]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic/vgic-init.c
Merge tag 'acpi-extra-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / virt / kvm / arm / vgic / vgic-init.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/uaccess.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu.h>
20 #include <linux/kvm_host.h>
21 #include <kvm/arm_vgic.h>
22 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24
25 /*
26  * Initialization rules: there are multiple stages to the vgic
27  * initialization, both for the distributor and the CPU interfaces.  The basic
28  * idea is that even though the VGIC is not functional or not requested from
29  * user space, the critical path of the run loop can still call VGIC functions
30  * that just won't do anything, without them having to check additional
31  * initialization flags to ensure they don't look at uninitialized data
32  * structures.
33  *
34  * Distributor:
35  *
36  * - kvm_vgic_early_init(): initialization of static data that doesn't
37  *   depend on any sizing information or emulation type. No allocation
38  *   is allowed there.
39  *
40  * - vgic_init(): allocation and initialization of the generic data
41  *   structures that depend on sizing information (number of CPUs,
42  *   number of interrupts). Also initializes the vcpu specific data
43  *   structures. Can be executed lazily for GICv2.
44  *
45  * CPU Interface:
46  *
47  * - kvm_vgic_vcpu_early_init(): initialization of static data that
48  *   doesn't depend on any sizing information or emulation type. No
49  *   allocation is allowed there.
50  */
51
52 /* EARLY INIT */
53
54 /**
55  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
56  * @kvm: The VM whose VGIC districutor should be initialized
57  *
58  * Only do initialization of static structures that don't require any
59  * allocation or sizing information from userspace.  vgic_init() called
60  * kvm_vgic_dist_init() which takes care of the rest.
61  */
62 void kvm_vgic_early_init(struct kvm *kvm)
63 {
64         struct vgic_dist *dist = &kvm->arch.vgic;
65
66         INIT_LIST_HEAD(&dist->lpi_list_head);
67         spin_lock_init(&dist->lpi_list_lock);
68 }
69
70 /**
71  * kvm_vgic_vcpu_early_init() - Initialize static VGIC VCPU data structures
72  * @vcpu: The VCPU whose VGIC data structures whould be initialized
73  *
74  * Only do initialization, but do not actually enable the VGIC CPU interface
75  * yet.
76  */
77 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
78 {
79         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
80         int i;
81
82         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
83         spin_lock_init(&vgic_cpu->ap_list_lock);
84
85         /*
86          * Enable and configure all SGIs to be edge-triggered and
87          * configure all PPIs as level-triggered.
88          */
89         for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
90                 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
91
92                 INIT_LIST_HEAD(&irq->ap_list);
93                 spin_lock_init(&irq->irq_lock);
94                 irq->intid = i;
95                 irq->vcpu = NULL;
96                 irq->target_vcpu = vcpu;
97                 irq->targets = 1U << vcpu->vcpu_id;
98                 kref_init(&irq->refcount);
99                 if (vgic_irq_is_sgi(i)) {
100                         /* SGIs */
101                         irq->enabled = 1;
102                         irq->config = VGIC_CONFIG_EDGE;
103                 } else {
104                         /* PPIs */
105                         irq->config = VGIC_CONFIG_LEVEL;
106                 }
107         }
108 }
109
110 /* CREATION */
111
112 /**
113  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
114  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
115  * or through the generic KVM_CREATE_DEVICE API ioctl.
116  * irqchip_in_kernel() tells you if this function succeeded or not.
117  * @kvm: kvm struct pointer
118  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
119  */
120 int kvm_vgic_create(struct kvm *kvm, u32 type)
121 {
122         int i, vcpu_lock_idx = -1, ret;
123         struct kvm_vcpu *vcpu;
124
125         if (irqchip_in_kernel(kvm))
126                 return -EEXIST;
127
128         /*
129          * This function is also called by the KVM_CREATE_IRQCHIP handler,
130          * which had no chance yet to check the availability of the GICv2
131          * emulation. So check this here again. KVM_CREATE_DEVICE does
132          * the proper checks already.
133          */
134         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
135                 !kvm_vgic_global_state.can_emulate_gicv2)
136                 return -ENODEV;
137
138         /*
139          * Any time a vcpu is run, vcpu_load is called which tries to grab the
140          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
141          * that no other VCPUs are run while we create the vgic.
