]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic.c
arm/arm64: KVM: vgic: Fix SGI writes to GICD_I{CS}PENDR0
[karo-tx-linux.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending
40  * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
41  *   bitmap (this bitmap is updated by both user land ioctls and guest
42  *   mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers) and indicate the 'wire' state.
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - The same is true when injecting an interrupt, except that we only
55  *   consider a single interrupt at a time. The irq_spi_cpu array
56  *   contains the target CPU for each SPI.
57  *
58  * The handling of level interrupts adds some extra complexity. We
59  * need to track when the interrupt has been EOIed, so we can sample
60  * the 'line' again. This is achieved as such:
61  *
62  * - When a level interrupt is moved onto a vcpu, the corresponding
63  *   bit in irq_queued is set. As long as this bit is set, the line
64  *   will be ignored for further interrupts. The interrupt is injected
65  *   into the vcpu with the GICH_LR_EOI bit set (generate a
66  *   maintenance interrupt on EOI).
67  * - When the interrupt is EOIed, the maintenance interrupt fires,
68  *   and clears the corresponding bit in irq_queued. This allows the
69  *   interrupt line to be sampled again.
70  * - Note that level-triggered interrupts can also be set to pending from
71  *   writes to GICD_ISPENDRn and lowering the external input line does not
72  *   cause the interrupt to become inactive in such a situation.
73  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
74  *   inactive as long as the external input line is held high.
75  */
76
77 #define VGIC_ADDR_UNDEF         (-1)
78 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
79
80 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
81 #define IMPLEMENTER_ARM         0x43b
82 #define GICC_ARCH_VERSION_V2    0x2
83
84 #define ACCESS_READ_VALUE       (1 << 0)
85 #define ACCESS_READ_RAZ         (0 << 0)
86 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
87 #define ACCESS_WRITE_IGNORED    (0 << 1)
88 #define ACCESS_WRITE_SETBIT     (1 << 1)
89 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
90 #define ACCESS_WRITE_VALUE      (3 << 1)
91 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
92
93 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
94 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
95 static void vgic_update_state(struct kvm *kvm);
96 static void vgic_kick_vcpus(struct kvm *kvm);
97 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
98 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
99 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
100 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
101 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
102
103 static const struct vgic_ops *vgic_ops;
104 static const struct vgic_params *vgic;
105
106 /*
107  * struct vgic_bitmap contains unions that provide two views of
108  * the same data. In one case it is an array of registers of
109  * u32's, and in the other case it is a bitmap of unsigned
110  * longs.
111  *
112  * This does not work on 64-bit BE systems, because the bitmap access
113  * will store two consecutive 32-bit words with the higher-addressed
114  * register's bits at the lower index and the lower-addressed register's
115  * bits at the higher index.
116  *
117  * Therefore, swizzle the register index when accessing the 32-bit word
118  * registers to access the right register's value.
119  */
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE      1
122 #else
123 #define REG_OFFSET_SWIZZLE      0
124 #endif
125
126 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
127                                 int cpuid, u32 offset)
128 {
129         offset >>= 2;
130         if (!offset)
131                 return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
132         else
133                 return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
134 }
135
136 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
137                                    int cpuid, int irq)
138 {
139         if (irq < VGIC_NR_PRIVATE_IRQS)
140                 return test_bit(irq, x->percpu[cpuid].reg_ul);
141
142         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
143 }
144
145 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
146                                     int irq, int val)
147 {
148         unsigned long *reg;
149
150         if (irq < VGIC_NR_PRIVATE_IRQS) {
151                 reg = x->percpu[cpuid].reg_ul;
152         } else {
153                 reg =  x->shared.reg_ul;
154                 irq -= VGIC_NR_PRIVATE_IRQS;
155         }
156
157         if (val)
158                 set_bit(irq, reg);
159         else
160                 clear_bit(irq, reg);
161 }
162
163 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
164 {
165         if (unlikely(cpuid >= VGIC_MAX_CPUS))
166                 return NULL;
167         return x->percpu[cpuid].reg_ul;
168 }
169
170 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
171 {
172         return x->shared.reg_ul;
173 }
174
175 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
176 {
177         offset >>= 2;
178         BUG_ON(offset > (VGIC_NR_IRQS / 4));
179         if (offset < 8)
180                 return x->percpu[cpuid] + offset;
181         else
182                 return x->shared + offset - 8;
183 }
184
185 #define VGIC_CFG_LEVEL  0
186 #define VGIC_CFG_EDGE   1
187
188 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
189 {
190         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
191         int irq_val;
192
193         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
194         return irq_val == VGIC_CFG_EDGE;
195 }
196
197 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
198 {
199         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
200
201         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
202 }
203
204 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
205 {
206         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
207
208         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
209 }
210
211 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
212 {
213         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
