < pos->pid)
206                         p = &(*p)->rb_left;
207                 else
208                         p = &(*p)->rb_right;
209         }
210
211         rb_link_node(&machine->rb_node, parent, p);
212         rb_insert_color(&machine->rb_node, &machines->guests);
213
214         return machine;
215 }
216
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219         struct rb_node *nd;
220
221         machines->host.comm_exec = comm_exec;
222
223         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
225
226                 machine->comm_exec = comm_exec;
227         }
228 }
229
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232         struct rb_node **p = &machines->guests.rb_node;
233         struct rb_node *parent = NULL;
234         struct machine *machine;
235         struct machine *default_machine = NULL;
236
237         if (pid == HOST_KERNEL_ID)
238                 return &machines->host;
239
240         while (*p != NULL) {
241                 parent = *p;
242                 machine = rb_entry(parent, struct machine, rb_node);
243                 if (pid < machine->pid)
244                         p = &(*p)->rb_left;
245                 else if (pid > machine->pid)
246                         p = &(*p)->rb_right;
247                 else
248                         return machine;
249                 if (!machine->pid)
250                         default_machine = machine;
251         }
252
253         return default_machine;
254 }
255
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258         char path[PATH_MAX];
259         const char *root_dir = "";
260         struct machine *machine = machines__find(machines, pid);
261
262         if (machine && (machine->pid == pid))
263                 goto out;
264
265         if ((pid != HOST_KERNEL_ID) &&
266             (pid != DEFAULT_GUEST_KERNEL_ID) &&
267             (symbol_conf.guestmount)) {
268                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269                 if (access(path, R_OK)) {
270                         static struct strlist *seen;
271
272                         if (!seen)
273                                 seen = strlist__new(NULL, NULL);
274
275                         if (!strlist__has_entry(seen, path)) {
276                                 pr_err("Can't access file %s\n", path);
277                                 strlist__add(seen, path);
278                         }
279                         machine = NULL;
280                         goto out;
281                 }
282                 root_dir = path;
283         }
284
285         machine = machines__add(machines, pid, root_dir);
286 out:
287         return machine;
288 }
289
290 void machines__process_guests(struct machines *machines,
291                               machine__process_t process, void *data)
292 {
293         struct rb_node *nd;
294
295         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
297                 process(pos, data);
298         }
299 }
300
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303         if (machine__is_host(machine))
304                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
305         else if (machine__is_default_guest(machine))
306                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307         else {
308                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309                          machine->pid);
310         }
311
312         return bf;
313 }
314
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317         struct rb_node *node;
318         struct machine *machine;
319
320         machines->host.id_hdr_size = id_hdr_size;
321
322         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323                 machine = rb_entry(node, struct machine, rb_node);
324                 machine->id_hdr_size = id_hdr_size;
325         }
326
327         return;
328 }
329
330 static void machine__update_thread_pid(struct machine *machine,
331                                        struct thread *th, pid_t pid)
332 {
333         struct thread *leader;
334
335         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336                 return;
337
338         th->pid_ = pid;
339
340         if (th->pid_ == th->tid)
341                 return;
342
343         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344         if (!leader)
345                 goto out_err;
346
347         if (!leader->mg)
348                 leader->mg = map_groups__new(machine);
349
350         if (!leader->mg)
351                 goto out_err;
352
353         if (th->mg == leader->mg)
354                 return;
355
356         if (th->mg) {
357                 /*
358                  * Maps are created from MMAP events which provide the pid and
359                  * tid.  Consequently there never should be any maps on a thread
360                  * with an unknown pid.  Just print an error if there are.
361                  */
362                 if (!map_groups__empty(th->mg))
363                         pr_err("Discarding thread maps for %d:%d\n",
364                                th->pid_, th->tid);
365                 map_groups__put(th->mg);
366         }
367
368         th->mg = map_groups__get(leader->mg);
369 out_put:
370         thread__put(leader);
371         return;
372 out_err:
373         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374         goto out_put;
375 }
376
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382                                                   pid_t pid, pid_t tid,
383                                                   bool create)
384 {
385         struct rb_node **p = &machine->threads.rb_node;
386         struct rb_node *parent = NULL;
387         struct thread *th;
388
389         /*
390          * Front-end cache - TID lookups come in blocks,
391          * so most of the time we dont have to look up
392          * the full rbtree:
393          */
394         th = machine->last_match;
395         if (th != NULL) {
396                 if (th->tid == tid) {
397                         machine__update_thread_pid(machine, th, pid);
398                         return thread__get(th);
399                 }
400
401                 machine->last_match = NULL;
402         }
403
404         while (*p != NULL) {
405                 parent = *p;
406                 th = rb_entry(parent, struct thread, rb_node);
407
408                 if (th->tid == tid) {
409                         machine->last_match = th;
410                         machine__update_thread_pid(machine, th, pid);
411                         return thread__get(th);
412                 }
413
414                 if (tid < th->tid)
415                         p = &(*p)->rb_left;
416                 else
417                         p = &(*p)->rb_right;
418         }
419
420         if (!create)
421                 return NULL;
422
423         th = thread__new(pid, tid);
424         if (th != NULL) {
425                 rb_link_node(&th->rb_node, parent, p);
426                 rb_insert_color(&th->rb_node, &machine->threads);
427
428                 /*
429                  * We have to initialize map_groups separately
430                  * after rb tree is updated.
431                  *
432                  * The reason is that we call machine__findnew_thread
433                  * within thread__init_map_groups to find the thread
434                  * leader and that would screwed the rb tree.
