]> git.karo-electronics.de Git - karo-tx-linux.git/blob - tools/perf/util/stat.c
Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / tools / perf / util / stat.c
1 #include <errno.h>
2 #include <inttypes.h>
3 #include <math.h>
4 #include "stat.h"
5 #include "evlist.h"
6 #include "evsel.h"
7 #include "thread_map.h"
8
9 void update_stats(struct stats *stats, u64 val)
10 {
11         double delta;
12
13         stats->n++;
14         delta = val - stats->mean;
15         stats->mean += delta / stats->n;
16         stats->M2 += delta*(val - stats->mean);
17
18         if (val > stats->max)
19                 stats->max = val;
20
21         if (val < stats->min)
22                 stats->min = val;
23 }
24
25 double avg_stats(struct stats *stats)
26 {
27         return stats->mean;
28 }
29
30 /*
31  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
32  *
33  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
34  * s^2 = -------------------------------
35  *                  n - 1
36  *
37  * http://en.wikipedia.org/wiki/Stddev
38  *
39  * The std dev of the mean is related to the std dev by:
40  *
41  *             s
42  * s_mean = -------
43  *          sqrt(n)
44  *
45  */
46 double stddev_stats(struct stats *stats)
47 {
48         double variance, variance_mean;
49
50         if (stats->n < 2)
51                 return 0.0;
52
53         variance = stats->M2 / (stats->n - 1);
54         variance_mean = variance / stats->n;
55
56         return sqrt(variance_mean);
57 }
58
59 double rel_stddev_stats(double stddev, double avg)
60 {
61         double pct = 0.0;
62
63         if (avg)
64                 pct = 100.0 * stddev/avg;
65
66         return pct;
67 }
68
69 bool __perf_evsel_stat__is(struct perf_evsel *evsel,
70                            enum perf_stat_evsel_id id)
71 {
72         struct perf_stat_evsel *ps = evsel->priv;
73
74         return ps->id == id;
75 }
76
77 #define ID(id, name) [PERF_STAT_EVSEL_ID__##id] = #name
78 static const char *id_str[PERF_STAT_EVSEL_ID__MAX] = {
79         ID(NONE,                x),
80         ID(CYCLES_IN_TX,        cpu/cycles-t/),
81         ID(TRANSACTION_START,   cpu/tx-start/),
82         ID(ELISION_START,       cpu/el-start/),
83         ID(CYCLES_IN_TX_CP,     cpu/cycles-ct/),
84         ID(TOPDOWN_TOTAL_SLOTS, topdown-total-slots),
85         ID(TOPDOWN_SLOTS_ISSUED, topdown-slots-issued),
86         ID(TOPDOWN_SLOTS_RETIRED, topdown-slots-retired),
87         ID(TOPDOWN_FETCH_BUBBLES, topdown-fetch-bubbles),
88         ID(TOPDOWN_RECOVERY_BUBBLES, topdown-recovery-bubbles),
89 };
90 #undef ID
91
92 void perf_stat_evsel_id_init(struct perf_evsel *evsel)
93 {
94         struct perf_stat_evsel *ps = evsel->priv;
95         int i;
96
97         /* ps->id is 0 hence PERF_STAT_EVSEL_ID__NONE by default */
98
99         for (i = 0; i < PERF_STAT_EVSEL_ID__MAX; i++) {
100                 if (!strcmp(perf_evsel__name(evsel), id_str[i])) {
101                         ps->id = i;
102                         break;
103                 }
104         }
105 }
106
107 static void perf_evsel__reset_stat_priv(struct perf_evsel *evsel)
108 {
109         int i;
110         struct perf_stat_evsel *ps = evsel->priv;
111
112         for (i = 0; i < 3; i++)
113                 init_stats(&ps->res_stats[i]);
114
115         perf_stat_evsel_id_init(evsel);
116 }
117
118 static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
119 {
120         evsel->priv = zalloc(sizeof(struct perf_stat_evsel));
121         if (evsel->priv == NULL)
122                 return -ENOMEM;
123         perf_evsel__reset_stat_priv(evsel);
124         return 0;
125 }
126
127 static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
128 {
129         zfree(&evsel->priv);
130 }
131
132 static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel,
133                                              int ncpus, int nthreads)
134 {
135         struct perf_counts *counts;
136
137         counts = perf_counts__new(ncpus, nthreads);
138         if (counts)
139                 evsel->prev_raw_counts = counts;
140
141         return counts ? 0 : -ENOMEM;
142 }
143
144 static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
145 {
146         perf_counts__delete(evsel->prev_raw_counts);
147         evsel->prev_raw_counts = NULL;
148 }
149
150 static int perf_evsel__alloc_stats(struct perf_evsel *evsel, bool alloc_raw)
151 {
152         int ncpus = perf_evsel__nr_cpus(evsel);
153         int nthreads = thread_map__nr(evsel->threads);
154
155         if (perf_evsel__alloc_stat_priv(evsel) < 0 ||
