]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/machine.c
xfs: fix spurious spin_is_locked() assert failures on non-smp kernels
[karo-tx-linux.git] / tools / perf / util / machine.c
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28
29 static void dsos__init(struct dsos *dsos)
30 {
31         INIT_LIST_HEAD(&dsos->head);
32         dsos->root = RB_ROOT;
33         pthread_rwlock_init(&dsos->lock, NULL);
34 }
35
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38         memset(machine, 0, sizeof(*machine));
39         map_groups__init(&machine->kmaps, machine);
40         RB_CLEAR_NODE(&machine->rb_node);
41         dsos__init(&machine->dsos);
42
43         machine->threads = RB_ROOT;
44         pthread_rwlock_init(&machine->threads_lock, NULL);
45         machine->nr_threads = 0;
46         INIT_LIST_HEAD(&machine->dead_threads);
47         machine->last_match = NULL;
48
49         machine->vdso_info = NULL;
50         machine->env = NULL;
51
52         machine->pid = pid;
53
54         machine->id_hdr_size = 0;
55         machine->kptr_restrict_warned = false;
56         machine->comm_exec = false;
57         machine->kernel_start = 0;
58
59         memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60
61         machine->root_dir = strdup(root_dir);
62         if (machine->root_dir == NULL)
63                 return -ENOMEM;
64
65         if (pid != HOST_KERNEL_ID) {
66                 struct thread *thread = machine__findnew_thread(machine, -1,
67                                                                 pid);
68                 char comm[64];
69
70                 if (thread == NULL)
71                         return -ENOMEM;
72
73                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74                 thread__set_comm(thread, comm, 0);
75                 thread__put(thread);
76         }
77
78         machine->current_tid = NULL;
79
80         return 0;
81 }
82
83 struct machine *machine__new_host(void)
84 {
85         struct machine *machine = malloc(sizeof(*machine));
86
87         if (machine != NULL) {
88                 machine__init(machine, "", HOST_KERNEL_ID);
89
90                 if (machine__create_kernel_maps(machine) < 0)
91                         goto out_delete;
92         }
93
94         return machine;
95 out_delete:
96         free(machine);
97         return NULL;
98 }
99
100 struct machine *machine__new_kallsyms(void)
101 {
102         struct machine *machine = machine__new_host();
103         /*
104          * FIXME:
105          * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106          *    functions and data objects.
107          * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108          *    ask for not using the kcore parsing code, once this one is fixed
109          *    to create a map per module.
110          */
111         if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112                 machine__delete(machine);
113                 machine = NULL;
114         }
115
116         return machine;
117 }
118
119 static void dsos__purge(struct dsos *dsos)
120 {
121         struct dso *pos, *n;
122
123         pthread_rwlock_wrlock(&dsos->lock);
124
125         list_for_each_entry_safe(pos, n, &dsos->head, node) {
126                 RB_CLEAR_NODE(&pos->rb_node);
127                 pos->root = NULL;
128                 list_del_init(&pos->node);
129                 dso__put(pos);
130         }
131
132         pthread_rwlock_unlock(&dsos->lock);
133 }
134
135 static void dsos__exit(struct dsos *dsos)
136 {
137         dsos__purge(dsos);
138         pthread_rwlock_destroy(&dsos->lock);
139 }
140
141 void machine__delete_threads(struct machine *machine)
142 {
143         struct rb_node *nd;
144
145         pthread_rwlock_wrlock(&machine->threads_lock);
146         nd = rb_first(&machine->threads);
147         while (nd) {
148                 struct thread *t = rb_entry(nd, struct thread, rb_node);
149
150                 nd = rb_next(nd);
151                 __machine__remove_thread(machine, t, false);
152         }
153         pthread_rwlock_unlock(&machine->threads_lock);
154 }
155
156 void machine__exit(struct machine *machine)
157 {
158         machine__destroy_kernel_maps(machine);
159         map_groups__exit(&machine->kmaps);
160         dsos__exit(&machine->dsos);
161         machine__exit_vdso(machine);
162         zfree(&machine->root_dir);
163         zfree(&machine->current_tid);
164         pthread_rwlock_destroy(&machine->threads_lock);
165 }
166
167 void machine__delete(struct machine *machine)
168 {
169         if (machine) {
170                 machine__exit(machine);
171                 free(machine);
172         }
173 }
174
175 void machines__init(struct machines *machines)
176 {
177         machine__init(&machines->host, "", HOST_KERNEL_ID);
178         machines->guests = RB_ROOT;
179 }
180
181 void machines__exit(struct machines *machines)
182 {
183         machine__exit(&machines->host);
184         /* XXX exit guest */
185 }
186
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188                               const char *root_dir)
189 {
190         struct rb_node **p = &machines->guests.rb_node;
191         struct rb_node *parent = NULL;
192         struct machine *pos, *machine = malloc(sizeof(*machine));
193
194         if (machine == NULL)
195                 return NULL;
196
197         if (machine__init(machine, root_dir, pid) != 0) {
198                 free(machine);
199                 return NULL;
200         }
201
202         while (*p != NULL) {
203                 parent = *p;
204                 pos = rb_entry(parent, struct machine, rb_node);
205                 if (pid < pos->pid)
206                         p = &(*p)->rb_left;
207                 else
208                         p = &(*p)->rb_right;
209         }
210
211         rb_link_node(&machine->rb_node, parent, p);
212         rb_insert_color(&machine->rb_node, &machines->guests);
213
214         return machine;
215 }
216
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219         struct rb_node *nd;
220
221         machines->host.comm_exec = comm_exec;
222
223         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
225
226                 machine->comm_exec = comm_exec;
227         }
228 }
229
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232         struct rb_node **p = &machines->guests.rb_node;
233         struct rb_node *parent = NULL;
234         struct machine *machine;
235         struct machine *default_machine = NULL;
236
237         if (pid == HOST_KERNEL_ID)
238                 return &machines->host;
239
240         while (*p != NULL) {
241                 parent = *p;
242                 machine = rb_entry(parent, struct machine, rb_node);
243                 if (pid < machine->pid)
244                         p = &(*p)->rb_left;
245                 else if (pid > machine->pid)
246                         p = &(*p)->rb_right;
247                 else
248                         return machine;
249                 if (!machine->pid)
250                         default_machine = machine;
251         }
252
253         return default_machine;
254 }
255
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258         char path[PATH_MAX];
259         const char *root_dir = "";
260         struct machine *machine = machines__find(machines, pid);
261
262         if (machine && (machine->pid == pid))
263                 goto out;
264
265         if ((pid != HOST_KERNEL_ID) &&
266             (pid != DEFAULT_GUEST_KERNEL_ID) &&
267             (symbol_conf.guestmount)) {
268                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269                 if (access(path, R_OK)) {
270                         static struct strlist *seen;
271
272                         if (!seen)
273                                 seen = strlist__new(NULL, NULL);
274
275                         if (!strlist__has_entry(seen, path)) {
276                                 pr_err("Can't access file %s\n", path);
277                                 strlist__add(seen, path);
278                         }
279                         machine = NULL;
280                         goto out;
281                 }
282                 root_dir = path;
283         }
284
285         machine = machines__add(machines, pid, root_dir);
286 out:
287         return machine;
288 }
289
290 void machines__process_guests(struct machines *machines,
291                               machine__process_t process, void *data)
292 {
293         struct rb_node *nd;
294
295         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
297                 process(pos, data);
298         }
299 }
300
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303         if (machine__is_host(machine))
304                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
305         else if (machine__is_default_guest(machine))
306                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307         else {
308                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309                          machine->pid);
310         }
311
312         return bf;
313 }
314
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317         struct rb_node *node;
318         struct machine *machine;
319
320         machines->host.id_hdr_size = id_hdr_size;
321
322         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323                 machine = rb_entry(node, struct machine, rb_node);
324                 machine->id_hdr_size = id_hdr_size;
325         }
326
327         return;
328 }
329
330 static void machine__update_thread_pid(struct machine *machine,
331                                        struct thread *th, pid_t pid)
332 {
333         struct thread *leader;
334
335         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336                 return;
337
338         th->pid_ = pid;
339
340         if (th->pid_ == th->tid)
341                 return;
342
343         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344         if (!leader)
345                 goto out_err;
346
347         if (!leader->mg)
348                 leader->mg = map_groups__new(machine);
349
350         if (!leader->mg)
351                 goto out_err;
352
353         if (th->mg == leader->mg)
354                 return;
355
356         if (th->mg) {
357                 /*
358                  * Maps are created from MMAP events which provide the pid and
359                  * tid.  Consequently there never should be any maps on a thread
360                  * with an unknown pid.  Just print an error if there are.