435                  */
436                 if (thread__init_map_groups(th, machine)) {
437                         rb_erase_init(&th->rb_node, &machine->threads);
438                         RB_CLEAR_NODE(&th->rb_node);
439                         thread__put(th);
440                         return NULL;
441                 }
442                 /*
443                  * It is now in the rbtree, get a ref
444                  */
445                 thread__get(th);
446                 machine->last_match = th;
447                 ++machine->nr_threads;
448         }
449
450         return th;
451 }
452
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455         return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459                                        pid_t tid)
460 {
461         struct thread *th;
462
463         pthread_rwlock_wrlock(&machine->threads_lock);
464         th = __machine__findnew_thread(machine, pid, tid);
465         pthread_rwlock_unlock(&machine->threads_lock);
466         return th;
467 }
468
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470                                     pid_t tid)
471 {
472         struct thread *th;
473         pthread_rwlock_rdlock(&machine->threads_lock);
474         th =  ____machine__findnew_thread(machine, pid, tid, false);
475         pthread_rwlock_unlock(&machine->threads_lock);
476         return th;
477 }
478
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480                                        struct thread *thread)
481 {
482         if (machine->comm_exec)
483                 return thread__exec_comm(thread);
484         else
485                 return thread__comm(thread);
486 }
487
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489                                 struct perf_sample *sample)
490 {
491         struct thread *thread = machine__findnew_thread(machine,
492                                                         event->comm.pid,
493                                                         event->comm.tid);
494         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495         int err = 0;
496
497         if (exec)
498                 machine->comm_exec = true;
499
500         if (dump_trace)
501                 perf_event__fprintf_comm(event, stdout);
502
503         if (thread == NULL ||
504             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506                 err = -1;
507         }
508
509         thread__put(thread);
510
511         return err;
512 }
513
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515                                       union perf_event *event,
516                                       struct perf_sample *sample __maybe_unused)
517 {
518         struct thread *thread = machine__findnew_thread(machine,
519                                                         event->namespaces.pid,
520                                                         event->namespaces.tid);
521         int err = 0;
522
523         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524                   "\nWARNING: kernel seems to support more namespaces than perf"
525                   " tool.\nTry updating the perf tool..\n\n");
526
527         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528                   "\nWARNING: perf tool seems to support more namespaces than"
529                   " the kernel.\nTry updating the kernel..\n\n");
530
531         if (dump_trace)
532                 perf_event__fprintf_namespaces(event, stdout);
533
534         if (thread == NULL ||
535             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537                 err = -1;
538         }
539
540         thread__put(thread);
541
542         return err;
543 }
544
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549                     event->lost.id, event->lost.lost);
550         return 0;
551 }
552
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554                                         union perf_event *event, struct perf_sample *sample)
555 {
556         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557                     sample->id, event->lost_samples.lost);
558         return 0;
559 }
560
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562                                                struct kmod_path *m,
563                                                const char *filename)
564 {
565         struct dso *dso;
566
567         pthread_rwlock_wrlock(&machine->dsos.lock);
568
569         dso = __dsos__find(&machine->dsos, m->name, true);
570         if (!dso) {
571                 dso = __dsos__addnew(&machine->dsos, m->name);
572                 if (dso == NULL)
573                         goto out_unlock;
574
575                 dso__set_module_info(dso, m, machine);
576                 dso__set_long_name(dso, strdup(filename), true);
577         }
578
579         dso__get(dso);
580 out_unlock:
581         pthread_rwlock_unlock(&machine->dsos.lock);
582         return dso;
583 }
584
585 int machine__process_aux_event(struct machine *machine __maybe_unused,
586                                union perf_event *event)
587 {
588         if (dump_trace)
589                 perf_event__fprintf_aux(event, stdout);
590         return 0;
591 }
592
593 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
594                                         union perf_event *event)
595 {
596         if (dump_trace)
597                 perf_event__fprintf_itrace_start(event, stdout);
598         return 0;
599 }
600
601 int machine__process_switch_event(struct machine *machine __maybe_unused,
602                                   union perf_event *event)
603 {
604         if (dump_trace)
605                 perf_event__fprintf_switch(event, stdout);
606         return 0;
607 }
608
609 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
610 {
611         const char *dup_filename;
612
613         if (!filename || !dso || !dso->long_name)
614                 return;
615         if (dso->long_name[0] != '[')
616                 return;
617         if (!strchr(filename, '/'))
618                 return;
619
620         dup_filename = strdup(filename);
621         if (!dup_filename)
622                 return;
623
624         dso__set_long_name(dso, dup_filename, true);
625 }
626
627 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
628                                         const char *filename)
629 {
630         struct map *map = NULL;
631         struct dso *dso = NULL;
632         struct kmod_path m;
633
634         if (kmod_path__parse_name(&m, filename))
635                 return NULL;
636
637         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
638                                        m.name);
639         if (map) {
640                 /*
641                  * If the map's dso is an offline module, give dso__load()
642                  * a chance to find the file path of that module by fixing
643                  * long_name.
644                  */
645                 dso__adjust_kmod_long_name(map->dso, filename);
646                 goto out;
647         }
648
649         dso = machine__findnew_module_dso(machine, &m, filename);
650         if (dso == NULL)
651                 goto out;
652
653         map = map__new2(start, dso, MAP__FUNCTION);
654         if (map == NULL)
655                 goto out;
656
657         map_groups__insert(&machine->kmaps, map);
658
659         /* Put the map here because map_groups__insert alread got it */
660         map__put(map);
661 out:
662         /* put the dso here, corresponding to  machine__findnew_module_dso */
663         dso__put(dso);
664         free(m.name);
665         return map;
666 }
667
668 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
669 {
670         struct rb_node *nd;
671         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
672
673         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
674                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
675                 ret += __dsos__fprintf(&pos->dsos.head, fp);
676         }
677
678         return ret;
679 }
680
681 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
682                                      bool (skip)(struct dso *dso, int parm), int parm)
683 {
684         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
685 }
686
687 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
688                                      bool (skip)(struct dso *dso, int parm), int parm)
689 {
690         struct rb_node *nd;
691         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
692
693         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
694                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
695                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
696         }
697         return ret;
698 }
699
700 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
701 {
702         int i;
703         size_t printed = 0;
704         struct dso *kdso = machine__kernel_map(machine)->dso;
705
706         if (kdso->has_build_id) {
707                 char filename[PATH_MAX];
708                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
709                         printed += fprintf(fp, "[0] %s\n", filename);
710         }
711
712         for (i = 0; i < vmlinux_path__nr_entries; ++i)
713                 printed += fprintf(fp, "[%d] %s\n",
714                                    i + kdso->has_build_id, vmlinux_path[i]);
715
716         return printed;
717 }
718
719 size_t machine__fprintf(struct machine *machine, FILE *fp)
720 {
721         size_t ret;
722         struct rb_node *nd;
723
724         pthread_rwlock_rdlock(&machine->threads_lock);
725
726         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
727
728         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
729                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
730
731                 ret += thread__fprintf(pos, fp);
732         }
733
734         pthread_rwlock_unlock(&machine->threads_lock);
735
736         return ret;
737 }
738
739 static struct dso *machine__get_kernel(struct machine *machine)
740 {
741         const char *vmlinux_name = NULL;
742         struct dso *kernel;
743
744         if (machine__is_host(machine)) {
745                 vmlinux_name = symbol_conf.vmlinux_name;
746                 if (!vmlinux_name)
747                         vmlinux_name = DSO__NAME_KALLSYMS;
748
749                 kernel = machine__findnew_kernel(machine, vmlinux_name,
750                                                  "[kernel]", DSO_TYPE_KERNEL);
751         } else {
752                 char bf[PATH_MAX];
753
754                 if (machine__is_default_guest(machine))
755                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
756                 if (!vmlinux_name)
757                         vmlinux_name = machine__mmap_name(machine, bf,
758                                                           sizeof(bf));
759
760                 kernel = machine__findnew_kernel(machine, vmlinux_name,
761                                                  "[guest.kernel]",
762                                                  DSO_TYPE_GUEST_KERNEL);
763         }
764
765         if (kernel != NULL && (!kernel->has_build_id))
766                 dso__read_running_kernel_build_id(kernel, machine);
767
768         return kernel;
769 }
770
771 struct process_args {
772         u64 start;
773 };
774
775 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
776                                            size_t bufsz)
777 {
778         if (machine__is_default_guest(machine))
779                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
780         else
781                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
782 }
783
784 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
785
786 /* Figure out the start address of kernel map from /proc/kallsyms.
787  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
788  * symbol_name if it's not that important.