214
215         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
216 }
217
218 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
219 {
220         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
221
222         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
223 }
224
225 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
226 {
227         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
228
229         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
230 }
231
232 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
233 {
234         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
235
236         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
237 }
238
239 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
240 {
241         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
242
243         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
244 }
245
246 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
247 {
248         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249
250         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
251 }
252
253 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
254 {
255         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
258 }
259
260 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
261 {
262         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
264         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
265 }
266
267 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
268 {
269         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
272 }
273
274 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
279 }
280
281 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
282 {
283         if (irq < VGIC_NR_PRIVATE_IRQS)
284                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
285         else
286                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
287                         vcpu->arch.vgic_cpu.pending_shared);
288 }
289
290 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
291 {
292         if (irq < VGIC_NR_PRIVATE_IRQS)
293                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
294         else
295                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
296                           vcpu->arch.vgic_cpu.pending_shared);
297 }
298
299 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
300 {
301         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
302 }
303
304 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
305 {
306         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
307 }
308
309 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
310 {
311         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
312 }
313
314 /**
315  * vgic_reg_access - access vgic register
316  * @mmio:   pointer to the data describing the mmio access
317  * @reg:    pointer to the virtual backing of vgic distributor data
318  * @offset: least significant 2 bits used for word offset
319  * @mode:   ACCESS_ mode (see defines above)
320  *
321  * Helper to make vgic register access easier using one of the access
322  * modes defined for vgic register access
323  * (read,raz,write-ignored,setbit,clearbit,write)
324  */
325 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
326                             phys_addr_t offset, int mode)
327 {
328         int word_offset = (offset & 3) * 8;
329         u32 mask = (1UL << (mmio->len * 8)) - 1;
330         u32 regval;
331
332         /*
333          * Any alignment fault should have been delivered to the guest
334          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
335          */
336
337         if (reg) {
338                 regval = *reg;
339         } else {
340                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
341                 regval = 0;
342         }
343
344         if (mmio->is_write) {
345                 u32 data = mmio_data_read(mmio, mask) << word_offset;
346                 switch (ACCESS_WRITE_MASK(mode)) {
347                 case ACCESS_WRITE_IGNORED:
348                         return;
349
350                 case ACCESS_WRITE_SETBIT:
351                         regval |= data;
352                         break;
353
354                 case ACCESS_WRITE_CLEARBIT:
355                         regval &= ~data;
356                         break;
357
358                 case ACCESS_WRITE_VALUE:
359                         regval = (regval & ~(mask << word_offset)) | data;
360                         break;
361                 }
362                 *reg = regval;
363         } else {
364                 switch (ACCESS_READ_MASK(mode)) {
365                 case ACCESS_READ_RAZ:
366                         regval = 0;
367                         /* fall through */
368
369                 case ACCESS_READ_VALUE:
370                         mmio_data_write(mmio, mask, regval >> word_offset);
371                 }
372         }
373 }
374
375 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
376                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
377 {
378         u32 reg;
379         u32 word_offset = offset & 3;
380
381         switch (offset & ~3) {
382         case 0:                 /* GICD_CTLR */
383                 reg = vcpu->kvm->arch.vgic.enabled;
384                 vgic_reg_access(mmio, &reg, word_offset,
385                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
386                 if (mmio->is_write) {
387                         vcpu->kvm->arch.vgic.enabled = reg & 1;
388                         vgic_update_state(vcpu->kvm);
389                         return true;
390                 }
391                 break;
392
393         case 4:                 /* GICD_TYPER */
394                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
395                 reg |= (VGIC_NR_IRQS >> 5) - 1;
396                 vgic_reg_access(mmio, &reg, word_offset,
397                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
398                 break;
399
400         case 8:                 /* GICD_IIDR */
401                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
402                 vgic_reg_access(mmio, &reg, word_offset,
403                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
404                 break;
