]> git.karo-electronics.de Git - mv-sheeva.git/blob - tools/perf/util/session.c
c989583141029d3a42c699766e9abd28fb87b39d
[mv-sheeva.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16         struct stat input_stat;
17
18         if (!strcmp(self->filename, "-")) {
19                 self->fd_pipe = true;
20                 self->fd = STDIN_FILENO;
21
22                 if (perf_header__read(self, self->fd) < 0)
23                         pr_err("incompatible file format");
24
25                 return 0;
26         }
27
28         self->fd = open(self->filename, O_RDONLY);
29         if (self->fd < 0) {
30                 int err = errno;
31
32                 pr_err("failed to open %s: %s", self->filename, strerror(err));
33                 if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34                         pr_err("  (try 'perf record' first)");
35                 pr_err("\n");
36                 return -errno;
37         }
38
39         if (fstat(self->fd, &input_stat) < 0)
40                 goto out_close;
41
42         if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43                 pr_err("file %s not owned by current user or root\n",
44                        self->filename);
45                 goto out_close;
46         }
47
48         if (!input_stat.st_size) {
49                 pr_info("zero-sized file (%s), nothing to do!\n",
50                         self->filename);
51                 goto out_close;
52         }
53
54         if (perf_header__read(self, self->fd) < 0) {
55                 pr_err("incompatible file format");
56                 goto out_close;
57         }
58
59         self->size = input_stat.st_size;
60         return 0;
61
62 out_close:
63         close(self->fd);
64         self->fd = -1;
65         return -1;
66 }
67
68 void perf_session__update_sample_type(struct perf_session *self)
69 {
70         self->sample_type = perf_header__sample_type(&self->header);
71 }
72
73 int perf_session__create_kernel_maps(struct perf_session *self)
74 {
75         int ret = machine__create_kernel_maps(&self->host_machine);
76
77         if (ret >= 0)
78                 ret = machines__create_guest_kernel_maps(&self->machines);
79         return ret;
80 }
81
82 static void perf_session__destroy_kernel_maps(struct perf_session *self)
83 {
84         machine__destroy_kernel_maps(&self->host_machine);
85         machines__destroy_guest_kernel_maps(&self->machines);
86 }
87
88 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
89 {
90         size_t len = filename ? strlen(filename) + 1 : 0;
91         struct perf_session *self = zalloc(sizeof(*self) + len);
92
93         if (self == NULL)
94                 goto out;
95
96         if (perf_header__init(&self->header) < 0)
97                 goto out_free;
98
99         memcpy(self->filename, filename, len);
100         self->threads = RB_ROOT;
101         INIT_LIST_HEAD(&self->dead_threads);
102         self->hists_tree = RB_ROOT;
103         self->last_match = NULL;
104         /*
105          * On 64bit we can mmap the data file in one go. No need for tiny mmap
106          * slices. On 32bit we use 32MB.
107          */
108 #if BITS_PER_LONG == 64
109         self->mmap_window = ULLONG_MAX;
110 #else
111         self->mmap_window = 32 * 1024 * 1024ULL;
112 #endif
113         self->machines = RB_ROOT;
114         self->repipe = repipe;
115         INIT_LIST_HEAD(&self->ordered_samples.samples);
116         machine__init(&self->host_machine, "", HOST_KERNEL_ID);
117
118         if (mode == O_RDONLY) {
119                 if (perf_session__open(self, force) < 0)
120                         goto out_delete;
121         } else if (mode == O_WRONLY) {
122                 /*
123                  * In O_RDONLY mode this will be performed when reading the
124                  * kernel MMAP event, in event__process_mmap().