789  */
790 static int machine__get_running_kernel_start(struct machine *machine,
791                                              const char **symbol_name, u64 *start)
792 {
793         char filename[PATH_MAX];
794         int i, err = -1;
795         const char *name;
796         u64 addr = 0;
797
798         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
799
800         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
801                 return 0;
802
803         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
804                 err = kallsyms__get_function_start(filename, name, &addr);
805                 if (!err)
806                         break;
807         }
808
809         if (err)
810                 return -1;
811
812         if (symbol_name)
813                 *symbol_name = name;
814
815         *start = addr;
816         return 0;
817 }
818
819 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
820 {
821         int type;
822         u64 start = 0;
823
824         if (machine__get_running_kernel_start(machine, NULL, &start))
825                 return -1;
826
827         /* In case of renewal the kernel map, destroy previous one */
828         machine__destroy_kernel_maps(machine);
829
830         for (type = 0; type < MAP__NR_TYPES; ++type) {
831                 struct kmap *kmap;
832                 struct map *map;
833
834                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
835                 if (machine->vmlinux_maps[type] == NULL)
836                         return -1;
837
838                 machine->vmlinux_maps[type]->map_ip =
839                         machine->vmlinux_maps[type]->unmap_ip =
840                                 identity__map_ip;
841                 map = __machine__kernel_map(machine, type);
842                 kmap = map__kmap(map);
843                 if (!kmap)
844                         return -1;
845
846                 kmap->kmaps = &machine->kmaps;
847                 map_groups__insert(&machine->kmaps, map);
848         }
849
850         return 0;
851 }
852
853 void machine__destroy_kernel_maps(struct machine *machine)
854 {
855         int type;
856
857         for (type = 0; type < MAP__NR_TYPES; ++type) {
858                 struct kmap *kmap;
859                 struct map *map = __machine__kernel_map(machine, type);
860
861                 if (map == NULL)
862                         continue;
863
864                 kmap = map__kmap(map);
865                 map_groups__remove(&machine->kmaps, map);
866                 if (kmap && kmap->ref_reloc_sym) {
867                         /*
868                          * ref_reloc_sym is shared among all maps, so free just
869                          * on one of them.
870                          */
871                         if (type == MAP__FUNCTION) {
872                                 zfree((char **)&kmap->ref_reloc_sym->name);
873                                 zfree(&kmap->ref_reloc_sym);
874                         } else
875                                 kmap->ref_reloc_sym = NULL;
876                 }
877
878                 map__put(machine->vmlinux_maps[type]);
879                 machine->vmlinux_maps[type] = NULL;
880         }
881 }
882
883 int machines__create_guest_kernel_maps(struct machines *machines)
884 {
885         int ret = 0;
886         struct dirent **namelist = NULL;
887         int i, items = 0;
888         char path[PATH_MAX];
889         pid_t pid;
890         char *endp;
891
892         if (symbol_conf.default_guest_vmlinux_name ||
893             symbol_conf.default_guest_modules ||
894             symbol_conf.default_guest_kallsyms) {
895                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
896         }
897
898         if (symbol_conf.guestmount) {
899                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
900                 if (items <= 0)
901                         return -ENOENT;
902                 for (i = 0; i < items; i++) {
903                         if (!isdigit(namelist[i]->d_name[0])) {
904                                 /* Filter out . and .. */
905                                 continue;
906                         }
907                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
908                         if ((*endp != '\0') ||
909                             (endp == namelist[i]->d_name) ||
910                             (errno == ERANGE)) {
911                                 pr_debug("invalid directory (%s). Skipping.\n",
912                                          namelist[i]->d_name);
913                                 continue;
914                         }
915                         sprintf(path, "%s/%s/proc/kallsyms",
916                                 symbol_conf.guestmount,
917                                 namelist[i]->d_name);
918                         ret = access(path, R_OK);
919                         if (ret) {
920                                 pr_debug("Can't access file %s\n", path);
921                                 goto failure;
922                         }
923                         machines__create_kernel_maps(machines, pid);
924                 }
925 failure:
926                 free(namelist);
927         }
928
929         return ret;
930 }
931
932 void machines__destroy_kernel_maps(struct machines *machines)
933 {
934         struct rb_node *next = rb_first(&machines->guests);
935
936         machine__destroy_kernel_maps(&machines->host);
937
938         while (next) {
939                 struct machine *pos = rb_entry(next, struct machine, rb_node);
940
941                 next = rb_next(&pos->rb_node);
942                 rb_erase(&pos->rb_node, &machines->guests);
943                 machine__delete(pos);
944         }
945 }
946
947 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
948 {
949         struct machine *machine = machines__findnew(machines, pid);
950
951         if (machine == NULL)
952                 return -1;
953
954         return machine__create_kernel_maps(machine);
955 }
956
957 int __machine__load_kallsyms(struct machine *machine, const char *filename,
958                              enum map_type type, bool no_kcore)
959 {
960         struct map *map = machine__kernel_map(machine);
961         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
962
963         if (ret > 0) {
964                 dso__set_loaded(map->dso, type);
965                 /*
966                  * Since /proc/kallsyms will have multiple sessions for the
967                  * kernel, with modules between them, fixup the end of all
968                  * sections.
969                  */
970                 __map_groups__fixup_end(&machine->kmaps, type);
971         }
972
973         return ret;
974 }
975
976 int machine__load_kallsyms(struct machine *machine, const char *filename,
977                            enum map_type type)
978 {
979         return __machine__load_kallsyms(machine, filename, type, false);
980 }
981
982 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
983 {
984         struct map *map = machine__kernel_map(machine);
985         int ret = dso__load_vmlinux_path(map->dso, map);
986
987         if (ret > 0)
988                 dso__set_loaded(map->dso, type);
989
990         return ret;
991 }
992
993 static void map_groups__fixup_end(struct map_groups *mg)
994 {
995         int i;
996         for (i = 0; i < MAP__NR_TYPES; ++i)
997                 __map_groups__fixup_end(mg, i);
998 }
999
1000 static char *get_kernel_version(const char *root_dir)
1001 {
1002         char version[PATH_MAX];
1003         FILE *file;
1004         char *name, *tmp;
1005         const char *prefix = "Linux version ";
1006
1007         sprintf(version, "%s/proc/version", root_dir);
1008         file = fopen(version, "r");
1009         if (!file)
1010                 return NULL;
1011
1012         version[0] = '\0';
1013         tmp = fgets(version, sizeof(version), file);
1014         fclose(file);
1015
1016         name = strstr(version, prefix);
1017         if (!name)
1018                 return NULL;
1019         name += strlen(prefix);
1020         tmp = strchr(name, ' ');
1021         if (tmp)
1022                 *tmp = '\0';
1023
1024         return strdup(name);
1025 }
1026
1027 static bool is_kmod_dso(struct dso *dso)
1028 {
1029         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1030                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1031 }
1032
1033 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1034                                        struct kmod_path *m)
1035 {
1036         struct map *map;
1037         char *long_name;
1038
1039         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1040         if (map == NULL)
1041                 return 0;
1042
1043         long_name = strdup(path);
1044         if (long_name == NULL)
1045                 return -ENOMEM;
1046
1047         dso__set_long_name(map->dso, long_name, true);
1048         dso__kernel_module_get_build_id(map->dso, "");
1049
1050         /*
1051          * Full name could reveal us kmod compression, so
1052          * we need to update the symtab_type if needed.