361                  */
362                 if (!map_groups__empty(th->mg))
363                         pr_err("Discarding thread maps for %d:%d\n",
364                                th->pid_, th->tid);
365                 map_groups__put(th->mg);
366         }
367
368         th->mg = map_groups__get(leader->mg);
369 out_put:
370         thread__put(leader);
371         return;
372 out_err:
373         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374         goto out_put;
375 }
376
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382                                                   pid_t pid, pid_t tid,
383                                                   bool create)
384 {
385         struct rb_node **p = &machine->threads.rb_node;
386         struct rb_node *parent = NULL;
387         struct thread *th;
388
389         /*
390          * Front-end cache - TID lookups come in blocks,
391          * so most of the time we dont have to look up
392          * the full rbtree:
393          */
394         th = machine->last_match;
395         if (th != NULL) {
396                 if (th->tid == tid) {
397                         machine__update_thread_pid(machine, th, pid);
398                         return thread__get(th);
399                 }
400
401                 machine->last_match = NULL;
402         }
403
404         while (*p != NULL) {
405                 parent = *p;
406                 th = rb_entry(parent, struct thread, rb_node);
407
408                 if (th->tid == tid) {
409                         machine->last_match = th;
410                         machine__update_thread_pid(machine, th, pid);
411                         return thread__get(th);
412                 }
413
414                 if (tid < th->tid)
415                         p = &(*p)->rb_left;
416                 else
417                         p = &(*p)->rb_right;
418         }
419
420         if (!create)
421                 return NULL;
422
423         th = thread__new(pid, tid);
424         if (th != NULL) {
425                 rb_link_node(&th->rb_node, parent, p);
426                 rb_insert_color(&th->rb_node, &machine->threads);
427
428                 /*
429                  * We have to initialize map_groups separately
430                  * after rb tree is updated.
431                  *
432                  * The reason is that we call machine__findnew_thread
433                  * within thread__init_map_groups to find the thread
434                  * leader and that would screwed the rb tree.
435                  */
436                 if (thread__init_map_groups(th, machine)) {
437                         rb_erase_init(&th->rb_node, &machine->threads);
438                         RB_CLEAR_NODE(&th->rb_node);
439                         thread__put(th);
440                         return NULL;
441                 }
442                 /*
443                  * It is now in the rbtree, get a ref
444                  */
445                 thread__get(th);
446                 machine->last_match = th;
447                 ++machine->nr_threads;
448         }
449
450         return th;
451 }
452
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455         return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459                                        pid_t tid)
460 {
461         struct thread *th;
462
463         pthread_rwlock_wrlock(&machine->threads_lock);
464         th = __machine__findnew_thread(machine, pid, tid);
465         pthread_rwlock_unlock(&machine->threads_lock);
466         return th;
467 }
468
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470                                     pid_t tid)
471 {
472         struct thread *th;
473         pthread_rwlock_rdlock(&machine->threads_lock);
474         th =  ____machine__findnew_thread(machine, pid, tid, false);
475         pthread_rwlock_unlock(&machine->threads_lock);
476         return th;
477 }
478
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480                                        struct thread *thread)
481 {
482         if (machine->comm_exec)
483                 return thread__exec_comm(thread);
484         else
485                 return thread__comm(thread);
486 }
487
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489                                 struct perf_sample *sample)
490 {
491         struct thread *thread = machine__findnew_thread(machine,
492                                                         event->comm.pid,
493                                                         event->comm.tid);
494         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495         int err = 0;
496
497         if (exec)
498                 machine->comm_exec = true;
499
500         if (dump_trace)
501                 perf_event__fprintf_comm(event, stdout);
502
503         if (thread == NULL ||
504             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506                 err = -1;
507         }
508
509         thread__put(thread);
510
511         return err;
512 }
513
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515                                       union perf_event *event,
516                                       struct perf_sample *sample __maybe_unused)
517 {
518         struct thread *thread = machine__findnew_thread(machine,
519                                                         event->namespaces.pid,
520                                                         event->namespaces.tid);
521         int err = 0;
522
523         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524                   "\nWARNING: kernel seems to support more namespaces than perf"
525                   " tool.\nTry updating the perf tool..\n\n");
526
527         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528                   "\nWARNING: perf tool seems to support more namespaces than"
529                   " the kernel.\nTry updating the kernel..\n\n");
530
531         if (dump_trace)
532                 perf_event__fprintf_namespaces(event, stdout);
533
534         if (thread == NULL ||
535             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537                 err = -1;
538         }
539
540         thread__put(thread);
541
542         return err;
543 }
544
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549                     event->lost.id, event->lost.lost);
550         return 0;
551 }
552
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554                                         union perf_event *event, struct perf_sample *sample)
555 {
556         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557                     sample->id, event->lost_samples.lost);
558         return 0;
559 }
560
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562                                                struct kmod_path *m,
563                                                const char *filename)
564 {
565         struct dso *dso;
566
567         pthread_rwlock_wrlock(&machine->dsos.lock);
568
569         dso = __dsos__find(&machine->dsos, m->name, true);
570         if (!dso) {
571                 dso = __dsos__addnew(&machine->dsos, m->name);
572                 if (dso == NULL)
573                         goto out_unlock;
574
575                 if (machine__is_host(machine))
576                         dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
577                 else
578                         dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
579
580                 /* _KMODULE_COMP should be next to _KMODULE */
581                 if (m->kmod && m->comp)
582                         dso->symtab_type++;
583
584                 dso__set_short_name(dso, strdup(m->name), true);
585                 dso__set_long_name(dso, strdup(filename), true);
586         }
587
588         dso__get(dso);
589 out_unlock:
590         pthread_rwlock_unlock(&machine->dsos.lock);
591         return dso;
592 }
593
594 int machine__process_aux_event(struct machine *machine __maybe_unused,
595                                union perf_event *event)
596 {
597         if (dump_trace)
598                 perf_event__fprintf_aux(event, stdout);
599         return 0;
600 }
601
602 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
603                                         union perf_event *event)
604 {
605         if (dump_trace)
606                 perf_event__fprintf_itrace_start(event, stdout);
607         return 0;
608 }
609
610 int machine__process_switch_event(struct machine *machine __maybe_unused,
611                                   union perf_event *event)
612 {
613         if (dump_trace)
614                 perf_event__fprintf_switch(event, stdout);
615         return 0;
616 }
617
618 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
619 {
620         const char *dup_filename;
621
622         if (!filename || !dso || !dso->long_name)
623                 return;
624         if (dso->long_name[0] != '[')
625                 return;
626         if (!strchr(filename, '/'))
627                 return;
628
629         dup_filename = strdup(filename);
630         if (!dup_filename)
631                 return;
632
633         dso__set_long_name(dso, dup_filename, true);
634 }
635
636 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
637                                         const char *filename)
638 {
639         struct map *map = NULL;
640         struct dso *dso = NULL;
641         struct kmod_path m;
642
643         if (kmod_path__parse_name(&m, filename))
644                 return NULL;
645
646         map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
647                                        m.name);
648         if (map) {
649                 /*
650                  * If the map's dso is an offline module, give dso__load()
651                  * a chance to find the file path of that module by fixing
652                  * long_name.