156             perf_evsel__alloc_counts(evsel, ncpus, nthreads) < 0 ||
157             (alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel, ncpus, nthreads) < 0))
158                 return -ENOMEM;
159
160         return 0;
161 }
162
163 int perf_evlist__alloc_stats(struct perf_evlist *evlist, bool alloc_raw)
164 {
165         struct perf_evsel *evsel;
166
167         evlist__for_each_entry(evlist, evsel) {
168                 if (perf_evsel__alloc_stats(evsel, alloc_raw))
169                         goto out_free;
170         }
171
172         return 0;
173
174 out_free:
175         perf_evlist__free_stats(evlist);
176         return -1;
177 }
178
179 void perf_evlist__free_stats(struct perf_evlist *evlist)
180 {
181         struct perf_evsel *evsel;
182
183         evlist__for_each_entry(evlist, evsel) {
184                 perf_evsel__free_stat_priv(evsel);
185                 perf_evsel__free_counts(evsel);
186                 perf_evsel__free_prev_raw_counts(evsel);
187         }
188 }
189
190 void perf_evlist__reset_stats(struct perf_evlist *evlist)
191 {
192         struct perf_evsel *evsel;
193
194         evlist__for_each_entry(evlist, evsel) {
195                 perf_evsel__reset_stat_priv(evsel);
196                 perf_evsel__reset_counts(evsel);
197         }
198 }
199
200 static void zero_per_pkg(struct perf_evsel *counter)
201 {
202         if (counter->per_pkg_mask)
203                 memset(counter->per_pkg_mask, 0, MAX_NR_CPUS);
204 }
205
206 static int check_per_pkg(struct perf_evsel *counter,
207                          struct perf_counts_values *vals, int cpu, bool *skip)
208 {
209         unsigned long *mask = counter->per_pkg_mask;
210         struct cpu_map *cpus = perf_evsel__cpus(counter);
211         int s;
212
213         *skip = false;
214
215         if (!counter->per_pkg)
216                 return 0;
217
218         if (cpu_map__empty(cpus))
219                 return 0;
220
221         if (!mask) {
222                 mask = zalloc(MAX_NR_CPUS);
223                 if (!mask)
224                         return -ENOMEM;
225
226                 counter->per_pkg_mask = mask;
227         }
228
229         /*
230          * we do not consider an event that has not run as a good
231          * instance to mark a package as used (skip=1). Otherwise
232          * we may run into a situation where the first CPU in a package
233          * is not running anything, yet the second is, and this function
234          * would mark the package as used after the first CPU and would
235          * not read the values from the second CPU.
236          */
237         if (!(vals->run && vals->ena))
238                 return 0;
239
240         s = cpu_map__get_socket(cpus, cpu, NULL);
241         if (s < 0)
242                 return -1;
243
244         *skip = test_and_set_bit(s, mask) == 1;
245         return 0;
246 }
247
248 static int
249 process_counter_values(struct perf_stat_config *config, struct perf_evsel *evsel,
250                        int cpu, int thread,
251                        struct perf_counts_values *count)
252 {
253         struct perf_counts_values *aggr = &evsel->counts->aggr;
254         static struct perf_counts_values zero;
255         bool skip = false;
256
257         if (check_per_pkg(evsel, count, cpu, &skip)) {
258                 pr_err("failed to read per-pkg counter\n");
259                 return -1;
260         }
261
262         if (skip)
263                 count = &zero;
264
265         switch (config->aggr_mode) {
266         case AGGR_THREAD:
267         case AGGR_CORE:
268         case AGGR_SOCKET:
269         case AGGR_NONE:
270                 if (!evsel->snapshot)
271                         perf_evsel__compute_deltas(evsel, cpu, thread, count);
272                 perf_counts_values__scale(count, config->scale, NULL);
273                 if (config->aggr_mode == AGGR_NONE)
274                         perf_stat__update_shadow_stats(evsel, count->values, cpu);
275                 break;
276         case AGGR_GLOBAL:
277                 aggr->val += count->val;
278                 if (config->scale) {
279                         aggr->ena += count->ena;
280                         aggr->run += count->run;
281                 }
282         case AGGR_UNSET:
283         default:
284                 break;
285         }
286
287         return 0;
288 }
289
290 static int process_counter_maps(struct perf_stat_config *config,
291                                 struct perf_evsel *counter)
292 {
293         int nthreads = thread_map__nr(counter->threads);