1053          */
1054         if (m->comp && is_kmod_dso(map->dso))
1055                 map->dso->symtab_type++;
1056
1057         return 0;
1058 }
1059
1060 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1061                                 const char *dir_name, int depth)
1062 {
1063         struct dirent *dent;
1064         DIR *dir = opendir(dir_name);
1065         int ret = 0;
1066
1067         if (!dir) {
1068                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1069                 return -1;
1070         }
1071
1072         while ((dent = readdir(dir)) != NULL) {
1073                 char path[PATH_MAX];
1074                 struct stat st;
1075
1076                 /*sshfs might return bad dent->d_type, so we have to stat*/
1077                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1078                 if (stat(path, &st))
1079                         continue;
1080
1081                 if (S_ISDIR(st.st_mode)) {
1082                         if (!strcmp(dent->d_name, ".") ||
1083                             !strcmp(dent->d_name, ".."))
1084                                 continue;
1085
1086                         /* Do not follow top-level source and build symlinks */
1087                         if (depth == 0) {
1088                                 if (!strcmp(dent->d_name, "source") ||
1089                                     !strcmp(dent->d_name, "build"))
1090                                         continue;
1091                         }
1092
1093                         ret = map_groups__set_modules_path_dir(mg, path,
1094                                                                depth + 1);
1095                         if (ret < 0)
1096                                 goto out;
1097                 } else {
1098                         struct kmod_path m;
1099
1100                         ret = kmod_path__parse_name(&m, dent->d_name);
1101                         if (ret)
1102                                 goto out;
1103
1104                         if (m.kmod)
1105                                 ret = map_groups__set_module_path(mg, path, &m);
1106
1107                         free(m.name);
1108
1109                         if (ret)
1110                                 goto out;
1111                 }
1112         }
1113
1114 out:
1115         closedir(dir);
1116         return ret;
1117 }
1118
1119 static int machine__set_modules_path(struct machine *machine)
1120 {
1121         char *version;
1122         char modules_path[PATH_MAX];
1123
1124         version = get_kernel_version(machine->root_dir);
1125         if (!version)
1126                 return -1;
1127
1128         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1129                  machine->root_dir, version);
1130         free(version);
1131
1132         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1133 }
1134 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1135                                 const char *name __maybe_unused)
1136 {
1137         return 0;
1138 }
1139
1140 static int machine__create_module(void *arg, const char *name, u64 start)
1141 {
1142         struct machine *machine = arg;
1143         struct map *map;
1144
1145         if (arch__fix_module_text_start(&start, name) < 0)
1146                 return -1;
1147
1148         map = machine__findnew_module_map(machine, start, name);
1149         if (map == NULL)
1150                 return -1;
1151
1152         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1153
1154         return 0;
1155 }
1156
1157 static int machine__create_modules(struct machine *machine)
1158 {
1159         const char *modules;
1160         char path[PATH_MAX];
1161
1162         if (machine__is_default_guest(machine)) {
1163                 modules = symbol_conf.default_guest_modules;
1164         } else {
1165                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1166                 modules = path;
1167         }
1168
1169         if (symbol__restricted_filename(modules, "/proc/modules"))
1170                 return -1;
1171
1172         if (modules__parse(modules, machine, machine__create_module))
1173                 return -1;
1174
1175         if (!machine__set_modules_path(machine))
1176                 return 0;
1177
1178         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1179
1180         return 0;
1181 }
1182
1183 int machine__create_kernel_maps(struct machine *machine)
1184 {
1185         struct dso *kernel = machine__get_kernel(machine);
1186         const char *name = NULL;
1187         u64 addr = 0;
1188         int ret;
1189
1190         if (kernel == NULL)
1191                 return -1;
1192
1193         ret = __machine__create_kernel_maps(machine, kernel);
1194         dso__put(kernel);
1195         if (ret < 0)
1196                 return -1;
1197
1198         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1199                 if (machine__is_host(machine))
1200                         pr_debug("Problems creating module maps, "
1201                                  "continuing anyway...\n");
1202                 else
1203                         pr_debug("Problems creating module maps for guest %d, "
1204                                  "continuing anyway...\n", machine->pid);
1205         }
1206
1207         /*
1208          * Now that we have all the maps created, just set the ->end of them:
1209          */
1210         map_groups__fixup_end(&machine->kmaps);
1211
1212         if (machine__get_running_kernel_start(machine, &name, &addr)) {
1213         } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1214                 machine__destroy_kernel_maps(machine);
1215                 return -1;
1216         }
1217
1218         return 0;
1219 }
1220
1221 static void machine__set_kernel_mmap_len(struct machine *machine,
1222                                          union perf_event *event)
1223 {
1224         int i;
1225
1226         for (i = 0; i < MAP__NR_TYPES; i++) {
1227                 machine->vmlinux_maps[i]->start = event->mmap.start;
1228                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1229                                                    event->mmap.len);
1230                 /*
1231                  * Be a bit paranoid here, some perf.data file came with
1232                  * a zero sized synthesized MMAP event for the kernel.
1233                  */
1234                 if (machine->vmlinux_maps[i]->end == 0)
1235                         machine->vmlinux_maps[i]->end = ~0ULL;
1236         }
1237 }
1238
1239 static bool machine__uses_kcore(struct machine *machine)
1240 {
1241         struct dso *dso;
1242
1243         list_for_each_entry(dso, &machine->dsos.head, node) {
1244                 if (dso__is_kcore(dso))
1245                         return true;
1246         }
1247
1248         return false;
1249 }
1250
1251 static int machine__process_kernel_mmap_event(struct machine *machine,
1252                                               union perf_event *event)
1253 {
1254         struct map *map;
1255         char kmmap_prefix[PATH_MAX];
1256         enum dso_kernel_type kernel_type;
1257         bool is_kernel_mmap;
1258
1259         /* If we have maps from kcore then we do not need or want any others */
1260         if (machine__uses_kcore(machine))
1261                 return 0;
1262
1263         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1264         if (machine__is_host(machine))
1265                 kernel_type = DSO_TYPE_KERNEL;
1266         else
1267                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1268
1269         is_kernel_mmap = memcmp(event->mmap.filename,
1270                                 kmmap_prefix,
1271                                 strlen(kmmap_prefix) - 1) == 0;
1272         if (event->mmap.filename[0] == '/' ||
1273             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1274                 map = machine__findnew_module_map(machine, event->mmap.start,
1275                                                   event->mmap.filename);
1276                 if (map == NULL)
1277                         goto out_problem;
1278
1279                 map->end = map->start + event->mmap.len;
1280         } else if (is_kernel_mmap) {
1281                 const char *symbol_name = (event->mmap.filename +
1282                                 strlen(kmmap_prefix));
1283                 /*
1284                  * Should be there already, from the build-id table in
1285                  * the header.
1286                  */
1287                 struct dso *kernel = NULL;
1288                 struct dso *dso;
1289
1290                 pthread_rwlock_rdlock(&machine->dsos.lock);
1291
1292                 list_for_each_entry(dso, &machine->dsos.head, node) {
1293
1294                         /*
1295                          * The cpumode passed to is_kernel_module is not the
1296                          * cpumode of *this* event. If we insist on passing
1297                          * correct cpumode to is_kernel_module, we should
1298                          * record the cpumode when we adding this dso to the
1299                          * linked list.
1300                          *
1301                          * However we don't really need passing correct
1302                          * cpumode.  We know the correct cpumode must be kernel
1303                          * mode (if not, we should not link it onto kernel_dsos
1304                          * list).