653                  */
654                 dso__adjust_kmod_long_name(map->dso, filename);
655                 goto out;
656         }
657
658         dso = machine__findnew_module_dso(machine, &m, filename);
659         if (dso == NULL)
660                 goto out;
661
662         map = map__new2(start, dso, MAP__FUNCTION);
663         if (map == NULL)
664                 goto out;
665
666         map_groups__insert(&machine->kmaps, map);
667
668         /* Put the map here because map_groups__insert alread got it */
669         map__put(map);
670 out:
671         /* put the dso here, corresponding to  machine__findnew_module_dso */
672         dso__put(dso);
673         free(m.name);
674         return map;
675 }
676
677 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
678 {
679         struct rb_node *nd;
680         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
681
682         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
683                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
684                 ret += __dsos__fprintf(&pos->dsos.head, fp);
685         }
686
687         return ret;
688 }
689
690 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
691                                      bool (skip)(struct dso *dso, int parm), int parm)
692 {
693         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
694 }
695
696 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
697                                      bool (skip)(struct dso *dso, int parm), int parm)
698 {
699         struct rb_node *nd;
700         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
701
702         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
703                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
704                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
705         }
706         return ret;
707 }
708
709 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
710 {
711         int i;
712         size_t printed = 0;
713         struct dso *kdso = machine__kernel_map(machine)->dso;
714
715         if (kdso->has_build_id) {
716                 char filename[PATH_MAX];
717                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
718                         printed += fprintf(fp, "[0] %s\n", filename);
719         }
720
721         for (i = 0; i < vmlinux_path__nr_entries; ++i)
722                 printed += fprintf(fp, "[%d] %s\n",
723                                    i + kdso->has_build_id, vmlinux_path[i]);
724
725         return printed;
726 }
727
728 size_t machine__fprintf(struct machine *machine, FILE *fp)
729 {
730         size_t ret;
731         struct rb_node *nd;
732
733         pthread_rwlock_rdlock(&machine->threads_lock);
734
735         ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
736
737         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
738                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
739
740                 ret += thread__fprintf(pos, fp);
741         }
742
743         pthread_rwlock_unlock(&machine->threads_lock);
744
745         return ret;
746 }
747
748 static struct dso *machine__get_kernel(struct machine *machine)
749 {
750         const char *vmlinux_name = NULL;
751         struct dso *kernel;
752
753         if (machine__is_host(machine)) {
754                 vmlinux_name = symbol_conf.vmlinux_name;
755                 if (!vmlinux_name)
756                         vmlinux_name = DSO__NAME_KALLSYMS;
757
758                 kernel = machine__findnew_kernel(machine, vmlinux_name,
759                                                  "[kernel]", DSO_TYPE_KERNEL);
760         } else {
761                 char bf[PATH_MAX];
762
763                 if (machine__is_default_guest(machine))
764                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
765                 if (!vmlinux_name)
766                         vmlinux_name = machine__mmap_name(machine, bf,
767                                                           sizeof(bf));
768
769                 kernel = machine__findnew_kernel(machine, vmlinux_name,
770                                                  "[guest.kernel]",
771                                                  DSO_TYPE_GUEST_KERNEL);
772         }
773
774         if (kernel != NULL && (!kernel->has_build_id))
775                 dso__read_running_kernel_build_id(kernel, machine);
776
777         return kernel;
778 }
779
780 struct process_args {
781         u64 start;
782 };
783
784 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
785                                            size_t bufsz)
786 {
787         if (machine__is_default_guest(machine))
788                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
789         else
790                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
791 }
792
793 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
794
795 /* Figure out the start address of kernel map from /proc/kallsyms.
796  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
797  * symbol_name if it's not that important.
798  */
799 static int machine__get_running_kernel_start(struct machine *machine,
800                                              const char **symbol_name, u64 *start)
801 {
802         char filename[PATH_MAX];
803         int i, err = -1;
804         const char *name;
805         u64 addr = 0;
806
807         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
808
809         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
810                 return 0;
811
812         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
813                 err = kallsyms__get_function_start(filename, name, &addr);
814                 if (!err)
815                         break;
816         }
817
818         if (err)
819                 return -1;
820
821         if (symbol_name)
822                 *symbol_name = name;
823
824         *start = addr;
825         return 0;
826 }
827
828 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
829 {
830         int type;
831         u64 start = 0;
832
833         if (machine__get_running_kernel_start(machine, NULL, &start))
834                 return -1;
835
836         /* In case of renewal the kernel map, destroy previous one */
837         machine__destroy_kernel_maps(machine);
838
839         for (type = 0; type < MAP__NR_TYPES; ++type) {
840                 struct kmap *kmap;
841                 struct map *map;
842
843                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
844                 if (machine->vmlinux_maps[type] == NULL)
845                         return -1;
846
847                 machine->vmlinux_maps[type]->map_ip =
848                         machine->vmlinux_maps[type]->unmap_ip =
849                                 identity__map_ip;
850                 map = __machine__kernel_map(machine, type);
851                 kmap = map__kmap(map);
852                 if (!kmap)
853                         return -1;
854
855                 kmap->kmaps = &machine->kmaps;
856                 map_groups__insert(&machine->kmaps, map);
857         }
858
859         return 0;
860 }
861
862 void machine__destroy_kernel_maps(struct machine *machine)
863 {
864         int type;
865
866         for (type = 0; type < MAP__NR_TYPES; ++type) {
867                 struct kmap *kmap;
868                 struct map *map = __machine__kernel_map(machine, type);
869
870                 if (map == NULL)
871                         continue;
872
873                 kmap = map__kmap(map);
874                 map_groups__remove(&machine->kmaps, map);
875                 if (kmap && kmap->ref_reloc_sym) {
876                         /*
877                          * ref_reloc_sym is shared among all maps, so free just
878                          * on one of them.
879                          */
880                         if (type == MAP__FUNCTION) {
881                                 zfree((char **)&kmap->ref_reloc_sym->name);
882                                 zfree(&kmap->ref_reloc_sym);
883                         } else
884                                 kmap->ref_reloc_sym = NULL;
885                 }
886
887                 map__put(machine->vmlinux_maps[type]);
888                 machine->vmlinux_maps[type] = NULL;
889         }
890 }
891
892 int machines__create_guest_kernel_maps(struct machines *machines)
893 {
894         int ret = 0;
895         struct dirent **namelist = NULL;
896         int i, items = 0;
897         char path[PATH_MAX];
898         pid_t pid;
899         char *endp;
900
901         if (symbol_conf.default_guest_vmlinux_name ||
902             symbol_conf.default_guest_modules ||
903             symbol_conf.default_guest_kallsyms) {
904                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
905         }
906
907         if (symbol_conf.guestmount) {
908                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
909                 if (items <= 0)
910                         return -ENOENT;
911                 for (i = 0; i < items; i++) {
912                         if (!isdigit(namelist[i]->d_name[0])) {
913                                 /* Filter out . and .. */
914                                 continue;
915                         }
916                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
917                         if ((*endp != '\0') ||
918                             (endp == namelist[i]->d_name) ||
919                             (errno == ERANGE)) {
920                                 pr_debug("invalid directory (%s). Skipping.\n",
921                                          namelist[i]->d_name);
922                                 continue;
923                         }
924                         sprintf(path, "%s/%s/proc/kallsyms",
925                                 symbol_conf.guestmount,
926                                 namelist[i]->d_name);
927                         ret = access(path, R_OK);
928                         if (ret) {
929                                 pr_debug("Can't access file %s\n", path);
930                                 goto failure;
931                         }
932                         machines__create_kernel_maps(machines, pid);
933                 }
934 failure:
935                 free(namelist);
936         }
937
938         return ret;
939 }
940
941 void machines__destroy_kernel_maps(struct machines *machines)
942 {
943         struct rb_node *next = rb_first(&machines->guests);
944
945         machine__destroy_kernel_maps(&machines->host);
946
947         while (next) {
948                 struct machine *pos = rb_entry(next, struct machine, rb_node);
949
950                 next = rb_next(&pos->rb_node);
951                 rb_erase(&pos->rb_node, &machines->guests);
952                 machine__delete(pos);
953         }
954 }
955
956 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
957 {
958         struct machine *machine = machines__findnew(machines, pid);
959
960         if (machine == NULL)
961                 return -1;
962
963         return machine__create_kernel_maps(machine);
964 }
965
966 int __machine__load_kallsyms(struct machine *machine, const char *filename,
967                              enum map_type type, bool no_kcore)
968 {
969         struct map *map = machine__kernel_map(machine);
970         int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
971
972         if (ret > 0) {
973                 dso__set_loaded(map->dso, type);
974                 /*
975                  * Since /proc/kallsyms will have multiple sessions for the
976                  * kernel, with modules between them, fixup the end of all
977                  * sections.