125                  */
126                 if (perf_session__create_kernel_maps(self) < 0)
127                         goto out_delete;
128         }
129
130         perf_session__update_sample_type(self);
131 out:
132         return self;
133 out_free:
134         free(self);
135         return NULL;
136 out_delete:
137         perf_session__delete(self);
138         return NULL;
139 }
140
141 static void perf_session__delete_dead_threads(struct perf_session *self)
142 {
143         struct thread *n, *t;
144
145         list_for_each_entry_safe(t, n, &self->dead_threads, node) {
146                 list_del(&t->node);
147                 thread__delete(t);
148         }
149 }
150
151 static void perf_session__delete_threads(struct perf_session *self)
152 {
153         struct rb_node *nd = rb_first(&self->threads);
154
155         while (nd) {
156                 struct thread *t = rb_entry(nd, struct thread, rb_node);
157
158                 rb_erase(&t->rb_node, &self->threads);
159                 nd = rb_next(nd);
160                 thread__delete(t);
161         }
162 }
163
164 void perf_session__delete(struct perf_session *self)
165 {
166         perf_header__exit(&self->header);
167         perf_session__destroy_kernel_maps(self);
168         perf_session__delete_dead_threads(self);
169         perf_session__delete_threads(self);
170         machine__exit(&self->host_machine);
171         close(self->fd);
172         free(self);
173 }
174
175 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
176 {
177         self->last_match = NULL;
178         rb_erase(&th->rb_node, &self->threads);
179         /*
180          * We may have references to this thread, for instance in some hist_entry
181          * instances, so just move them to a separate list.
182          */
183         list_add_tail(&th->node, &self->dead_threads);
184 }
185
186 static bool symbol__match_parent_regex(struct symbol *sym)
187 {
188         if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
189                 return 1;
190
191         return 0;
192 }
193
194 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
195                                                    struct thread *thread,
196                                                    struct ip_callchain *chain,
197                                                    struct symbol **parent)
198 {
199         u8 cpumode = PERF_RECORD_MISC_USER;
200         unsigned int i;
201         struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
202
203         if (!syms)
204                 return NULL;
205
206         for (i = 0; i < chain->nr; i++) {
207                 u64 ip = chain->ips[i];
208                 struct addr_location al;
209
210                 if (ip >= PERF_CONTEXT_MAX) {
211                         switch (ip) {
212                         case PERF_CONTEXT_HV:
213                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;  break;
214                         case PERF_CONTEXT_KERNEL:
215                                 cpumode = PERF_RECORD_MISC_KERNEL;      break;
216                         case PERF_CONTEXT_USER:
217                                 cpumode = PERF_RECORD_MISC_USER;        break;
218                         default:
219                                 break;
220                         }
221                         continue;
222                 }
223
224                 al.filtered = false;
225                 thread__find_addr_location(thread, self, cpumode,
226                                 MAP__FUNCTION, thread->pid, ip, &al, NULL);
227                 if (al.sym != NULL) {
228                         if (sort__has_parent && !*parent &&
229                             symbol__match_parent_regex(al.sym))
230                                 *parent = al.sym;
231                         if (!symbol_conf.use_callchain)
232                                 break;
233                         syms[i].map = al.map;
234                         syms[i].sym = al.sym;
235                 }
236         }
237
238         return syms;
239 }
240
241 static int process_event_stub(event_t *event __used,
242                               struct perf_session *session __used)
243 {
244         dump_printf(": unhandled!\n");
245         return 0;
246 }
247
248 static int process_finished_round_stub(event_t *event __used,
249                                        struct perf_session *session __used,
250                                        struct perf_event_ops *ops __used)
251 {
252         dump_printf(": unhandled!\n");
253         return 0;
254 }
255
256 static int process_finished_round(event_t *event,
257                                   struct perf_session *session,
258                                   struct perf_event_ops *ops);