1305                          *
1306                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1307                          * is_kernel_module() treats it as a kernel cpumode.
1308                          */
1309
1310                         if (!dso->kernel ||
1311                             is_kernel_module(dso->long_name,
1312                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1313                                 continue;
1314
1315
1316                         kernel = dso;
1317                         break;
1318                 }
1319
1320                 pthread_rwlock_unlock(&machine->dsos.lock);
1321
1322                 if (kernel == NULL)
1323                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1324                 if (kernel == NULL)
1325                         goto out_problem;
1326
1327                 kernel->kernel = kernel_type;
1328                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1329                         dso__put(kernel);
1330                         goto out_problem;
1331                 }
1332
1333                 if (strstr(kernel->long_name, "vmlinux"))
1334                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1335
1336                 machine__set_kernel_mmap_len(machine, event);
1337
1338                 /*
1339                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1340                  * symbol. Effectively having zero here means that at record
1341                  * time /proc/sys/kernel/kptr_restrict was non zero.
1342                  */
1343                 if (event->mmap.pgoff != 0) {
1344                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1345                                                          symbol_name,
1346                                                          event->mmap.pgoff);
1347                 }
1348
1349                 if (machine__is_default_guest(machine)) {
1350                         /*
1351                          * preload dso of guest kernel and modules
1352                          */
1353                         dso__load(kernel, machine__kernel_map(machine));
1354                 }
1355         }
1356         return 0;
1357 out_problem:
1358         return -1;
1359 }
1360
1361 int machine__process_mmap2_event(struct machine *machine,
1362                                  union perf_event *event,
1363                                  struct perf_sample *sample)
1364 {
1365         struct thread *thread;
1366         struct map *map;
1367         enum map_type type;
1368         int ret = 0;
1369
1370         if (dump_trace)
1371                 perf_event__fprintf_mmap2(event, stdout);
1372
1373         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1374             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1375                 ret = machine__process_kernel_mmap_event(machine, event);
1376                 if (ret < 0)
1377                         goto out_problem;
1378                 return 0;
1379         }
1380
1381         thread = machine__findnew_thread(machine, event->mmap2.pid,
1382                                         event->mmap2.tid);
1383         if (thread == NULL)
1384                 goto out_problem;
1385
1386         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1387                 type = MAP__VARIABLE;
1388         else
1389                 type = MAP__FUNCTION;
1390
1391         map = map__new(machine, event->mmap2.start,
1392                         event->mmap2.len, event->mmap2.pgoff,
1393                         event->mmap2.pid, event->mmap2.maj,
1394                         event->mmap2.min, event->mmap2.ino,
1395                         event->mmap2.ino_generation,
1396                         event->mmap2.prot,
1397                         event->mmap2.flags,
1398                         event->mmap2.filename, type, thread);
1399
1400         if (map == NULL)
1401                 goto out_problem_map;
1402
1403         ret = thread__insert_map(thread, map);
1404         if (ret)
1405                 goto out_problem_insert;
1406
1407         thread__put(thread);
1408         map__put(map);
1409         return 0;
1410
1411 out_problem_insert:
1412         map__put(map);
1413 out_problem_map:
1414         thread__put(thread);
1415 out_problem:
1416         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1417         return 0;
1418 }
1419
1420 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1421                                 struct perf_sample *sample)
1422 {
1423         struct thread *thread;
1424         struct map *map;
1425         enum map_type type;
1426         int ret = 0;
1427
1428         if (dump_trace)
1429                 perf_event__fprintf_mmap(event, stdout);
1430
1431         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1432             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1433                 ret = machine__process_kernel_mmap_event(machine, event);
1434                 if (ret < 0)
1435                         goto out_problem;
1436                 return 0;
1437         }
1438
1439         thread = machine__findnew_thread(machine, event->mmap.pid,
1440                                          event->mmap.tid);
1441         if (thread == NULL)
1442                 goto out_problem;
1443
1444         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1445                 type = MAP__VARIABLE;
1446         else
1447                 type = MAP__FUNCTION;
1448
1449         map = map__new(machine, event->mmap.start,
1450                         event->mmap.len, event->mmap.pgoff,
1451                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1452                         event->mmap.filename,
1453                         type, thread);
1454
1455         if (map == NULL)
1456                 goto out_problem_map;
1457
1458         ret = thread__insert_map(thread, map);
1459         if (ret)
1460                 goto out_problem_insert;
1461
1462         thread__put(thread);
1463         map__put(map);
1464         return 0;
1465
1466 out_problem_insert:
1467         map__put(map);
1468 out_problem_map:
1469         thread__put(thread);
1470 out_problem:
1471         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1472         return 0;
1473 }
1474
1475 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1476 {
1477         if (machine->last_match == th)
1478                 machine->last_match = NULL;
1479
1480         BUG_ON(refcount_read(&th->refcnt) == 0);
1481         if (lock)
1482                 pthread_rwlock_wrlock(&machine->threads_lock);
1483         rb_erase_init(&th->rb_node, &machine->threads);
1484         RB_CLEAR_NODE(&th->rb_node);
1485         --machine->nr_threads;
1486         /*
1487          * Move it first to the dead_threads list, then drop the reference,
1488          * if this is the last reference, then the thread__delete destructor
1489          * will be called and we will remove it from the dead_threads list.
1490          */
1491         list_add_tail(&th->node, &machine->dead_threads);
1492         if (lock)
1493                 pthread_rwlock_unlock(&machine->threads_lock);
1494         thread__put(th);
1495 }
1496
1497 void machine__remove_thread(struct machine *machine, struct thread *th)
1498 {
1499         return __machine__remove_thread(machine, th, true);
1500 }
1501
1502 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1503                                 struct perf_sample *sample)
1504 {
1505         struct thread *thread = machine__find_thread(machine,
1506                                                      event->fork.pid,
1507                                                      event->fork.tid);
1508         struct thread *parent = machine__findnew_thread(machine,
1509                                                         event->fork.ppid,
1510                                                         event->fork.ptid);
1511         int err = 0;
1512
1513         if (dump_trace)
1514                 perf_event__fprintf_task(event, stdout);
1515
1516         /*
1517          * There may be an existing thread that is not actually the parent,
1518          * either because we are processing events out of order, or because the
1519          * (fork) event that would have removed the thread was lost. Assume the
1520          * latter case and continue on as best we can.