978                  */
979                 __map_groups__fixup_end(&machine->kmaps, type);
980         }
981
982         return ret;
983 }
984
985 int machine__load_kallsyms(struct machine *machine, const char *filename,
986                            enum map_type type)
987 {
988         return __machine__load_kallsyms(machine, filename, type, false);
989 }
990
991 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
992 {
993         struct map *map = machine__kernel_map(machine);
994         int ret = dso__load_vmlinux_path(map->dso, map);
995
996         if (ret > 0)
997                 dso__set_loaded(map->dso, type);
998
999         return ret;
1000 }
1001
1002 static void map_groups__fixup_end(struct map_groups *mg)
1003 {
1004         int i;
1005         for (i = 0; i < MAP__NR_TYPES; ++i)
1006                 __map_groups__fixup_end(mg, i);
1007 }
1008
1009 static char *get_kernel_version(const char *root_dir)
1010 {
1011         char version[PATH_MAX];
1012         FILE *file;
1013         char *name, *tmp;
1014         const char *prefix = "Linux version ";
1015
1016         sprintf(version, "%s/proc/version", root_dir);
1017         file = fopen(version, "r");
1018         if (!file)
1019                 return NULL;
1020
1021         version[0] = '\0';
1022         tmp = fgets(version, sizeof(version), file);
1023         fclose(file);
1024
1025         name = strstr(version, prefix);
1026         if (!name)
1027                 return NULL;
1028         name += strlen(prefix);
1029         tmp = strchr(name, ' ');
1030         if (tmp)
1031                 *tmp = '\0';
1032
1033         return strdup(name);
1034 }
1035
1036 static bool is_kmod_dso(struct dso *dso)
1037 {
1038         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1039                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1040 }
1041
1042 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1043                                        struct kmod_path *m)
1044 {
1045         struct map *map;
1046         char *long_name;
1047
1048         map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1049         if (map == NULL)
1050                 return 0;
1051
1052         long_name = strdup(path);
1053         if (long_name == NULL)
1054                 return -ENOMEM;
1055
1056         dso__set_long_name(map->dso, long_name, true);
1057         dso__kernel_module_get_build_id(map->dso, "");
1058
1059         /*
1060          * Full name could reveal us kmod compression, so
1061          * we need to update the symtab_type if needed.
1062          */
1063         if (m->comp && is_kmod_dso(map->dso))
1064                 map->dso->symtab_type++;
1065
1066         return 0;
1067 }
1068
1069 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1070                                 const char *dir_name, int depth)
1071 {
1072         struct dirent *dent;
1073         DIR *dir = opendir(dir_name);
1074         int ret = 0;
1075
1076         if (!dir) {
1077                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1078                 return -1;
1079         }
1080
1081         while ((dent = readdir(dir)) != NULL) {
1082                 char path[PATH_MAX];
1083                 struct stat st;
1084
1085                 /*sshfs might return bad dent->d_type, so we have to stat*/
1086                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1087                 if (stat(path, &st))
1088                         continue;
1089
1090                 if (S_ISDIR(st.st_mode)) {
1091                         if (!strcmp(dent->d_name, ".") ||
1092                             !strcmp(dent->d_name, ".."))
1093                                 continue;
1094
1095                         /* Do not follow top-level source and build symlinks */
1096                         if (depth == 0) {
1097                                 if (!strcmp(dent->d_name, "source") ||
1098                                     !strcmp(dent->d_name, "build"))
1099                                         continue;
1100                         }
1101
1102                         ret = map_groups__set_modules_path_dir(mg, path,
1103                                                                depth + 1);
1104                         if (ret < 0)
1105                                 goto out;
1106                 } else {
1107                         struct kmod_path m;
1108
1109                         ret = kmod_path__parse_name(&m, dent->d_name);
1110                         if (ret)
1111                                 goto out;
1112
1113                         if (m.kmod)
1114                                 ret = map_groups__set_module_path(mg, path, &m);
1115
1116                         free(m.name);
1117
1118                         if (ret)
1119                                 goto out;
1120                 }
1121         }
1122
1123 out:
1124         closedir(dir);
1125         return ret;
1126 }
1127
1128 static int machine__set_modules_path(struct machine *machine)
1129 {
1130         char *version;
1131         char modules_path[PATH_MAX];
1132
1133         version = get_kernel_version(machine->root_dir);
1134         if (!version)
1135                 return -1;
1136
1137         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1138                  machine->root_dir, version);
1139         free(version);
1140
1141         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1142 }
1143 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1144                                 const char *name __maybe_unused)
1145 {
1146         return 0;
1147 }
1148
1149 static int machine__create_module(void *arg, const char *name, u64 start)
1150 {
1151         struct machine *machine = arg;
1152         struct map *map;
1153
1154         if (arch__fix_module_text_start(&start, name) < 0)
1155                 return -1;
1156
1157         map = machine__findnew_module_map(machine, start, name);
1158         if (map == NULL)
1159                 return -1;
1160
1161         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1162
1163         return 0;
1164 }
1165
1166 static int machine__create_modules(struct machine *machine)
1167 {
1168         const char *modules;
1169         char path[PATH_MAX];
1170
1171         if (machine__is_default_guest(machine)) {
1172                 modules = symbol_conf.default_guest_modules;
1173         } else {
1174                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1175                 modules = path;
1176         }
1177
1178         if (symbol__restricted_filename(modules, "/proc/modules"))
1179                 return -1;
1180
1181         if (modules__parse(modules, machine, machine__create_module))
1182                 return -1;
1183
1184         if (!machine__set_modules_path(machine))
1185                 return 0;
1186
1187         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1188
1189         return 0;
1190 }
1191
1192 int machine__create_kernel_maps(struct machine *machine)
1193 {
1194         struct dso *kernel = machine__get_kernel(machine);
1195         const char *name = NULL;
1196         u64 addr = 0;
1197         int ret;
1198
1199         if (kernel == NULL)
1200                 return -1;
1201
1202         ret = __machine__create_kernel_maps(machine, kernel);
1203         dso__put(kernel);
1204         if (ret < 0)
1205                 return -1;
1206
1207         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1208                 if (machine__is_host(machine))
1209                         pr_debug("Problems creating module maps, "
1210                                  "continuing anyway...\n");
1211                 else
1212                         pr_debug("Problems creating module maps for guest %d, "
1213                                  "continuing anyway...\n", machine->pid);
1214         }
1215
1216         /*
1217          * Now that we have all the maps created, just set the ->end of them:
1218          */
1219         map_groups__fixup_end(&machine->kmaps);
1220
1221         if (machine__get_running_kernel_start(machine, &name, &addr)) {
1222         } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1223                 machine__destroy_kernel_maps(machine);
1224                 return -1;
1225         }
1226
1227         return 0;
1228 }
1229
1230 static void machine__set_kernel_mmap_len(struct machine *machine,
1231                                          union perf_event *event)
1232 {
1233         int i;
1234
1235         for (i = 0; i < MAP__NR_TYPES; i++) {
1236                 machine->vmlinux_maps[i]->start = event->mmap.start;
1237                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1238                                                    event->mmap.len);
1239                 /*
1240                  * Be a bit paranoid here, some perf.data file came with
1241                  * a zero sized synthesized MMAP event for the kernel.