259
260 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
261 {
262         if (handler->sample == NULL)
263                 handler->sample = process_event_stub;
264         if (handler->mmap == NULL)
265                 handler->mmap = process_event_stub;
266         if (handler->comm == NULL)
267                 handler->comm = process_event_stub;
268         if (handler->fork == NULL)
269                 handler->fork = process_event_stub;
270         if (handler->exit == NULL)
271                 handler->exit = process_event_stub;
272         if (handler->lost == NULL)
273                 handler->lost = event__process_lost;
274         if (handler->read == NULL)
275                 handler->read = process_event_stub;
276         if (handler->throttle == NULL)
277                 handler->throttle = process_event_stub;
278         if (handler->unthrottle == NULL)
279                 handler->unthrottle = process_event_stub;
280         if (handler->attr == NULL)
281                 handler->attr = process_event_stub;
282         if (handler->event_type == NULL)
283                 handler->event_type = process_event_stub;
284         if (handler->tracing_data == NULL)
285                 handler->tracing_data = process_event_stub;
286         if (handler->build_id == NULL)
287                 handler->build_id = process_event_stub;
288         if (handler->finished_round == NULL) {
289                 if (handler->ordered_samples)
290                         handler->finished_round = process_finished_round;
291                 else
292                         handler->finished_round = process_finished_round_stub;
293         }
294 }
295
296 void mem_bswap_64(void *src, int byte_size)
297 {
298         u64 *m = src;
299
300         while (byte_size > 0) {
301                 *m = bswap_64(*m);
302                 byte_size -= sizeof(u64);
303                 ++m;
304         }
305 }
306
307 static void event__all64_swap(event_t *self)
308 {
309         struct perf_event_header *hdr = &self->header;
310         mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
311 }
312
313 static void event__comm_swap(event_t *self)
314 {
315         self->comm.pid = bswap_32(self->comm.pid);
316         self->comm.tid = bswap_32(self->comm.tid);
317 }
318
319 static void event__mmap_swap(event_t *self)
320 {
321         self->mmap.pid   = bswap_32(self->mmap.pid);
322         self->mmap.tid   = bswap_32(self->mmap.tid);
323         self->mmap.start = bswap_64(self->mmap.start);
324         self->mmap.len   = bswap_64(self->mmap.len);
325         self->mmap.pgoff = bswap_64(self->mmap.pgoff);
326 }
327
328 static void event__task_swap(event_t *self)
329 {
330         self->fork.pid  = bswap_32(self->fork.pid);
331         self->fork.tid  = bswap_32(self->fork.tid);
332         self->fork.ppid = bswap_32(self->fork.ppid);
333         self->fork.ptid = bswap_32(self->fork.ptid);
334         self->fork.time = bswap_64(self->fork.time);
335 }
336
337 static void event__read_swap(event_t *self)
338 {
339         self->read.pid          = bswap_32(self->read.pid);
340         self->read.tid          = bswap_32(self->read.tid);
341         self->read.value        = bswap_64(self->read.value);
342         self->read.time_enabled = bswap_64(self->read.time_enabled);
343         self->read.time_running = bswap_64(self->read.time_running);
344         self->read.id           = bswap_64(self->read.id);
345 }
346
347 static void event__attr_swap(event_t *self)
348 {
349         size_t size;
350
351         self->attr.attr.type            = bswap_32(self->attr.attr.type);
352         self->attr.attr.size            = bswap_32(self->attr.attr.size);
353         self->attr.attr.config          = bswap_64(self->attr.attr.config);
354         self->attr.attr.sample_period   = bswap_64(self->attr.attr.sample_period);
355         self->attr.attr.sample_type     = bswap_64(self->attr.attr.sample_type);
356         self->attr.attr.read_format     = bswap_64(self->attr.attr.read_format);
357         self->attr.attr.wakeup_events   = bswap_32(self->attr.attr.wakeup_events);
358         self->attr.attr.bp_type         = bswap_32(self->attr.attr.bp_type);
359         self->attr.attr.bp_addr         = bswap_64(self->attr.attr.bp_addr);
360         self->attr.attr.bp_len          = bswap_64(self->attr.attr.bp_len);
361
362         size = self->header.size;
363         size -= (void *)&self->attr.id - (void *)self;
364         mem_bswap_64(self->attr.id, size);
365 }
366
367 static void event__event_type_swap(event_t *self)
368 {
369         self->event_type.event_type.event_id =
370                 bswap_64(self->event_type.event_type.event_id);
371 }
372
373 static void event__tracing_data_swap(event_t *self)
374 {