405         }
406
407         return false;
408 }
409
410 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
411                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
412 {
413         vgic_reg_access(mmio, NULL, offset,
414                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
415         return false;
416 }
417
418 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
419                                        struct kvm_exit_mmio *mmio,
420                                        phys_addr_t offset)
421 {
422         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
423                                        vcpu->vcpu_id, offset);
424         vgic_reg_access(mmio, reg, offset,
425                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
426         if (mmio->is_write) {
427                 vgic_update_state(vcpu->kvm);
428                 return true;
429         }
430
431         return false;
432 }
433
434 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
435                                          struct kvm_exit_mmio *mmio,
436                                          phys_addr_t offset)
437 {
438         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
439                                        vcpu->vcpu_id, offset);
440         vgic_reg_access(mmio, reg, offset,
441                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
442         if (mmio->is_write) {
443                 if (offset < 4) /* Force SGI enabled */
444                         *reg |= 0xffff;
445                 vgic_retire_disabled_irqs(vcpu);
446                 vgic_update_state(vcpu->kvm);
447                 return true;
448         }
449
450         return false;
451 }
452
453 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
454                                         struct kvm_exit_mmio *mmio,
455                                         phys_addr_t offset)
456 {
457         u32 *reg, orig;
458         u32 level_mask;
459         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
460
461         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
462         level_mask = (~(*reg));
463
464         /* Mark both level and edge triggered irqs as pending */
465         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
466         orig = *reg;
467         vgic_reg_access(mmio, reg, offset,
468                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
469
470         if (mmio->is_write) {
471                 /* Set the soft-pending flag only for level-triggered irqs */
472                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
473                                           vcpu->vcpu_id, offset);
474                 vgic_reg_access(mmio, reg, offset,
475                                 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
476                 *reg &= level_mask;
477
478                 /* Ignore writes to SGIs */
479                 if (offset < 2) {
480                         *reg &= ~0xffff;
481                         *reg |= orig & 0xffff;
482                 }
483
484                 vgic_update_state(vcpu->kvm);
485                 return true;
486         }
487
488         return false;
489 }
490
491 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
492                                           struct kvm_exit_mmio *mmio,
493                                           phys_addr_t offset)
494 {
495         u32 *level_active;
496         u32 *reg, orig;
497         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
498
499         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
500         orig = *reg;
501         vgic_reg_access(mmio, reg, offset,
502                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
503         if (mmio->is_write) {
504                 /* Re-set level triggered level-active interrupts */
505                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
506                                           vcpu->vcpu_id, offset);
507                 reg = vgic_bitmap_get_reg(&dist->irq_pending,
508                                           vcpu->vcpu_id, offset);
509                 *reg |= *level_active;
510
511                 /* Ignore writes to SGIs */
512                 if (offset < 2) {
513                         *reg &= ~0xffff;
514                         *reg |= orig & 0xffff;
515                 }
516
517                 /* Clear soft-pending flags */
518                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
519                                           vcpu->vcpu_id, offset);
520                 vgic_reg_access(mmio, reg, offset,
521                                 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
522
523                 vgic_update_state(vcpu->kvm);
524                 return true;
525         }
526
527         return false;
528 }
529
530 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
531                                      struct kvm_exit_mmio *mmio,
532                                      phys_addr_t offset)
533 {
534         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
535                                         vcpu->vcpu_id, offset);
536         vgic_reg_access(mmio, reg, offset,
537                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
538         return false;
539 }
540
541 #define GICD_ITARGETSR_SIZE     32
542 #define GICD_CPUTARGETS_BITS    8
543 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
544 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
545 {
546         struct vgic_dist *dist = &kvm->arch.vgic;
547         int i;
548         u32 val = 0;
549
550         irq -= VGIC_NR_PRIVATE_IRQS;
551
552         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
553                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
554
555         return val;
556 }
557
558 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
559 {
560         struct vgic_dist *dist = &kvm->arch.vgic;
561         struct kvm_vcpu *vcpu;
562         int i, c;
563         unsigned long *bmap;
564         u32 target;
565
566         irq -= VGIC_NR_PRIVATE_IRQS;
567
568         /*
569          * Pick the LSB in each byte. This ensures we target exactly
570          * one vcpu per IRQ. If the byte is null, assume we target
571          * CPU0.