142          */
143         ret = -EBUSY;
144         kvm_for_each_vcpu(i, vcpu, kvm) {
145                 if (!mutex_trylock(&vcpu->mutex))
146                         goto out_unlock;
147                 vcpu_lock_idx = i;
148         }
149
150         kvm_for_each_vcpu(i, vcpu, kvm) {
151                 if (vcpu->arch.has_run_once)
152                         goto out_unlock;
153         }
154         ret = 0;
155
156         if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
157                 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
158         else
159                 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
160
161         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
162                 ret = -E2BIG;
163                 goto out_unlock;
164         }
165
166         kvm->arch.vgic.in_kernel = true;
167         kvm->arch.vgic.vgic_model = type;
168
169         /*
170          * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
171          * it is stored in distributor struct for asm save/restore purpose
172          */
173         kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;
174
175         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
176         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
177         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
178
179 out_unlock:
180         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
181                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
182                 mutex_unlock(&vcpu->mutex);
183         }
184         return ret;
185 }
186
187 /* INIT/DESTROY */
188
189 /**
190  * kvm_vgic_dist_init: initialize the dist data structures
191  * @kvm: kvm struct pointer
192  * @nr_spis: number of spis, frozen by caller
193  */
194 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
195 {
196         struct vgic_dist *dist = &kvm->arch.vgic;
197         struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
198         int i;
199
200         dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
201         if (!dist->spis)
202                 return  -ENOMEM;
203
204         /*
205          * In the following code we do not take the irq struct lock since
206          * no other action on irq structs can happen while the VGIC is
207          * not initialized yet:
208          * If someone wants to inject an interrupt or does a MMIO access, we
209          * require prior initialization in case of a virtual GICv3 or trigger
210          * initialization when using a virtual GICv2.
211          */
212         for (i = 0; i < nr_spis; i++) {
213                 struct vgic_irq *irq = &dist->spis[i];
214
215                 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
216                 INIT_LIST_HEAD(&irq->ap_list);
217                 spin_lock_init(&irq->irq_lock);
218                 irq->vcpu = NULL;
219                 irq->target_vcpu = vcpu0;
220                 kref_init(&irq->refcount);
221                 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
222                         irq->targets = 0;
223                 else
224                         irq->mpidr = 0;
225         }
226         return 0;
227 }
228
229 /**
230  * kvm_vgic_vcpu_init() - Enable the VCPU interface
231  * @vcpu: the VCPU which's VGIC should be enabled
232  */
233 static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
234 {
235         if (kvm_vgic_global_state.type == VGIC_V2)
236                 vgic_v2_enable(vcpu);
237         else
238                 vgic_v3_enable(vcpu);
239 }
240
241 /*
242  * vgic_init: allocates and initializes dist and vcpu data structures
243  * depending on two dimensioning parameters:
244  * - the number of spis
245  * - the number of vcpus
246  * The function is generally called when nr_spis has been explicitly set
247  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
248  * vgic_initialized() returns true when this function has succeeded.
249  * Must be called with kvm->lock held!
250  */
251 int vgic_init(struct kvm *kvm)
252 {
253         struct vgic_dist *dist = &kvm->arch.vgic;
254         struct kvm_vcpu *vcpu;
255         int ret = 0, i;
256
257         if (vgic_initialized(kvm))
258                 return 0;
259
260         /* freeze the number of spis */
261         if (!dist->nr_spis)
262                 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
263
264         ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
265         if (ret)
266                 goto out;
267
268         if (vgic_has_its(kvm))
269                 dist->msis_require_devid = true;
270
271         kvm_for_each_vcpu(i, vcpu, kvm)
272                 kvm_vgic_vcpu_init(vcpu);
273
274         ret = kvm_vgic_setup_default_irq_routing(kvm);
275         if (ret)
276                 goto out;
277
278         vgic_debug_init(kvm);
279
280         dist->initialized = true;
281
282         /*
283          * If we're initializing GICv2 on-demand when first running the VCPU
284          * then we need to load the VGIC state onto the CPU.  We can detect
285          * this easily by checking if we are in between vcpu_load and vcpu_put
286          * when we just initialized the VGIC.
287          */
288         preempt_disable();
289         vcpu = kvm_arm_get_running_vcpu();
290         if (vcpu)
291                 kvm_vgic_load(vcpu);
292         preempt_enable();
293 out:
294         return ret;
295 }
296
297 static void kvm_vgic_dist_destroy(struct kvm *kvm)
298 {
299         struct vgic_dist *dist = &kvm->arch.vgic;
300
301         dist->ready = false;
302         dist->initialized = false;
303
304         kfree(dist->spis);
305         dist->nr_spis = 0;
306 }
307
308 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
311
312         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
313 }
314
315 /* To be called with kvm->lock held */
316 static void __kvm_vgic_destroy(struct kvm *kvm)
317 {
318         struct kvm_vcpu *vcpu;
319         int i;
320
321         vgic_debug_destroy(kvm);
322
323         kvm_vgic_dist_destroy(kvm);
324
325         kvm_for_each_vcpu(i, vcpu, kvm)
326                 kvm_vgic_vcpu_destroy(vcpu);
327 }
328
329 void kvm_vgic_destroy(struct kvm *kvm)
330 {
331         mutex_lock(&kvm->lock);
332         __kvm_vgic_destroy(kvm);
333         mutex_unlock(&kvm->lock);
334 }
335
336 /**
337  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
338  * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
339  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
340  * @kvm: kvm struct pointer
341  */
342 int vgic_lazy_init(struct kvm *kvm)
343 {
344         int ret = 0;
345
346         if (unlikely(!vgic_initialized(kvm))) {
347                 /*
348                  * We only provide the automatic initialization of the VGIC
349                  * for the legacy case of a GICv2. Any other type must
350                  * be explicitly initialized once setup with the respective
351                  * KVM device call.