375         self->tracing_data.size = bswap_32(self->tracing_data.size);
376 }
377
378 typedef void (*event__swap_op)(event_t *self);
379
380 static event__swap_op event__swap_ops[] = {
381         [PERF_RECORD_MMAP]   = event__mmap_swap,
382         [PERF_RECORD_COMM]   = event__comm_swap,
383         [PERF_RECORD_FORK]   = event__task_swap,
384         [PERF_RECORD_EXIT]   = event__task_swap,
385         [PERF_RECORD_LOST]   = event__all64_swap,
386         [PERF_RECORD_READ]   = event__read_swap,
387         [PERF_RECORD_SAMPLE] = event__all64_swap,
388         [PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
389         [PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
390         [PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
391         [PERF_RECORD_HEADER_BUILD_ID]   = NULL,
392         [PERF_RECORD_HEADER_MAX]    = NULL,
393 };
394
395 struct sample_queue {
396         u64                     timestamp;
397         event_t                 *event;
398         struct list_head        list;
399 };
400
401 static void flush_sample_queue(struct perf_session *s,
402                                struct perf_event_ops *ops)
403 {
404         struct ordered_samples *os = &s->ordered_samples;
405         struct list_head *head = &os->samples;
406         struct sample_queue *tmp, *iter;
407         u64 limit = os->next_flush;
408         u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
409
410         if (!ops->ordered_samples || !limit)
411                 return;
412
413         list_for_each_entry_safe(iter, tmp, head, list) {
414                 if (iter->timestamp > limit)
415                         break;
416
417                 ops->sample(iter->event, s);
418
419                 os->last_flush = iter->timestamp;
420                 list_del(&iter->list);
421                 free(iter);
422         }
423
424         if (list_empty(head)) {
425                 os->last_sample = NULL;
426         } else if (last_ts <= limit) {
427                 os->last_sample =
428                         list_entry(head->prev, struct sample_queue, list);
429         }
430 }
431
432 /*
433  * When perf record finishes a pass on every buffers, it records this pseudo
434  * event.
435  * We record the max timestamp t found in the pass n.
436  * Assuming these timestamps are monotonic across cpus, we know that if
437  * a buffer still has events with timestamps below t, they will be all
438  * available and then read in the pass n + 1.
439  * Hence when we start to read the pass n + 2, we can safely flush every
440  * events with timestamps below t.
441  *
442  *    ============ PASS n =================
443  *       CPU 0         |   CPU 1
444  *                     |
445  *    cnt1 timestamps  |   cnt2 timestamps
446  *          1          |         2
447  *          2          |         3
448  *          -          |         4  <--- max recorded
449  *
450  *    ============ PASS n + 1 ==============
451  *       CPU 0         |   CPU 1
452  *                     |
453  *    cnt1 timestamps  |   cnt2 timestamps
454  *          3          |         5
455  *          4          |         6
456  *          5          |         7 <---- max recorded
457  *
458  *      Flush every events below timestamp 4
459  *
460  *    ============ PASS n + 2 ==============
461  *       CPU 0         |   CPU 1
462  *                     |
463  *    cnt1 timestamps  |   cnt2 timestamps
464  *          6          |         8
465  *          7          |         9
466  *          -          |         10
467  *
468  *      Flush every events below timestamp 7
469  *      etc...
470  */
471 static int process_finished_round(event_t *event __used,
472                                   struct perf_session *session,
473                                   struct perf_event_ops *ops)
474 {
475         flush_sample_queue(session, ops);
476         session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
477
478         return 0;
479 }
480
481 /* The queue is ordered by time */
482 static void __queue_sample_event(struct sample_queue *new,
483                                  struct perf_session *s)
484 {
485         struct ordered_samples *os = &s->ordered_samples;
486         struct sample_queue *sample = os->last_sample;
487         u64 timestamp = new->timestamp;
488         struct list_head *p;
489
490         os->last_sample = new;
491
492         if (!sample) {
493                 list_add(&new->list, &os->samples);
494                 os->max_timestamp = timestamp;
495                 return;
496         }
497
498         /*
499          * last_sample might point to some random place in the list as it's
500          * the last queued event. We expect that the new event is close to
501          * this.