572          */
573         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
574                 int shift = i * GICD_CPUTARGETS_BITS;
575                 target = ffs((val >> shift) & 0xffU);
576                 target = target ? (target - 1) : 0;
577                 dist->irq_spi_cpu[irq + i] = target;
578                 kvm_for_each_vcpu(c, vcpu, kvm) {
579                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
580                         if (c == target)
581                                 set_bit(irq + i, bmap);
582                         else
583                                 clear_bit(irq + i, bmap);
584                 }
585         }
586 }
587
588 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
589                                    struct kvm_exit_mmio *mmio,
590                                    phys_addr_t offset)
591 {
592         u32 reg;
593
594         /* We treat the banked interrupts targets as read-only */
595         if (offset < 32) {
596                 u32 roreg = 1 << vcpu->vcpu_id;
597                 roreg |= roreg << 8;
598                 roreg |= roreg << 16;
599
600                 vgic_reg_access(mmio, &roreg, offset,
601                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
602                 return false;
603         }
604
605         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
606         vgic_reg_access(mmio, &reg, offset,
607                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
608         if (mmio->is_write) {
609                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
610                 vgic_update_state(vcpu->kvm);
611                 return true;
612         }
613
614         return false;
615 }
616
617 static u32 vgic_cfg_expand(u16 val)
618 {
619         u32 res = 0;
620         int i;
621
622         /*
623          * Turn a 16bit value like abcd...mnop into a 32bit word
624          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
625          */
626         for (i = 0; i < 16; i++)
627                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
628
629         return res;
630 }
631
632 static u16 vgic_cfg_compress(u32 val)
633 {
634         u16 res = 0;
635         int i;
636
637         /*
638          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
639          * abcd...mnop which is what we really care about.
640          */
641         for (i = 0; i < 16; i++)
642                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
643
644         return res;
645 }
646
647 /*
648  * The distributor uses 2 bits per IRQ for the CFG register, but the
649  * LSB is always 0. As such, we only keep the upper bit, and use the
650  * two above functions to compress/expand the bits
651  */
652 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
653                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
654 {
655         u32 val;
656         u32 *reg;
657
658         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
659                                   vcpu->vcpu_id, offset >> 1);
660
661         if (offset & 4)
662                 val = *reg >> 16;
663         else
664                 val = *reg & 0xffff;
665
666         val = vgic_cfg_expand(val);
667         vgic_reg_access(mmio, &val, offset,
668                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
669         if (mmio->is_write) {
670                 if (offset < 8) {
671                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
672                         return false;
673                 }
674
675                 val = vgic_cfg_compress(val);
676                 if (offset & 4) {
677                         *reg &= 0xffff;
678                         *reg |= val << 16;
679                 } else {
680                         *reg &= 0xffff << 16;
681                         *reg |= val;
682                 }
683         }
684
685         return false;
686 }
687
688 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
689                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
690 {
691         u32 reg;
692         vgic_reg_access(mmio, &reg, offset,
693                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
694         if (mmio->is_write) {
695                 vgic_dispatch_sgi(vcpu, reg);
696                 vgic_update_state(vcpu->kvm);
697                 return true;
698         }
699
700         return false;
701 }
702
703 /**
704  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
705  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
706  *
707  * Move any pending IRQs that have already been assigned to LRs back to the
708  * emulated distributor state so that the complete emulated state can be read
709  * from the main emulation structures without investigating the LRs.
710  *
711  * Note that IRQs in the active state in the LRs get their pending state moved
712  * to the distributor but the active state stays in the LRs, because we don't
713  * track the active state on the distributor side.
714  */
715 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
716 {
717         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
718         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
719         int vcpu_id = vcpu->vcpu_id;
720         int i;
721
722         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
723                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
724
725                 /*
726                  * There are three options for the state bits:
727                  *
728                  * 01: pending
729                  * 10: active
730                  * 11: pending and active
731                  *
732                  * If the LR holds only an active interrupt (not pending) then
733                  * just leave it alone.
734                  */
735                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
736                         continue;
737
738                 /*
739                  * Reestablish the pending state on the distributor and the
740                  * CPU interface.  It may have already been pending, but that
741                  * is fine, then we are only setting a few bits that were
742                  * already set.