1521          */
1522         if (parent->pid_ != (pid_t)event->fork.ppid) {
1523                 dump_printf("removing erroneous parent thread %d/%d\n",
1524                             parent->pid_, parent->tid);
1525                 machine__remove_thread(machine, parent);
1526                 thread__put(parent);
1527                 parent = machine__findnew_thread(machine, event->fork.ppid,
1528                                                  event->fork.ptid);
1529         }
1530
1531         /* if a thread currently exists for the thread id remove it */
1532         if (thread != NULL) {
1533                 machine__remove_thread(machine, thread);
1534                 thread__put(thread);
1535         }
1536
1537         thread = machine__findnew_thread(machine, event->fork.pid,
1538                                          event->fork.tid);
1539
1540         if (thread == NULL || parent == NULL ||
1541             thread__fork(thread, parent, sample->time) < 0) {
1542                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1543                 err = -1;
1544         }
1545         thread__put(thread);
1546         thread__put(parent);
1547
1548         return err;
1549 }
1550
1551 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1552                                 struct perf_sample *sample __maybe_unused)
1553 {
1554         struct thread *thread = machine__find_thread(machine,
1555                                                      event->fork.pid,
1556                                                      event->fork.tid);
1557
1558         if (dump_trace)
1559                 perf_event__fprintf_task(event, stdout);
1560
1561         if (thread != NULL) {
1562                 thread__exited(thread);
1563                 thread__put(thread);
1564         }
1565
1566         return 0;
1567 }
1568
1569 int machine__process_event(struct machine *machine, union perf_event *event,
1570                            struct perf_sample *sample)
1571 {
1572         int ret;
1573
1574         switch (event->header.type) {
1575         case PERF_RECORD_COMM:
1576                 ret = machine__process_comm_event(machine, event, sample); break;
1577         case PERF_RECORD_MMAP:
1578                 ret = machine__process_mmap_event(machine, event, sample); break;
1579         case PERF_RECORD_NAMESPACES:
1580                 ret = machine__process_namespaces_event(machine, event, sample); break;
1581         case PERF_RECORD_MMAP2:
1582                 ret = machine__process_mmap2_event(machine, event, sample); break;
1583         case PERF_RECORD_FORK:
1584                 ret = machine__process_fork_event(machine, event, sample); break;
1585         case PERF_RECORD_EXIT:
1586                 ret = machine__process_exit_event(machine, event, sample); break;
1587         case PERF_RECORD_LOST:
1588                 ret = machine__process_lost_event(machine, event, sample); break;
1589         case PERF_RECORD_AUX:
1590                 ret = machine__process_aux_event(machine, event); break;
1591         case PERF_RECORD_ITRACE_START:
1592                 ret = machine__process_itrace_start_event(machine, event); break;
1593         case PERF_RECORD_LOST_SAMPLES:
1594                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1595         case PERF_RECORD_SWITCH:
1596         case PERF_RECORD_SWITCH_CPU_WIDE:
1597                 ret = machine__process_switch_event(machine, event); break;
1598         default:
1599                 ret = -1;
1600                 break;
1601         }
1602
1603         return ret;
1604 }
1605
1606 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1607 {
1608         if (!regexec(regex, sym->name, 0, NULL, 0))
1609                 return 1;
1610         return 0;
1611 }
1612
1613 static void ip__resolve_ams(struct thread *thread,
1614                             struct addr_map_symbol *ams,
1615                             u64 ip)
1616 {
1617         struct addr_location al;
1618
1619         memset(&al, 0, sizeof(al));
1620         /*
1621          * We cannot use the header.misc hint to determine whether a
1622          * branch stack address is user, kernel, guest, hypervisor.
1623          * Branches may straddle the kernel/user/hypervisor boundaries.
1624          * Thus, we have to try consecutively until we find a match
1625          * or else, the symbol is unknown
1626          */
1627         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1628
1629         ams->addr = ip;
1630         ams->al_addr = al.addr;
1631         ams->sym = al.sym;
1632         ams->map = al.map;
1633 }
1634
1635 static void ip__resolve_data(struct thread *thread,
1636                              u8 m, struct addr_map_symbol *ams, u64 addr)
1637 {
1638         struct addr_location al;
1639
1640         memset(&al, 0, sizeof(al));
1641
1642         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1643         if (al.map == NULL) {
1644                 /*
1645                  * some shared data regions have execute bit set which puts
1646                  * their mapping in the MAP__FUNCTION type array.
1647                  * Check there as a fallback option before dropping the sample.
1648                  */
1649                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1650         }
1651
1652         ams->addr = addr;
1653         ams->al_addr = al.addr;
1654         ams->sym = al.sym;
1655         ams->map = al.map;
1656 }
1657
1658 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1659                                      struct addr_location *al)
1660 {
1661         struct mem_info *mi = zalloc(sizeof(*mi));
1662
1663         if (!mi)
1664                 return NULL;
1665
1666         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1667         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1668         mi->data_src.val = sample->data_src;
1669
1670         return mi;
1671 }
1672
1673 static int add_callchain_ip(struct thread *thread,
1674                             struct callchain_cursor *cursor,
1675                             struct symbol **parent,
1676                             struct addr_location *root_al,
1677                             u8 *cpumode,
1678                             u64 ip,
1679                             bool branch,
1680                             struct branch_flags *flags,
1681                             int nr_loop_iter,
1682                             int samples)
1683 {
1684         struct addr_location al;
1685
1686         al.filtered = 0;
1687         al.sym = NULL;
1688         if (!cpumode) {
1689                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1690                                                    ip, &al);
1691         } else {
1692                 if (ip >= PERF_CONTEXT_MAX) {
1693                         switch (ip) {
1694                         case PERF_CONTEXT_HV:
1695                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1696                                 break;
1697                         case PERF_CONTEXT_KERNEL:
1698                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1699                                 break;
1700                         case PERF_CONTEXT_USER:
1701                                 *cpumode = PERF_RECORD_MISC_USER;
1702                                 break;
1703                         default:
1704                                 pr_debug("invalid callchain context: "
1705                                          "%"PRId64"\n", (s64) ip);
1706                                 /*
1707                                  * It seems the callchain is corrupted.
1708                                  * Discard all.
1709                                  */
1710                                 callchain_cursor_reset(cursor);
1711                                 return 1;
1712                         }
1713                         return 0;
1714                 }
1715                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1716                                            ip, &al);
1717         }
1718
1719         if (al.sym != NULL) {
1720                 if (perf_hpp_list.parent && !*parent &&
1721                     symbol__match_regex(al.sym, &parent_regex))
1722                         *parent = al.sym;
1723                 else if (have_ignore_callees && root_al &&
1724                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1725                         /* Treat this symbol as the root,
1726                            forgetting its callees. */
1727                         *root_al = al;
1728                         callchain_cursor_reset(cursor);
1729                 }
1730         }
1731
1732         if (symbol_conf.hide_unresolved && al.sym == NULL)
1733                 return 0;
1734         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1735                                        branch, flags, nr_loop_iter, samples);
1736 }
1737
1738 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1739                                            struct addr_location *al)
1740 {
1741         unsigned int i;
1742         const struct branch_stack *bs = sample->branch_stack;
1743         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1744
1745         if (!bi)
1746                 return NULL;
1747
1748         for (i = 0; i < bs->nr; i++) {
1749                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1750                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1751                 bi[i].flags = bs->entries[i].flags;
1752         }
1753         return bi;
1754 }
1755
1756 #define CHASHSZ 127
1757 #define CHASHBITS 7
1758 #define NO_ENTRY 0xff
1759
1760 #define PERF_MAX_BRANCH_DEPTH 127
1761
1762 /* Remove loops. */
1763 static int remove_loops(struct branch_entry *l, int nr)
1764 {
1765         int i, j, off;
1766         unsigned char chash[CHASHSZ];
1767
1768         memset(chash, NO_ENTRY, sizeof(chash));
1769
1770         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1771
1772         for (i = 0; i < nr; i++) {
1773                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1774
1775                 /* no collision handling for now */
1776                 if (chash[h] == NO_ENTRY) {
1777                         chash[h] = i;
1778                 } else if (l[chash[h]].from == l[i].from) {
1779                         bool is_loop = true;
1780                         /* check if it is a real loop */
1781                         off = 0;
1782                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1783                                 if (l[j].from != l[i + off].from) {
1784                                         is_loop = false;
1785                                         break;
1786                                 }
1787                         if (is_loop) {
1788                                 memmove(l + i, l + i + off,
1789                                         (nr - (i + off)) * sizeof(*l));
1790                                 nr -= off;
1791                         }
1792                 }
1793         }
1794         return nr;
1795 }
1796
1797 /*
1798  * Recolve LBR callstack chain sample
1799  * Return:
1800  * 1 on success get LBR callchain information
1801  * 0 no available LBR callchain information, should try fp
1802  * negative error code on other errors.