1242                  */
1243                 if (machine->vmlinux_maps[i]->end == 0)
1244                         machine->vmlinux_maps[i]->end = ~0ULL;
1245         }
1246 }
1247
1248 static bool machine__uses_kcore(struct machine *machine)
1249 {
1250         struct dso *dso;
1251
1252         list_for_each_entry(dso, &machine->dsos.head, node) {
1253                 if (dso__is_kcore(dso))
1254                         return true;
1255         }
1256
1257         return false;
1258 }
1259
1260 static int machine__process_kernel_mmap_event(struct machine *machine,
1261                                               union perf_event *event)
1262 {
1263         struct map *map;
1264         char kmmap_prefix[PATH_MAX];
1265         enum dso_kernel_type kernel_type;
1266         bool is_kernel_mmap;
1267
1268         /* If we have maps from kcore then we do not need or want any others */
1269         if (machine__uses_kcore(machine))
1270                 return 0;
1271
1272         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1273         if (machine__is_host(machine))
1274                 kernel_type = DSO_TYPE_KERNEL;
1275         else
1276                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1277
1278         is_kernel_mmap = memcmp(event->mmap.filename,
1279                                 kmmap_prefix,
1280                                 strlen(kmmap_prefix) - 1) == 0;
1281         if (event->mmap.filename[0] == '/' ||
1282             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1283                 map = machine__findnew_module_map(machine, event->mmap.start,
1284                                                   event->mmap.filename);
1285                 if (map == NULL)
1286                         goto out_problem;
1287
1288                 map->end = map->start + event->mmap.len;
1289         } else if (is_kernel_mmap) {
1290                 const char *symbol_name = (event->mmap.filename +
1291                                 strlen(kmmap_prefix));
1292                 /*
1293                  * Should be there already, from the build-id table in
1294                  * the header.
1295                  */
1296                 struct dso *kernel = NULL;
1297                 struct dso *dso;
1298
1299                 pthread_rwlock_rdlock(&machine->dsos.lock);
1300
1301                 list_for_each_entry(dso, &machine->dsos.head, node) {
1302
1303                         /*
1304                          * The cpumode passed to is_kernel_module is not the
1305                          * cpumode of *this* event. If we insist on passing
1306                          * correct cpumode to is_kernel_module, we should
1307                          * record the cpumode when we adding this dso to the
1308                          * linked list.
1309                          *
1310                          * However we don't really need passing correct
1311                          * cpumode.  We know the correct cpumode must be kernel
1312                          * mode (if not, we should not link it onto kernel_dsos
1313                          * list).
1314                          *
1315                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1316                          * is_kernel_module() treats it as a kernel cpumode.
1317                          */
1318
1319                         if (!dso->kernel ||
1320                             is_kernel_module(dso->long_name,
1321                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1322                                 continue;
1323
1324
1325                         kernel = dso;
1326                         break;
1327                 }
1328
1329                 pthread_rwlock_unlock(&machine->dsos.lock);
1330
1331                 if (kernel == NULL)
1332                         kernel = machine__findnew_dso(machine, kmmap_prefix);
1333                 if (kernel == NULL)
1334                         goto out_problem;
1335
1336                 kernel->kernel = kernel_type;
1337                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1338                         dso__put(kernel);
1339                         goto out_problem;
1340                 }
1341
1342                 if (strstr(kernel->long_name, "vmlinux"))
1343                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1344
1345                 machine__set_kernel_mmap_len(machine, event);
1346
1347                 /*
1348                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1349                  * symbol. Effectively having zero here means that at record
1350                  * time /proc/sys/kernel/kptr_restrict was non zero.
1351                  */
1352                 if (event->mmap.pgoff != 0) {
1353                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1354                                                          symbol_name,
1355                                                          event->mmap.pgoff);
1356                 }
1357
1358                 if (machine__is_default_guest(machine)) {
1359                         /*
1360                          * preload dso of guest kernel and modules
1361                          */
1362                         dso__load(kernel, machine__kernel_map(machine));
1363                 }
1364         }
1365         return 0;
1366 out_problem:
1367         return -1;
1368 }
1369
1370 int machine__process_mmap2_event(struct machine *machine,
1371                                  union perf_event *event,
1372                                  struct perf_sample *sample)
1373 {
1374         struct thread *thread;
1375         struct map *map;
1376         enum map_type type;
1377         int ret = 0;
1378
1379         if (dump_trace)
1380                 perf_event__fprintf_mmap2(event, stdout);
1381
1382         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1383             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1384                 ret = machine__process_kernel_mmap_event(machine, event);
1385                 if (ret < 0)
1386                         goto out_problem;
1387                 return 0;
1388         }
1389
1390         thread = machine__findnew_thread(machine, event->mmap2.pid,
1391                                         event->mmap2.tid);
1392         if (thread == NULL)
1393                 goto out_problem;
1394
1395         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1396                 type = MAP__VARIABLE;
1397         else
1398                 type = MAP__FUNCTION;
1399
1400         map = map__new(machine, event->mmap2.start,
1401                         event->mmap2.len, event->mmap2.pgoff,
1402                         event->mmap2.pid, event->mmap2.maj,
1403                         event->mmap2.min, event->mmap2.ino,
1404                         event->mmap2.ino_generation,
1405                         event->mmap2.prot,
1406                         event->mmap2.flags,
1407                         event->mmap2.filename, type, thread);
1408
1409         if (map == NULL)
1410                 goto out_problem_map;
1411
1412         ret = thread__insert_map(thread, map);
1413         if (ret)
1414                 goto out_problem_insert;
1415
1416         thread__put(thread);
1417         map__put(map);
1418         return 0;
1419
1420 out_problem_insert:
1421         map__put(map);
1422 out_problem_map:
1423         thread__put(thread);
1424 out_problem:
1425         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1426         return 0;
1427 }
1428
1429 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1430                                 struct perf_sample *sample)
1431 {
1432         struct thread *thread;
1433         struct map *map;
1434         enum map_type type;
1435         int ret = 0;
1436
1437         if (dump_trace)
1438                 perf_event__fprintf_mmap(event, stdout);
1439
1440         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1441             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1442                 ret = machine__process_kernel_mmap_event(machine, event);
1443                 if (ret < 0)
1444                         goto out_problem;
1445                 return 0;
1446         }
1447
1448         thread = machine__findnew_thread(machine, event->mmap.pid,
1449                                          event->mmap.tid);
1450         if (thread == NULL)
1451                 goto out_problem;
1452
1453         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1454                 type = MAP__VARIABLE;
1455         else
1456                 type = MAP__FUNCTION;
1457
1458         map = map__new(machine, event->mmap.start,
1459                         event->mmap.len, event->mmap.pgoff,
1460                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1461                         event->mmap.filename,
1462                         type, thread);
1463
1464         if (map == NULL)
1465                 goto out_problem_map;
1466
1467         ret = thread__insert_map(thread, map);
1468         if (ret)
1469                 goto out_problem_insert;
1470
1471         thread__put(thread);
1472         map__put(map);
1473         return 0;
1474
1475 out_problem_insert:
1476         map__put(map);
1477 out_problem_map:
1478         thread__put(thread);
1479 out_problem:
1480         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1481         return 0;
1482 }
1483
1484 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1485 {
1486         if (machine->last_match == th)
1487                 machine->last_match = NULL;
1488
1489         BUG_ON(refcount_read(&th->refcnt) == 0);
1490         if (lock)
1491                 pthread_rwlock_wrlock(&machine->threads_lock);
1492         rb_erase_init(&th->rb_node, &machine->threads);
1493         RB_CLEAR_NODE(&th->rb_node);
1494         --machine->nr_threads;
1495         /*
1496          * Move it first to the dead_threads list, then drop the reference,
1497          * if this is the last reference, then the thread__delete destructor
1498          * will be called and we will remove it from the dead_threads list.