352                  */
353                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
354                         return -EBUSY;
355
356                 mutex_lock(&kvm->lock);
357                 ret = vgic_init(kvm);
358                 mutex_unlock(&kvm->lock);
359         }
360
361         return ret;
362 }
363
364 /* RESOURCE MAPPING */
365
366 /**
367  * Map the MMIO regions depending on the VGIC model exposed to the guest
368  * called on the first VCPU run.
369  * Also map the virtual CPU interface into the VM.
370  * v2/v3 derivatives call vgic_init if not already done.
371  * vgic_ready() returns true if this function has succeeded.
372  * @kvm: kvm struct pointer
373  */
374 int kvm_vgic_map_resources(struct kvm *kvm)
375 {
376         struct vgic_dist *dist = &kvm->arch.vgic;
377         int ret = 0;
378
379         mutex_lock(&kvm->lock);
380         if (!irqchip_in_kernel(kvm))
381                 goto out;
382
383         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
384                 ret = vgic_v2_map_resources(kvm);
385         else
386                 ret = vgic_v3_map_resources(kvm);
387
388         if (ret)
389                 __kvm_vgic_destroy(kvm);
390
391 out:
392         mutex_unlock(&kvm->lock);
393         return ret;
394 }
395
396 /* GENERIC PROBE */
397
398 static int vgic_init_cpu_starting(unsigned int cpu)
399 {
400         enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
401         return 0;
402 }
403
404
405 static int vgic_init_cpu_dying(unsigned int cpu)
406 {
407         disable_percpu_irq(kvm_vgic_global_state.maint_irq);
408         return 0;
409 }
410
411 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
412 {
413         /*
414          * We cannot rely on the vgic maintenance interrupt to be
415          * delivered synchronously. This means we can only use it to
416          * exit the VM, and we perform the handling of EOIed
417          * interrupts on the exit path (see vgic_process_maintenance).
418          */
419         return IRQ_HANDLED;
420 }
421
422 /**
423  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
424  *
425  * For a specific CPU, initialize the GIC VE hardware.
426  */
427 void kvm_vgic_init_cpu_hardware(void)
428 {
429         BUG_ON(preemptible());
430
431         /*
432          * We want to make sure the list registers start out clear so that we
433          * only have the program the used registers.
434          */
435         if (kvm_vgic_global_state.type == VGIC_V2)
436                 vgic_v2_init_lrs();
437         else
438                 kvm_call_hyp(__vgic_v3_init_lrs);
439 }
440
441 /**
442  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
443  * according to the host GIC model. Accordingly calls either
444  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
445  * instantiated by a guest later on .
446  */
447 int kvm_vgic_hyp_init(void)
448 {
449         const struct gic_kvm_info *gic_kvm_info;
450         int ret;
451
452         gic_kvm_info = gic_get_kvm_info();
453         if (!gic_kvm_info)
454                 return -ENODEV;
455
456         if (!gic_kvm_info->maint_irq) {
457                 kvm_err("No vgic maintenance irq\n");
458                 return -ENXIO;
459         }
460
461         switch (gic_kvm_info->type) {
462         case GIC_V2:
463                 ret = vgic_v2_probe(gic_kvm_info);
464                 break;
465         case GIC_V3:
466                 ret = vgic_v3_probe(gic_kvm_info);
467                 if (!ret) {
468                         static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
469                         kvm_info("GIC system register CPU interface enabled\n");
470                 }
471                 break;
472         default:
473                 ret = -ENODEV;
474         };
475
476         if (ret)
477                 return ret;
478
479         kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
480         ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
481                                  vgic_maintenance_handler,
482                                  "vgic", kvm_get_running_vcpus());
483         if (ret) {
484                 kvm_err("Cannot register interrupt %d\n",
485                         kvm_vgic_global_state.maint_irq);
486                 return ret;
487         }
488
489         ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
490                                 "kvm/arm/vgic:starting",
491                                 vgic_init_cpu_starting, vgic_init_cpu_dying);
492         if (ret) {
493                 kvm_err("Cannot register vgic CPU notifier\n");
494                 goto out_free_irq;
495         }
496
497         kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
498         return 0;
499
500 out_free_irq:
501         free_percpu_irq(kvm_vgic_global_state.maint_irq,
502                         kvm_get_running_vcpus());
503         return ret;
504 }