1803  */
1804 static int resolve_lbr_callchain_sample(struct thread *thread,
1805                                         struct callchain_cursor *cursor,
1806                                         struct perf_sample *sample,
1807                                         struct symbol **parent,
1808                                         struct addr_location *root_al,
1809                                         int max_stack)
1810 {
1811         struct ip_callchain *chain = sample->callchain;
1812         int chain_nr = min(max_stack, (int)chain->nr), i;
1813         u8 cpumode = PERF_RECORD_MISC_USER;
1814         u64 ip;
1815
1816         for (i = 0; i < chain_nr; i++) {
1817                 if (chain->ips[i] == PERF_CONTEXT_USER)
1818                         break;
1819         }
1820
1821         /* LBR only affects the user callchain */
1822         if (i != chain_nr) {
1823                 struct branch_stack *lbr_stack = sample->branch_stack;
1824                 int lbr_nr = lbr_stack->nr, j, k;
1825                 bool branch;
1826                 struct branch_flags *flags;
1827                 /*
1828                  * LBR callstack can only get user call chain.
1829                  * The mix_chain_nr is kernel call chain
1830                  * number plus LBR user call chain number.
1831                  * i is kernel call chain number,
1832                  * 1 is PERF_CONTEXT_USER,
1833                  * lbr_nr + 1 is the user call chain number.
1834                  * For details, please refer to the comments
1835                  * in callchain__printf
1836                  */
1837                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1838
1839                 for (j = 0; j < mix_chain_nr; j++) {
1840                         int err;
1841                         branch = false;
1842                         flags = NULL;
1843
1844                         if (callchain_param.order == ORDER_CALLEE) {
1845                                 if (j < i + 1)
1846                                         ip = chain->ips[j];
1847                                 else if (j > i + 1) {
1848                                         k = j - i - 2;
1849                                         ip = lbr_stack->entries[k].from;
1850                                         branch = true;
1851                                         flags = &lbr_stack->entries[k].flags;
1852                                 } else {
1853                                         ip = lbr_stack->entries[0].to;
1854                                         branch = true;
1855                                         flags = &lbr_stack->entries[0].flags;
1856                                 }
1857                         } else {
1858                                 if (j < lbr_nr) {
1859                                         k = lbr_nr - j - 1;
1860                                         ip = lbr_stack->entries[k].from;
1861                                         branch = true;
1862                                         flags = &lbr_stack->entries[k].flags;
1863                                 }
1864                                 else if (j > lbr_nr)
1865                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1866                                 else {
1867                                         ip = lbr_stack->entries[0].to;
1868                                         branch = true;
1869                                         flags = &lbr_stack->entries[0].flags;
1870                                 }
1871                         }
1872
1873                         err = add_callchain_ip(thread, cursor, parent,
1874                                                root_al, &cpumode, ip,
1875                                                branch, flags, 0, 0);
1876                         if (err)
1877                                 return (err < 0) ? err : 0;
1878                 }
1879                 return 1;
1880         }
1881
1882         return 0;
1883 }
1884
1885 static int thread__resolve_callchain_sample(struct thread *thread,
1886                                             struct callchain_cursor *cursor,
1887                                             struct perf_evsel *evsel,
1888                                             struct perf_sample *sample,
1889                                             struct symbol **parent,
1890                                             struct addr_location *root_al,
1891                                             int max_stack)
1892 {
1893         struct branch_stack *branch = sample->branch_stack;
1894         struct ip_callchain *chain = sample->callchain;
1895         int chain_nr = chain->nr;
1896         u8 cpumode = PERF_RECORD_MISC_USER;
1897         int i, j, err, nr_entries;
1898         int skip_idx = -1;
1899         int first_call = 0;
1900         int nr_loop_iter;
1901
1902         if (perf_evsel__has_branch_callstack(evsel)) {
1903                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1904                                                    root_al, max_stack);
1905                 if (err)
1906                         return (err < 0) ? err : 0;
1907         }
1908
1909         /*
1910          * Based on DWARF debug information, some architectures skip
1911          * a callchain entry saved by the kernel.
1912          */
1913         skip_idx = arch_skip_callchain_idx(thread, chain);
1914
1915         /*
1916          * Add branches to call stack for easier browsing. This gives
1917          * more context for a sample than just the callers.
1918          *
1919          * This uses individual histograms of paths compared to the
1920          * aggregated histograms the normal LBR mode uses.
1921          *
1922          * Limitations for now:
1923          * - No extra filters
1924          * - No annotations (should annotate somehow)
1925          */
1926
1927         if (branch && callchain_param.branch_callstack) {
1928                 int nr = min(max_stack, (int)branch->nr);
1929                 struct branch_entry be[nr];
1930
1931                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1932                         pr_warning("corrupted branch chain. skipping...\n");
1933                         goto check_calls;
1934                 }
1935
1936                 for (i = 0; i < nr; i++) {
1937                         if (callchain_param.order == ORDER_CALLEE) {
1938                                 be[i] = branch->entries[i];
1939                                 /*
1940                                  * Check for overlap into the callchain.
1941                                  * The return address is one off compared to
1942                                  * the branch entry. To adjust for this
1943                                  * assume the calling instruction is not longer
1944                                  * than 8 bytes.
1945                                  */
1946                                 if (i == skip_idx ||
1947                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1948                                         first_call++;
1949                                 else if (be[i].from < chain->ips[first_call] &&
1950                                     be[i].from >= chain->ips[first_call] - 8)
1951                                         first_call++;
1952                         } else
1953                                 be[i] = branch->entries[branch->nr - i - 1];
1954                 }
1955
1956                 nr_loop_iter = nr;
1957                 nr = remove_loops(be, nr);
1958
1959                 /*
1960                  * Get the number of iterations.
1961                  * It's only approximation, but good enough in practice.