502          */
503         if (sample->timestamp <= timestamp) {
504                 while (sample->timestamp <= timestamp) {
505                         p = sample->list.next;
506                         if (p == &os->samples) {
507                                 list_add_tail(&new->list, &os->samples);
508                                 os->max_timestamp = timestamp;
509                                 return;
510                         }
511                         sample = list_entry(p, struct sample_queue, list);
512                 }
513                 list_add_tail(&new->list, &sample->list);
514         } else {
515                 while (sample->timestamp > timestamp) {
516                         p = sample->list.prev;
517                         if (p == &os->samples) {
518                                 list_add(&new->list, &os->samples);
519                                 return;
520                         }
521                         sample = list_entry(p, struct sample_queue, list);
522                 }
523                 list_add(&new->list, &sample->list);
524         }
525 }
526
527 static int queue_sample_event(event_t *event, struct sample_data *data,
528                               struct perf_session *s)
529 {
530         u64 timestamp = data->time;
531         struct sample_queue *new;
532
533         if (timestamp < s->ordered_samples.last_flush) {
534                 printf("Warning: Timestamp below last timeslice flush\n");
535                 return -EINVAL;
536         }
537
538         new = malloc(sizeof(*new));
539         if (!new)
540                 return -ENOMEM;
541
542         new->timestamp = timestamp;
543         new->event = event;
544
545         __queue_sample_event(new, s);
546
547         return 0;
548 }
549
550 static int perf_session__process_sample(event_t *event, struct perf_session *s,
551                                         struct perf_event_ops *ops)
552 {
553         struct sample_data data;
554
555         if (!ops->ordered_samples)
556                 return ops->sample(event, s);
557
558         bzero(&data, sizeof(struct sample_data));
559         event__parse_sample(event, s->sample_type, &data);
560
561         queue_sample_event(event, &data, s);
562
563         return 0;
564 }
565
566 static int perf_session__process_event(struct perf_session *self,
567                                        event_t *event,
568                                        struct perf_event_ops *ops,
569                                        u64 file_offset)
570 {
571         trace_event(event);
572
573         if (event->header.type < PERF_RECORD_HEADER_MAX) {
574                 dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
575                             file_offset, event->header.size,
576                             event__name[event->header.type]);
577                 hists__inc_nr_events(&self->hists, event->header.type);
578         }
579
580         if (self->header.needs_swap && event__swap_ops[event->header.type])
581                 event__swap_ops[event->header.type](event);
582
583         switch (event->header.type) {
584         case PERF_RECORD_SAMPLE:
585                 return perf_session__process_sample(event, self, ops);
586         case PERF_RECORD_MMAP:
587                 return ops->mmap(event, self);
588         case PERF_RECORD_COMM:
589                 return ops->comm(event, self);
590         case PERF_RECORD_FORK:
591                 return ops->fork(event, self);
592         case PERF_RECORD_EXIT:
593                 return ops->exit(event, self);
594         case PERF_RECORD_LOST:
595                 return ops->lost(event, self);
596         case PERF_RECORD_READ:
597                 return ops->read(event, self);
598         case PERF_RECORD_THROTTLE:
599                 return ops->throttle(event, self);
600         case PERF_RECORD_UNTHROTTLE:
601                 return ops->unthrottle(event, self);
602         case PERF_RECORD_HEADER_ATTR:
603                 return ops->attr(event, self);
604         case PERF_RECORD_HEADER_EVENT_TYPE:
605                 return ops->event_type(event, self);
606         case PERF_RECORD_HEADER_TRACING_DATA:
607                 /* setup for reading amidst mmap */
608                 lseek(self->fd, file_offset, SEEK_SET);
609                 return ops->tracing_data(event, self);
610         case PERF_RECORD_HEADER_BUILD_ID:
611                 return ops->build_id(event, self);
612         case PERF_RECORD_FINISHED_ROUND:
613                 return ops->finished_round(event, self, ops);
614         default:
615                 ++self->hists.stats.nr_unknown_events;
616                 return -1;
617         }
618 }
619
620 void perf_event_header__bswap(struct perf_event_header *self)
621 {
622         self->type = bswap_32(self->type);
623         self->misc = bswap_16(self->misc);
624         self->size = bswap_16(self->size);
625 }
626
627 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
628 {
629         struct thread *thread = perf_session__findnew(self, 0);
630
631         if (thread == NULL || thread__set_comm(thread, "swapper")) {
632                 pr_err("problem inserting idle task.\n");
633                 thread = NULL;
634         }
635
636         return thread;
637 }
638
639 int do_read(int fd, void *buf, size_t size)
640 {
641         void *buf_start = buf;
642
643         while (size) {
644                 int ret = read(fd, buf, size);
645
646                 if (ret <= 0)
647                         return ret;
648
649                 size -= ret;
650                 buf += ret;
651         }
652
653         return buf - buf_start;
654 }
655
656 #define session_done()  (*(volatile int *)(&session_done))
657 volatile int session_done;
658