294         int ncpus = perf_evsel__nr_cpus(counter);
295         int cpu, thread;
296
297         if (counter->system_wide)
298                 nthreads = 1;
299
300         for (thread = 0; thread < nthreads; thread++) {
301                 for (cpu = 0; cpu < ncpus; cpu++) {
302                         if (process_counter_values(config, counter, cpu, thread,
303                                                    perf_counts(counter->counts, cpu, thread)))
304                                 return -1;
305                 }
306         }
307
308         return 0;
309 }
310
311 int perf_stat_process_counter(struct perf_stat_config *config,
312                               struct perf_evsel *counter)
313 {
314         struct perf_counts_values *aggr = &counter->counts->aggr;
315         struct perf_stat_evsel *ps = counter->priv;
316         u64 *count = counter->counts->aggr.values;
317         u64 val;
318         int i, ret;
319
320         aggr->val = aggr->ena = aggr->run = 0;
321
322         /*
323          * We calculate counter's data every interval,
324          * and the display code shows ps->res_stats
325          * avg value. We need to zero the stats for
326          * interval mode, otherwise overall avg running
327          * averages will be shown for each interval.
328          */
329         if (config->interval)
330                 init_stats(ps->res_stats);
331
332         if (counter->per_pkg)
333                 zero_per_pkg(counter);
334
335         ret = process_counter_maps(config, counter);
336         if (ret)
337                 return ret;
338
339         if (config->aggr_mode != AGGR_GLOBAL)
340                 return 0;
341
342         if (!counter->snapshot)
343                 perf_evsel__compute_deltas(counter, -1, -1, aggr);
344         perf_counts_values__scale(aggr, config->scale, &counter->counts->scaled);
345
346         for (i = 0; i < 3; i++)
347                 update_stats(&ps->res_stats[i], count[i]);
348
349         if (verbose > 0) {
350                 fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
351                         perf_evsel__name(counter), count[0], count[1], count[2]);
352         }
353
354         /*
355          * Save the full runtime - to allow normalization during printout:
356          */
357         val = counter->scale * *count;
358         perf_stat__update_shadow_stats(counter, &val, 0);
359
360         return 0;
361 }
362
363 int perf_event__process_stat_event(struct perf_tool *tool __maybe_unused,
364                                    union perf_event *event,
365                                    struct perf_session *session)
366 {
367         struct perf_counts_values count;
368         struct stat_event *st = &event->stat;
369         struct perf_evsel *counter;
370
371         count.val = st->val;
372         count.ena = st->ena;
373         count.run = st->run;
374
375         counter = perf_evlist__id2evsel(session->evlist, st->id);
376         if (!counter) {
377                 pr_err("Failed to resolve counter for stat event.\n");
378                 return -EINVAL;
379         }
380
381         *perf_counts(counter->counts, st->cpu, st->thread) = count;
382         counter->supported = true;
383         return 0;
384 }
385
386 size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
387 {
388         struct stat_event *st = (struct stat_event *) event;
389         size_t ret;
390
391         ret  = fprintf(fp, "\n... id %" PRIu64 ", cpu %d, thread %d\n",
392                        st->id, st->cpu, st->thread);
393         ret += fprintf(fp, "... value %" PRIu64 ", enabled %" PRIu64 ", running %" PRIu64 "\n",
394                        st->val, st->ena, st->run);
395
396         return ret;
397 }
398
399 size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
400 {
401         struct stat_round_event *rd = (struct stat_round_event *)event;
402         size_t ret;
403
404         ret = fprintf(fp, "\n... time %" PRIu64 ", type %s\n", rd->time,
405                       rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
406
407         return ret;
408 }
409
410 size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
411 {
412         struct perf_stat_config sc;
413         size_t ret;
414
415         perf_event__read_stat_config(&sc, &event->stat_config);
416
417         ret  = fprintf(fp, "\n");
418         ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
419         ret += fprintf(fp, "... scale     %d\n", sc.scale);
420         ret += fprintf(fp, "... interval  %u\n", sc.interval);
421
422         return ret;
423 }