743                  */
744                 vgic_dist_irq_set_pending(vcpu, lr.irq);
745                 if (lr.irq < VGIC_NR_SGIS)
746                         dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
747                 lr.state &= ~LR_STATE_PENDING;
748                 vgic_set_lr(vcpu, i, lr);
749
750                 /*
751                  * If there's no state left on the LR (it could still be
752                  * active), then the LR does not hold any useful info and can
753                  * be marked as free for other use.
754                  */
755                 if (!(lr.state & LR_STATE_MASK)) {
756                         vgic_retire_lr(i, lr.irq, vcpu);
757                         vgic_irq_clear_queued(vcpu, lr.irq);
758                 }
759
760                 /* Finally update the VGIC state. */
761                 vgic_update_state(vcpu->kvm);
762         }
763 }
764
765 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
766 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
767                                         struct kvm_exit_mmio *mmio,
768                                         phys_addr_t offset)
769 {
770         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
771         int sgi;
772         int min_sgi = (offset & ~0x3) * 4;
773         int max_sgi = min_sgi + 3;
774         int vcpu_id = vcpu->vcpu_id;
775         u32 reg = 0;
776
777         /* Copy source SGIs from distributor side */
778         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
779                 int shift = 8 * (sgi - min_sgi);
780                 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
781         }
782
783         mmio_data_write(mmio, ~0, reg);
784         return false;
785 }
786
787 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
788                                          struct kvm_exit_mmio *mmio,
789                                          phys_addr_t offset, bool set)
790 {
791         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
792         int sgi;
793         int min_sgi = (offset & ~0x3) * 4;
794         int max_sgi = min_sgi + 3;
795         int vcpu_id = vcpu->vcpu_id;
796         u32 reg;
797         bool updated = false;
798
799         reg = mmio_data_read(mmio, ~0);
800
801         /* Clear pending SGIs on the distributor */
802         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
803                 u8 mask = reg >> (8 * (sgi - min_sgi));
804                 if (set) {
805                         if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
806                                 updated = true;
807                         dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
808                 } else {
809                         if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
810                                 updated = true;
811                         dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
812                 }
813         }
814
815         if (updated)
816                 vgic_update_state(vcpu->kvm);
817
818         return updated;
819 }
820
821 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
822                                 struct kvm_exit_mmio *mmio,
823                                 phys_addr_t offset)
824 {
825         if (!mmio->is_write)
826                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
827         else
828                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
829 }
830
831 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
832                                   struct kvm_exit_mmio *mmio,
833                                   phys_addr_t offset)
834 {
835         if (!mmio->is_write)
836                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
837         else
838                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
839 }
840
841 /*
842  * I would have liked to use the kvm_bus_io_*() API instead, but it
843  * cannot cope with banked registers (only the VM pointer is passed
844  * around, and we need the vcpu). One of these days, someone please
845  * fix it!
846  */
847 struct mmio_range {
848         phys_addr_t base;
849         unsigned long len;
850         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
851                             phys_addr_t offset);
852 };
853
854 static const struct mmio_range vgic_dist_ranges[] = {
855         {
856                 .base           = GIC_DIST_CTRL,
857                 .len            = 12,
858                 .handle_mmio    = handle_mmio_misc,
859         },
860         {
861                 .base           = GIC_DIST_IGROUP,
862                 .len            = VGIC_NR_IRQS / 8,
863                 .handle_mmio    = handle_mmio_raz_wi,
864         },
865         {
866                 .base           = GIC_DIST_ENABLE_SET,
867                 .len            = VGIC_NR_IRQS / 8,
868                 .handle_mmio    = handle_mmio_set_enable_reg,
869         },
870         {