659 static int __perf_session__process_pipe_events(struct perf_session *self,
660                                                struct perf_event_ops *ops)
661 {
662         event_t event;
663         uint32_t size;
664         int skip = 0;
665         u64 head;
666         int err;
667         void *p;
668
669         perf_event_ops__fill_defaults(ops);
670
671         head = 0;
672 more:
673         err = do_read(self->fd, &event, sizeof(struct perf_event_header));
674         if (err <= 0) {
675                 if (err == 0)
676                         goto done;
677
678                 pr_err("failed to read event header\n");
679                 goto out_err;
680         }
681
682         if (self->header.needs_swap)
683                 perf_event_header__bswap(&event.header);
684
685         size = event.header.size;
686         if (size == 0)
687                 size = 8;
688
689         p = &event;
690         p += sizeof(struct perf_event_header);
691
692         if (size - sizeof(struct perf_event_header)) {
693                 err = do_read(self->fd, p,
694                               size - sizeof(struct perf_event_header));
695                 if (err <= 0) {
696                         if (err == 0) {
697                                 pr_err("unexpected end of event stream\n");
698                                 goto done;
699                         }
700
701                         pr_err("failed to read event data\n");
702                         goto out_err;
703                 }
704         }
705
706         if (size == 0 ||
707             (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
708                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
709                             head, event.header.size, event.header.type);
710                 /*
711                  * assume we lost track of the stream, check alignment, and
712                  * increment a single u64 in the hope to catch on again 'soon'.
713                  */
714                 if (unlikely(head & 7))
715                         head &= ~7ULL;
716
717                 size = 8;
718         }
719
720         head += size;
721
722         dump_printf("\n%#Lx [%#x]: event: %d\n",
723                     head, event.header.size, event.header.type);
724
725         if (skip > 0)
726                 head += skip;
727
728         if (!session_done())
729                 goto more;
730 done:
731         err = 0;
732 out_err:
733         return err;
734 }
735
736 int __perf_session__process_events(struct perf_session *session,
737                                    u64 data_offset, u64 data_size,
738                                    u64 file_size, struct perf_event_ops *ops)
739 {
740         u64 head, page_offset, file_offset, file_pos, progress_next;
741         int err, mmap_prot, mmap_flags, map_idx = 0;
742         struct ui_progress *progress;
743         size_t  page_size, mmap_size;
744         char *buf, *mmaps[8];
745         event_t *event;
746         uint32_t size;
747
748         perf_event_ops__fill_defaults(ops);
749
750         page_size = sysconf(_SC_PAGESIZE);
751
752         page_offset = page_size * (data_offset / page_size);
753         file_offset = page_offset;
754         head = data_offset - page_offset;
755
756         if (data_offset + data_size < file_size)
757                 file_size = data_offset + data_size;
758
759         progress_next = file_size / 16;
760         progress = ui_progress__new("Processing events...", file_size);
761         if (progress == NULL)
762                 return -1;
763
764         mmap_size = session->mmap_window;
765         if (mmap_size > file_size)
766                 mmap_size = file_size;
767
768         memset(mmaps, 0, sizeof(mmaps));
769
770         mmap_prot  = PROT_READ;
771         mmap_flags = MAP_SHARED;
772
773         if (session->header.needs_swap) {
774                 mmap_prot  |= PROT_WRITE;
775                 mmap_flags = MAP_PRIVATE;
776         }
777 remap:
778         buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
779                    file_offset);
780         if (buf == MAP_FAILED) {
781                 pr_err("failed to mmap file\n");
782                 err = -errno;
783                 goto out_err;
784         }
785         mmaps[map_idx] = buf;
786         map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
787         file_pos = file_offset + head;
788
789 more:
790         event = (event_t *)(buf + head);
791
792         if (session->header.needs_swap)
793                 perf_event_header__bswap(&event->header);
794         size = event->header.size;
795         if (size == 0)
796                 size = 8;
797
798         if (head + event->header.size >= mmap_size) {
799                 if (mmaps[map_idx]) {
800                         munmap(mmaps[map_idx], mmap_size);
801                         mmaps[map_idx] = NULL;
802                 }
803
804                 page_offset = page_size * (head / page_size);
805                 file_offset += page_offset;
806                 head -= page_offset;
807                 goto remap;
808         }
809
810         size = event->header.size;
811
812         dump_printf("\n%#Lx [%#x]: event: %d\n",
813                     file_pos, event->header.size, event->header.type);
814
815         if (size == 0 ||
816             perf_session__process_event(session, event, ops, file_pos) < 0) {
817                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
818                             file_offset + head, event->header.size,
819                             event->header.type);
820                 /*
821                  * assume we lost track of the stream, check alignment, and
822                  * increment a single u64 in the hope to catch on again 'soon'.