1499          */
1500         list_add_tail(&th->node, &machine->dead_threads);
1501         if (lock)
1502                 pthread_rwlock_unlock(&machine->threads_lock);
1503         thread__put(th);
1504 }
1505
1506 void machine__remove_thread(struct machine *machine, struct thread *th)
1507 {
1508         return __machine__remove_thread(machine, th, true);
1509 }
1510
1511 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1512                                 struct perf_sample *sample)
1513 {
1514         struct thread *thread = machine__find_thread(machine,
1515                                                      event->fork.pid,
1516                                                      event->fork.tid);
1517         struct thread *parent = machine__findnew_thread(machine,
1518                                                         event->fork.ppid,
1519                                                         event->fork.ptid);
1520         int err = 0;
1521
1522         if (dump_trace)
1523                 perf_event__fprintf_task(event, stdout);
1524
1525         /*
1526          * There may be an existing thread that is not actually the parent,
1527          * either because we are processing events out of order, or because the
1528          * (fork) event that would have removed the thread was lost. Assume the
1529          * latter case and continue on as best we can.
1530          */
1531         if (parent->pid_ != (pid_t)event->fork.ppid) {
1532                 dump_printf("removing erroneous parent thread %d/%d\n",
1533                             parent->pid_, parent->tid);
1534                 machine__remove_thread(machine, parent);
1535                 thread__put(parent);
1536                 parent = machine__findnew_thread(machine, event->fork.ppid,
1537                                                  event->fork.ptid);
1538         }
1539
1540         /* if a thread currently exists for the thread id remove it */
1541         if (thread != NULL) {
1542                 machine__remove_thread(machine, thread);
1543                 thread__put(thread);
1544         }
1545
1546         thread = machine__findnew_thread(machine, event->fork.pid,
1547                                          event->fork.tid);
1548
1549         if (thread == NULL || parent == NULL ||
1550             thread__fork(thread, parent, sample->time) < 0) {
1551                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1552                 err = -1;
1553         }
1554         thread__put(thread);
1555         thread__put(parent);
1556
1557         return err;
1558 }
1559
1560 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1561                                 struct perf_sample *sample __maybe_unused)
1562 {
1563         struct thread *thread = machine__find_thread(machine,
1564                                                      event->fork.pid,
1565                                                      event->fork.tid);
1566
1567         if (dump_trace)
1568                 perf_event__fprintf_task(event, stdout);
1569
1570         if (thread != NULL) {
1571                 thread__exited(thread);
1572                 thread__put(thread);
1573         }
1574
1575         return 0;
1576 }
1577
1578 int machine__process_event(struct machine *machine, union perf_event *event,
1579                            struct perf_sample *sample)
1580 {
1581         int ret;
1582
1583         switch (event->header.type) {
1584         case PERF_RECORD_COMM:
1585                 ret = machine__process_comm_event(machine, event, sample); break;
1586         case PERF_RECORD_MMAP:
1587                 ret = machine__process_mmap_event(machine, event, sample); break;
1588         case PERF_RECORD_NAMESPACES:
1589                 ret = machine__process_namespaces_event(machine, event, sample); break;
1590         case PERF_RECORD_MMAP2:
1591                 ret = machine__process_mmap2_event(machine, event, sample); break;
1592         case PERF_RECORD_FORK:
1593                 ret = machine__process_fork_event(machine, event, sample); break;
1594         case PERF_RECORD_EXIT:
1595                 ret = machine__process_exit_event(machine, event, sample); break;
1596         case PERF_RECORD_LOST:
1597                 ret = machine__process_lost_event(machine, event, sample); break;
1598         case PERF_RECORD_AUX:
1599                 ret = machine__process_aux_event(machine, event); break;
1600         case PERF_RECORD_ITRACE_START:
1601                 ret = machine__process_itrace_start_event(machine, event); break;
1602         case PERF_RECORD_LOST_SAMPLES:
1603                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1604         case PERF_RECORD_SWITCH:
1605         case PERF_RECORD_SWITCH_CPU_WIDE:
1606                 ret = machine__process_switch_event(machine, event); break;
1607         default:
1608                 ret = -1;
1609                 break;
1610         }
1611
1612         return ret;
1613 }
1614
1615 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1616 {
1617         if (!regexec(regex, sym->name, 0, NULL, 0))
1618                 return 1;
1619         return 0;
1620 }
1621
1622 static void ip__resolve_ams(struct thread *thread,
1623                             struct addr_map_symbol *ams,
1624                             u64 ip)
1625 {
1626         struct addr_location al;
1627
1628         memset(&al, 0, sizeof(al));
1629         /*
1630          * We cannot use the header.misc hint to determine whether a
1631          * branch stack address is user, kernel, guest, hypervisor.
1632          * Branches may straddle the kernel/user/hypervisor boundaries.
1633          * Thus, we have to try consecutively until we find a match
1634          * or else, the symbol is unknown
1635          */
1636         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1637
1638         ams->addr = ip;
1639         ams->al_addr = al.addr;
1640         ams->sym = al.sym;
1641         ams->map = al.map;
1642 }
1643
1644 static void ip__resolve_data(struct thread *thread,
1645                              u8 m, struct addr_map_symbol *ams, u64 addr)
1646 {
1647         struct addr_location al;
1648
1649         memset(&al, 0, sizeof(al));
1650
1651         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1652         if (al.map == NULL) {
1653                 /*
1654                  * some shared data regions have execute bit set which puts
1655                  * their mapping in the MAP__FUNCTION type array.
1656                  * Check there as a fallback option before dropping the sample.
1657                  */
1658                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1659         }
1660
1661         ams->addr = addr;
1662         ams->al_addr = al.addr;
1663         ams->sym = al.sym;
1664         ams->map = al.map;
1665 }
1666
1667 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1668                                      struct addr_location *al)
1669 {
1670         struct mem_info *mi = zalloc(sizeof(*mi));
1671
1672         if (!mi)
1673                 return NULL;
1674
1675         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1676         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1677         mi->data_src.val = sample->data_src;
1678
1679         return mi;
1680 }
1681
1682 static int add_callchain_ip(struct thread *thread,
1683                             struct callchain_cursor *cursor,
1684                             struct symbol **parent,
1685                             struct addr_location *root_al,
1686                             u8 *cpumode,
1687                             u64 ip,
1688                             bool branch,
1689                             struct branch_flags *flags,
1690                             int nr_loop_iter,
1691                             int samples)
1692 {
1693         struct addr_location al;
1694
1695         al.filtered = 0;
1696         al.sym = NULL;
1697         if (!cpumode) {
1698                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1699                                                    ip, &al);
1700         } else {
1701                 if (ip >= PERF_CONTEXT_MAX) {
1702                         switch (ip) {
1703                         case PERF_CONTEXT_HV:
1704                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1705                                 break;
1706                         case PERF_CONTEXT_KERNEL:
1707                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1708                                 break;
1709                         case PERF_CONTEXT_USER:
1710                                 *cpumode = PERF_RECORD_MISC_USER;
1711                                 break;
1712                         default:
1713                                 pr_debug("invalid callchain context: "
1714                                          "%"PRId64"\n", (s64) ip);
1715                                 /*
1716                                  * It seems the callchain is corrupted.
1717                                  * Discard all.