1962                  */
1963                 if (nr_loop_iter > nr)
1964                         nr_loop_iter = nr_loop_iter - nr + 1;
1965                 else
1966                         nr_loop_iter = 0;
1967
1968                 for (i = 0; i < nr; i++) {
1969                         if (i == nr - 1)
1970                                 err = add_callchain_ip(thread, cursor, parent,
1971                                                        root_al,
1972                                                        NULL, be[i].to,
1973                                                        true, &be[i].flags,
1974                                                        nr_loop_iter, 1);
1975                         else
1976                                 err = add_callchain_ip(thread, cursor, parent,
1977                                                        root_al,
1978                                                        NULL, be[i].to,
1979                                                        true, &be[i].flags,
1980                                                        0, 0);
1981
1982                         if (!err)
1983                                 err = add_callchain_ip(thread, cursor, parent, root_al,
1984                                                        NULL, be[i].from,
1985                                                        true, &be[i].flags,
1986                                                        0, 0);
1987                         if (err == -EINVAL)
1988                                 break;
1989                         if (err)
1990                                 return err;
1991                 }
1992                 chain_nr -= nr;
1993         }
1994
1995 check_calls:
1996         for (i = first_call, nr_entries = 0;
1997              i < chain_nr && nr_entries < max_stack; i++) {
1998                 u64 ip;
1999
2000                 if (callchain_param.order == ORDER_CALLEE)
2001                         j = i;
2002                 else
2003                         j = chain->nr - i - 1;
2004
2005 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2006                 if (j == skip_idx)
2007                         continue;
2008 #endif
2009                 ip = chain->ips[j];
2010
2011                 if (ip < PERF_CONTEXT_MAX)
2012                        ++nr_entries;
2013
2014                 err = add_callchain_ip(thread, cursor, parent,
2015                                        root_al, &cpumode, ip,
2016                                        false, NULL, 0, 0);
2017
2018                 if (err)
2019                         return (err < 0) ? err : 0;
2020         }
2021
2022         return 0;
2023 }
2024
2025 static int unwind_entry(struct unwind_entry *entry, void *arg)
2026 {
2027         struct callchain_cursor *cursor = arg;
2028
2029         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2030                 return 0;
2031         return callchain_cursor_append(cursor, entry->ip,
2032                                        entry->map, entry->sym,
2033                                        false, NULL, 0, 0);
2034 }
2035
2036 static int thread__resolve_callchain_unwind(struct thread *thread,
2037                                             struct callchain_cursor *cursor,
2038                                             struct perf_evsel *evsel,
2039                                             struct perf_sample *sample,
2040                                             int max_stack)
2041 {
2042         /* Can we do dwarf post unwind? */
2043         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2044               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2045                 return 0;
2046
2047         /* Bail out if nothing was captured. */
2048         if ((!sample->user_regs.regs) ||
2049             (!sample->user_stack.size))
2050                 return 0;
2051
2052         return unwind__get_entries(unwind_entry, cursor,
2053                                    thread, sample, max_stack);
2054 }
2055
2056 int thread__resolve_callchain(struct thread *thread,
2057                               struct callchain_cursor *cursor,
2058                               struct perf_evsel *evsel,
2059                               struct perf_sample *sample,
2060                               struct symbol **parent,
2061                               struct addr_location *root_al,
2062                               int max_stack)
2063 {
2064         int ret = 0;
2065
2066         callchain_cursor_reset(&callchain_cursor);
2067
2068         if (callchain_param.order == ORDER_CALLEE) {
2069                 ret = thread__resolve_callchain_sample(thread, cursor,
2070                                                        evsel, sample,
2071                                                        parent, root_al,
2072                                                        max_stack);
2073                 if (ret)
2074                         return ret;
2075                 ret = thread__resolve_callchain_unwind(thread, cursor,
2076                                                        evsel, sample,
2077                                                        max_stack);
2078         } else {
2079                 ret = thread__resolve_callchain_unwind(thread, cursor,
2080                                                        evsel, sample,
2081                                                        max_stack);
2082                 if (ret)
2083                         return ret;
2084                 ret = thread__resolve_callchain_sample(thread, cursor,
2085                                                        evsel, sample,
2086                                                        parent, root_al,
2087                                                        max_stack);
2088         }
2089
2090         return ret;
2091 }
2092
2093 int machine__for_each_thread(struct machine *machine,
2094                              int (*fn)(struct thread *thread, void *p),
2095                              void *priv)
2096 {
2097         struct rb_node *nd;
2098         struct thread *thread;
2099         int rc = 0;
2100
2101         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2102                 thread = rb_entry(nd, struct thread, rb_node);
2103                 rc = fn(thread, priv);
2104                 if (rc != 0)
2105                         return rc;
2106         }
2107
2108         list_for_each_entry(thread, &machine->dead_threads, node) {
2109                 rc = fn(thread, priv);
2110                 if (rc != 0)
2111                         return rc;
2112         }
2113         return rc;
2114 }
2115
2116 int machines__for_each_thread(struct machines *machines,
2117                               int (*fn)(struct thread *thread, void *p),
2118                               void *priv)
2119 {
2120         struct rb_node *nd;
2121         int rc = 0;
2122
2123         rc = machine__for_each_thread(&machines->host, fn, priv);
2124         if (rc != 0)
2125                 return rc;
2126
2127         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2128                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2129
2130                 rc = machine__for_each_thread(machine, fn, priv);
2131                 if (rc != 0)
2132                         return rc;
2133         }
2134         return rc;
2135 }
2136
2137 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2138                                   struct target *target, struct thread_map *threads,
2139                                   perf_event__handler_t process, bool data_mmap,
2140                                   unsigned int proc_map_timeout)
2141 {
2142         if (target__has_task(target))
2143                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2144         else if (target__has_cpu(target))
2145                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2146         /* command specified */
2147         return 0;
2148 }
2149
2150 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2151 {
2152         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2153                 return -1;
2154
2155         return machine->current_tid[cpu];
2156 }
2157
2158 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2159                              pid_t tid)
2160 {
2161         struct thread *thread;
2162
2163         if (cpu < 0)
2164                 return -EINVAL;
2165
2166         if (!machine->current_tid) {
2167                 int i;
2168
2169                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2170                 if (!machine->current_tid)
2171                         return -ENOMEM;
2172                 for (i = 0; i < MAX_NR_CPUS; i++)
2173                         machine->current_tid[i] = -1;
2174         }
2175
2176         if (cpu >= MAX_NR_CPUS) {
2177                 pr_err("Requested CPU %d too large. ", cpu);
2178                 pr_err("Consider raising MAX_NR_CPUS\n");
2179                 return -EINVAL;
2180         }
2181
2182         machine->current_tid[cpu] = tid;
2183
2184         thread = machine__findnew_thread(machine, pid, tid);
2185         if (!thread)
2186                 return -ENOMEM;
2187
2188         thread->cpu = cpu;
2189         thread__put(thread);
2190
2191         return 0;
2192 }
2193
2194 int machine__get_kernel_start(struct machine *machine)
2195 {
2196         struct map *map = machine__kernel_map(machine);
2197         int err = 0;
2198
2199         /*
2200          * The only addresses above 2^63 are kernel addresses of a 64-bit
2201          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2202          * all addresses including kernel addresses are less than 2^32.  In
2203          * that case (32-bit system), if the kernel mapping is unknown, all
2204          * addresses will be assumed to be in user space - see
2205          * machine__kernel_ip().
2206          */
2207         machine->kernel_start = 1ULL << 63;
2208         if (map) {
2209                 err = map__load(map);
2210                 if (map->start)
2211                         machine->kernel_start = map->start;
2212         }
2213         return err;
2214 }
2215
2216 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2217 {
2218         return dsos__findnew(&machine->dsos, filename);
2219 }
2220
2221 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2222 {
2223         struct machine *machine = vmachine;
2224         struct map *map;
2225         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2226
2227         if (sym == NULL)
2228                 return NULL;
2229
2230         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2231         *addrp = map->unmap_ip(map, sym->start);
2232         return sym->name;
2233 }