823                  */
824                 if (unlikely(head & 7))
825                         head &= ~7ULL;
826
827                 size = 8;
828         }
829
830         head += size;
831         file_pos += size;
832
833         if (file_pos >= progress_next) {
834                 progress_next += file_size / 16;
835                 ui_progress__update(progress, file_pos);
836         }
837
838         if (file_pos < file_size)
839                 goto more;
840
841         err = 0;
842         /* do the final flush for ordered samples */
843         session->ordered_samples.next_flush = ULLONG_MAX;
844         flush_sample_queue(session, ops);
845 out_err:
846         ui_progress__delete(progress);
847
848         if (ops->lost == event__process_lost &&
849             session->hists.stats.total_lost != 0) {
850                 ui__warning("Processed %Lu events and LOST %Lu!\n\n"
851                             "Check IO/CPU overload!\n\n",
852                             session->hists.stats.total_period,
853                             session->hists.stats.total_lost);
854         }
855
856         if (session->hists.stats.nr_unknown_events != 0) {
857                 ui__warning("Found %u unknown events!\n\n"
858                             "Is this an older tool processing a perf.data "
859                             "file generated by a more recent tool?\n\n"
860                             "If that is not the case, consider "
861                             "reporting to linux-kernel@vger.kernel.org.\n\n",
862                             session->hists.stats.nr_unknown_events);
863         }
864
865         return err;
866 }
867
868 int perf_session__process_events(struct perf_session *self,
869                                  struct perf_event_ops *ops)
870 {
871         int err;
872
873         if (perf_session__register_idle_thread(self) == NULL)
874                 return -ENOMEM;
875
876         if (!self->fd_pipe)
877                 err = __perf_session__process_events(self,
878                                                      self->header.data_offset,
879                                                      self->header.data_size,
880                                                      self->size, ops);
881         else
882                 err = __perf_session__process_pipe_events(self, ops);
883
884         return err;
885 }
886
887 bool perf_session__has_traces(struct perf_session *self, const char *msg)
888 {
889         if (!(self->sample_type & PERF_SAMPLE_RAW)) {
890                 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
891                 return false;
892         }
893
894         return true;
895 }
896
897 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
898                                              const char *symbol_name,
899                                              u64 addr)
900 {
901         char *bracket;
902         enum map_type i;
903         struct ref_reloc_sym *ref;
904
905         ref = zalloc(sizeof(struct ref_reloc_sym));
906         if (ref == NULL)
907                 return -ENOMEM;
908
909         ref->name = strdup(symbol_name);
910         if (ref->name == NULL) {
911                 free(ref);
912                 return -ENOMEM;
913         }
914
915         bracket = strchr(ref->name, ']');
916         if (bracket)
917                 *bracket = '\0';
918
919         ref->addr = addr;
920
921         for (i = 0; i < MAP__NR_TYPES; ++i) {
922                 struct kmap *kmap = map__kmap(maps[i]);
923                 kmap->ref_reloc_sym = ref;
924         }
925
926         return 0;
927 }
928
929 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
930 {
931         return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
932                __dsos__fprintf(&self->host_machine.user_dsos, fp) +
933                machines__fprintf_dsos(&self->machines, fp);
934 }
935
936 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
937                                           bool with_hits)
938 {
939         size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
940         return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
941 }