1718                                  */
1719                                 callchain_cursor_reset(cursor);
1720                                 return 1;
1721                         }
1722                         return 0;
1723                 }
1724                 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1725                                            ip, &al);
1726         }
1727
1728         if (al.sym != NULL) {
1729                 if (perf_hpp_list.parent && !*parent &&
1730                     symbol__match_regex(al.sym, &parent_regex))
1731                         *parent = al.sym;
1732                 else if (have_ignore_callees && root_al &&
1733                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1734                         /* Treat this symbol as the root,
1735                            forgetting its callees. */
1736                         *root_al = al;
1737                         callchain_cursor_reset(cursor);
1738                 }
1739         }
1740
1741         if (symbol_conf.hide_unresolved && al.sym == NULL)
1742                 return 0;
1743         return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1744                                        branch, flags, nr_loop_iter, samples);
1745 }
1746
1747 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1748                                            struct addr_location *al)
1749 {
1750         unsigned int i;
1751         const struct branch_stack *bs = sample->branch_stack;
1752         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1753
1754         if (!bi)
1755                 return NULL;
1756
1757         for (i = 0; i < bs->nr; i++) {
1758                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1759                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1760                 bi[i].flags = bs->entries[i].flags;
1761         }
1762         return bi;
1763 }
1764
1765 #define CHASHSZ 127
1766 #define CHASHBITS 7
1767 #define NO_ENTRY 0xff
1768
1769 #define PERF_MAX_BRANCH_DEPTH 127
1770
1771 /* Remove loops. */
1772 static int remove_loops(struct branch_entry *l, int nr)
1773 {
1774         int i, j, off;
1775         unsigned char chash[CHASHSZ];
1776
1777         memset(chash, NO_ENTRY, sizeof(chash));
1778
1779         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1780
1781         for (i = 0; i < nr; i++) {
1782                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1783
1784                 /* no collision handling for now */
1785                 if (chash[h] == NO_ENTRY) {
1786                         chash[h] = i;
1787                 } else if (l[chash[h]].from == l[i].from) {
1788                         bool is_loop = true;
1789                         /* check if it is a real loop */
1790                         off = 0;
1791                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1792                                 if (l[j].from != l[i + off].from) {
1793                                         is_loop = false;
1794                                         break;
1795                                 }
1796                         if (is_loop) {
1797                                 memmove(l + i, l + i + off,
1798                                         (nr - (i + off)) * sizeof(*l));
1799                                 nr -= off;
1800                         }
1801                 }
1802         }
1803         return nr;
1804 }
1805
1806 /*
1807  * Recolve LBR callstack chain sample
1808  * Return:
1809  * 1 on success get LBR callchain information
1810  * 0 no available LBR callchain information, should try fp
1811  * negative error code on other errors.
1812  */
1813 static int resolve_lbr_callchain_sample(struct thread *thread,
1814                                         struct callchain_cursor *cursor,
1815                                         struct perf_sample *sample,
1816                                         struct symbol **parent,
1817                                         struct addr_location *root_al,
1818                                         int max_stack)
1819 {
1820         struct ip_callchain *chain = sample->callchain;
1821         int chain_nr = min(max_stack, (int)chain->nr), i;
1822         u8 cpumode = PERF_RECORD_MISC_USER;
1823         u64 ip;
1824
1825         for (i = 0; i < chain_nr; i++) {
1826                 if (chain->ips[i] == PERF_CONTEXT_USER)
1827                         break;
1828         }
1829
1830         /* LBR only affects the user callchain */
1831         if (i != chain_nr) {
1832                 struct branch_stack *lbr_stack = sample->branch_stack;
1833                 int lbr_nr = lbr_stack->nr, j, k;
1834                 bool branch;
1835                 struct branch_flags *flags;
1836                 /*
1837                  * LBR callstack can only get user call chain.
1838                  * The mix_chain_nr is kernel call chain
1839                  * number plus LBR user call chain number.
1840                  * i is kernel call chain number,
1841                  * 1 is PERF_CONTEXT_USER,
1842                  * lbr_nr + 1 is the user call chain number.
1843                  * For details, please refer to the comments
1844                  * in callchain__printf
1845                  */
1846                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1847
1848                 for (j = 0; j < mix_chain_nr; j++) {
1849                         int err;
1850                         branch = false;
1851                         flags = NULL;
1852
1853                         if (callchain_param.order == ORDER_CALLEE) {
1854                                 if (j < i + 1)
1855                                         ip = chain->ips[j];
1856                                 else if (j > i + 1) {
1857                                         k = j - i - 2;
1858                                         ip = lbr_stack->entries[k].from;
1859                                         branch = true;
1860                                         flags = &lbr_stack->entries[k].flags;
1861                                 } else {
1862                                         ip = lbr_stack->entries[0].to;
1863                                         branch = true;
1864                                         flags = &lbr_stack->entries[0].flags;
1865                                 }
1866                         } else {
1867                                 if (j < lbr_nr) {
1868                                         k = lbr_nr - j - 1;
1869                                         ip = lbr_stack->entries[k].from;
1870                                         branch = true;
1871                                         flags = &lbr_stack->entries[k].flags;
1872                                 }
1873                                 else if (j > lbr_nr)
1874                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1875                                 else {
1876                                         ip = lbr_stack->entries[0].to;
1877                                         branch = true;
1878                                         flags = &lbr_stack->entries[0].flags;
1879                                 }
1880                         }
1881
1882                         err = add_callchain_ip(thread, cursor, parent,
1883                                                root_al, &cpumode, ip,
1884                                                branch, flags, 0, 0);
1885                         if (err)
1886                                 return (err < 0) ? err : 0;
1887                 }
1888                 return 1;
1889         }
1890
1891         return 0;
1892 }
1893
1894 static int thread__resolve_callchain_sample(struct thread *thread,
1895                                             struct callchain_cursor *cursor,
1896                                             struct perf_evsel *evsel,
1897                                             struct perf_sample *sample,
1898                                             struct symbol **parent,
1899                                             struct addr_location *root_al,
1900                                             int max_stack)
1901 {
1902         struct branch_stack *branch = sample->branch_stack;
1903         struct ip_callchain *chain = sample->callchain;
1904         int chain_nr = chain->nr;
1905         u8 cpumode = PERF_RECORD_MISC_USER;
1906         int i, j, err, nr_entries;
1907         int skip_idx = -1;
1908         int first_call = 0;
1909         int nr_loop_iter;
1910
1911         if (perf_evsel__has_branch_callstack(evsel)) {
1912                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1913                                                    root_al, max_stack);
1914                 if (err)
1915                         return (err < 0) ? err : 0;
1916         }
1917
1918         /*
1919          * Based on DWARF debug information, some architectures skip
1920          * a callchain entry saved by the kernel.
1921          */
1922         skip_idx = arch_skip_callchain_idx(thread, chain);
1923
1924         /*
1925          * Add branches to call stack for easier browsing. This gives
1926          * more context for a sample than just the callers.
1927          *
1928          * This uses individual histograms of paths compared to the
1929          * aggregated histograms the normal LBR mode uses.
1930          *
1931          * Limitations for now:
1932          * - No extra filters
1933          * - No annotations (should annotate somehow)
1934          */
1935
1936         if (branch && callchain_param.branch_callstack) {
1937                 int nr = min(max_stack, (int)branch->nr);
1938                 struct branch_entry be[nr];
1939
1940                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1941                         pr_warning("corrupted branch chain. skipping...\n");
1942                         goto check_calls;
1943                 }
1944
1945                 for (i = 0; i < nr; i++) {
1946                         if (callchain_param.order == ORDER_CALLEE) {
1947                                 be[i] = branch->entries[i];
1948                                 /*
1949                                  * Check for overlap into the callchain.
1950                                  * The return address is one off compared to
1951                                  * the branch entry. To adjust for this
1952                                  * assume the calling instruction is not longer
1953                                  * than 8 bytes.
1954                                  */
1955                                 if (i == skip_idx ||
1956                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1957                                         first_call++;
1958                                 else if (be[i].from < chain->ips[first_call] &&
1959                                     be[i].from >= chain->ips[first_call] - 8)
1960                                         first_call++;
1961                         } else
1962                                 be[i] = branch->entries[branch->nr - i - 1];
1963                 }
1964
1965                 nr_loop_iter = nr;
1966                 nr = remove_loops(be, nr);
1967
1968                 /*
1969                  * Get the number of iterations.
1970                  * It's only approximation, but good enough in practice.
1971                  */
1972                 if (nr_loop_iter > nr)
1973                         nr_loop_iter = nr_loop_iter - nr + 1;
1974                 else
1975                         nr_loop_iter = 0;
1976
1977                 for (i = 0; i < nr; i++) {
1978                         if (i == nr - 1)
1979                                 err = add_callchain_ip(thread, cursor, parent,
1980                                                        root_al,
1981                                                        NULL, be[i].to,
1982                                                        true, &be[i].flags,
1983                                                        nr_loop_iter, 1);
1984                         else
1985                                 err = add_callchain_ip(thread, cursor, parent,
1986                                                        root_al,
1987                                                        NULL, be[i].to,
1988                                                        true, &be[i].flags,
1989                                                        0, 0);
1990
1991                         if (!err)
1992                                 err = add_callchain_ip(thread, cursor, parent, root_al,
1993                                                        NULL, be[i].from,
1994                                                        true, &be[i].flags,
1995                                                        0, 0);
1996                         if (err == -EINVAL)
1997                                 break;
1998                         if (err)
1999                                 return err;
2000                 }
2001                 chain_nr -= nr;
2002         }
2003
2004 check_calls:
2005         for (i = first_call, nr_entries = 0;
2006              i < chain_nr && nr_entries < max_stack; i++) {
2007                 u64 ip;
2008
2009                 if (callchain_param.order == ORDER_CALLEE)
2010                         j = i;
2011                 else
2012                         j = chain->nr - i - 1;
2013
2014 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2015                 if (j == skip_idx)
2016                         continue;
2017 #endif
2018                 ip = chain->ips[j];
2019
2020                 if (ip < PERF_CONTEXT_MAX)
2021                        ++nr_entries;
2022
2023                 err = add_callchain_ip(thread, cursor, parent,
2024                                        root_al, &cpumode, ip,
2025                                        false, NULL, 0, 0);
2026
2027                 if (err)
2028                         return (err < 0) ? err : 0;
2029         }
2030
2031         return 0;
2032 }
2033
2034 static int unwind_entry(struct unwind_entry *entry, void *arg)
2035 {
2036         struct callchain_cursor *cursor = arg;
2037
2038         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2039                 return 0;
2040         return callchain_cursor_append(cursor, entry->ip,
2041                                        entry->map, entry->sym,
2042                                        false, NULL, 0, 0);
2043 }
2044
2045 static int thread__resolve_callchain_unwind(struct thread *thread,
2046                                             struct callchain_cursor *cursor,
2047                                             struct perf_evsel *evsel,
2048                                             struct perf_sample *sample,
2049                                             int max_stack)
2050 {
2051         /* Can we do dwarf post unwind? */
2052         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2053               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2054                 return 0;
2055
2056         /* Bail out if nothing was captured. */
2057         if ((!sample->user_regs.regs) ||
2058             (!sample->user_stack.size))
2059                 return 0;
2060
2061         return unwind__get_entries(unwind_entry, cursor,
2062                                    thread, sample, max_stack);
2063 }
2064
2065 int thread__resolve_callchain(struct thread *thread,
2066                               struct callchain_cursor *cursor,
2067                               struct perf_evsel *evsel,
2068                               struct perf_sample *sample,
2069                               struct symbol **parent,
2070                               struct addr_location *root_al,
2071                               int max_stack)
2072 {
2073         int ret = 0;
2074
2075         callchain_cursor_reset(&callchain_cursor);
2076
2077         if (callchain_param.order == ORDER_CALLEE) {
2078                 ret = thread__resolve_callchain_sample(thread, cursor,
2079                                                        evsel, sample,
2080                                                        parent, root_al,
2081                                                        max_stack);
2082                 if (ret)
2083                         return ret;
2084                 ret = thread__resolve_callchain_unwind(thread, cursor,
2085                                                        evsel, sample,
2086                                                        max_stack);
2087         } else {
2088                 ret = thread__resolve_callchain_unwind(thread, cursor,
2089                                                        evsel, sample,
2090                                                        max_stack);
2091                 if (ret)
2092                         return ret;
2093                 ret = thread__resolve_callchain_sample(thread, cursor,
2094                                                        evsel, sample,
2095                                                        parent, root_al,
2096                                                        max_stack);
2097         }
2098
2099         return ret;
2100 }
2101
2102 int machine__for_each_thread(struct machine *machine,
2103                              int (*fn)(struct thread *thread, void *p),
2104                              void *priv)
2105 {
2106         struct rb_node *nd;
2107         struct thread *thread;
2108         int rc = 0;
2109
2110         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2111                 thread = rb_entry(nd, struct thread, rb_node);
2112                 rc = fn(thread, priv);
2113                 if (rc != 0)
2114                         return rc;
2115         }
2116
2117         list_for_each_entry(thread, &machine->dead_threads, node) {
2118                 rc = fn(thread, priv);
2119                 if (rc != 0)
2120                         return rc;
2121         }
2122         return rc;
2123 }
2124
2125 int machines__for_each_thread(struct machines *machines,
2126                               int (*fn)(struct thread *thread, void *p),
2127                               void *priv)
2128 {
2129         struct rb_node *nd;
2130         int rc = 0;
2131
2132         rc = machine__for_each_thread(&machines->host, fn, priv);
2133         if (rc != 0)
2134                 return rc;
2135
2136         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2137                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2138
2139                 rc = machine__for_each_thread(machine, fn, priv);
2140                 if (rc != 0)
2141                         return rc;
2142         }
2143         return rc;
2144 }
2145
2146 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2147                                   struct target *target, struct thread_map *threads,
2148                                   perf_event__handler_t process, bool data_mmap,
2149                                   unsigned int proc_map_timeout)
2150 {
2151         if (target__has_task(target))
2152                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2153         else if (target__has_cpu(target))
2154                 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2155         /* command specified */
2156         return 0;
2157 }
2158
2159 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2160 {
2161         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2162                 return -1;
2163
2164         return machine->current_tid[cpu];
2165 }
2166
2167 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2168                              pid_t tid)
2169 {
2170         struct thread *thread;
2171
2172         if (cpu < 0)
2173                 return -EINVAL;
2174
2175         if (!machine->current_tid) {
2176                 int i;
2177
2178                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2179                 if (!machine->current_tid)
2180                         return -ENOMEM;
2181                 for (i = 0; i < MAX_NR_CPUS; i++)
2182                         machine->current_tid[i] = -1;
2183         }
2184
2185         if (cpu >= MAX_NR_CPUS) {
2186                 pr_err("Requested CPU %d too large. ", cpu);
2187                 pr_err("Consider raising MAX_NR_CPUS\n");
2188                 return -EINVAL;
2189         }
2190
2191         machine->current_tid[cpu] = tid;
2192
2193         thread = machine__findnew_thread(machine, pid, tid);
2194         if (!thread)
2195                 return -ENOMEM;
2196
2197         thread->cpu = cpu;
2198         thread__put(thread);
2199
2200         return 0;
2201 }
2202
2203 int machine__get_kernel_start(struct machine *machine)
2204 {
2205         struct map *map = machine__kernel_map(machine);
2206         int err = 0;
2207
2208         /*
2209          * The only addresses above 2^63 are kernel addresses of a 64-bit
2210          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2211          * all addresses including kernel addresses are less than 2^32.  In
2212          * that case (32-bit system), if the kernel mapping is unknown, all
2213          * addresses will be assumed to be in user space - see
2214          * machine__kernel_ip().
2215          */
2216         machine->kernel_start = 1ULL << 63;
2217         if (map) {
2218                 err = map__load(map);
2219                 if (map->start)
2220                         machine->kernel_start = map->start;
2221         }
2222         return err;
2223 }
2224
2225 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2226 {
2227         return dsos__findnew(&machine->dsos, filename);
2228 }
2229
2230 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2231 {
2232         struct machine *machine = vmachine;
2233         struct map *map;
2234         struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2235
2236         if (sym == NULL)
2237                 return NULL;
2238
2239         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2240         *addrp = map->unmap_ip(map, sym->start);
2241         return sym->name;
2242 }