871                 .base           = GIC_DIST_ENABLE_CLEAR,
872                 .len            = VGIC_NR_IRQS / 8,
873                 .handle_mmio    = handle_mmio_clear_enable_reg,
874         },
875         {
876                 .base           = GIC_DIST_PENDING_SET,
877                 .len            = VGIC_NR_IRQS / 8,
878                 .handle_mmio    = handle_mmio_set_pending_reg,
879         },
880         {
881                 .base           = GIC_DIST_PENDING_CLEAR,
882                 .len            = VGIC_NR_IRQS / 8,
883                 .handle_mmio    = handle_mmio_clear_pending_reg,
884         },
885         {
886                 .base           = GIC_DIST_ACTIVE_SET,
887                 .len            = VGIC_NR_IRQS / 8,
888                 .handle_mmio    = handle_mmio_raz_wi,
889         },
890         {
891                 .base           = GIC_DIST_ACTIVE_CLEAR,
892                 .len            = VGIC_NR_IRQS / 8,
893                 .handle_mmio    = handle_mmio_raz_wi,
894         },
895         {
896                 .base           = GIC_DIST_PRI,
897                 .len            = VGIC_NR_IRQS,
898                 .handle_mmio    = handle_mmio_priority_reg,
899         },
900         {
901                 .base           = GIC_DIST_TARGET,
902                 .len            = VGIC_NR_IRQS,
903                 .handle_mmio    = handle_mmio_target_reg,
904         },
905         {
906                 .base           = GIC_DIST_CONFIG,
907                 .len            = VGIC_NR_IRQS / 4,
908                 .handle_mmio    = handle_mmio_cfg_reg,
909         },
910         {
911                 .base           = GIC_DIST_SOFTINT,
912                 .len            = 4,
913                 .handle_mmio    = handle_mmio_sgi_reg,
914         },
915         {
916                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
917                 .len            = VGIC_NR_SGIS,
918                 .handle_mmio    = handle_mmio_sgi_clear,
919         },
920         {
921                 .base           = GIC_DIST_SGI_PENDING_SET,
922                 .len            = VGIC_NR_SGIS,
923                 .handle_mmio    = handle_mmio_sgi_set,
924         },
925         {}
926 };
927
928 static const
929 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
930                                        struct kvm_exit_mmio *mmio,
931                                        phys_addr_t offset)
932 {
933         const struct mmio_range *r = ranges;
934
935         while (r->len) {
936                 if (offset >= r->base &&
937                     (offset + mmio->len) <= (r->base + r->len))
938                         return r;
939                 r++;
940         }
941
942         return NULL;
943 }
944
945 /**
946  * vgic_handle_mmio - handle an in-kernel MMIO access
947  * @vcpu:       pointer to the vcpu performing the access
948  * @run:        pointer to the kvm_run structure
949  * @mmio:       pointer to the data describing the access
950  *
951  * returns true if the MMIO access has been performed in kernel space,
952  * and false if it needs to be emulated in user space.
953  */
954 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
955                       struct kvm_exit_mmio *mmio)
956 {
957         const struct mmio_range *range;
958         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
959         unsigned long base = dist->vgic_dist_base;
960         bool updated_state;
961         unsigned long offset;
962
963         if (!irqchip_in_kernel(vcpu->kvm) ||
964             mmio->phys_addr < base ||
965             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
966                 return false;
967
968         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
969         if (mmio->len > 4) {
970                 kvm_inject_dabt(vcpu, mmio->phys_addr);
971                 return true;
972         }
973
974         offset = mmio->phys_addr - base;
975         range = find_matching_range(vgic_dist_ranges, mmio, offset);
976         if (unlikely(!range || !range->handle_mmio)) {
977                 pr_warn("Unhandled access %d %08llx %d\n",
978                         mmio->is_write, mmio->phys_addr, mmio->len);
979                 return false;
980         }
981
982         spin_lock(&vcpu->kvm->arch.vgic.lock);
983         offset = mmio->phys_addr - range->base - base;
984         updated_state = range->handle_mmio(vcpu, mmio, offset);
985         spin_unlock(&vcpu->kvm->arch.vgic.lock);
986         kvm_prepare_mmio(run, mmio);
987         kvm_handle_mmio_return(vcpu, run);
988
989         if (updated_state)
990                 vgic_kick_vcpus(vcpu->kvm);
991
992         return true;
993 }
994
995 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
996 {
997         struct kvm *kvm = vcpu->kvm;
998         struct vgic_dist *dist = &kvm->arch.vgic;
999         int nrcpus = atomic_read(&kvm->online_vcpus);
1000         u8 target_cpus;
1001         int sgi, mode, c, vcpu_id;
1002
1003         vcpu_id = vcpu->vcpu_id;
1004
1005         sgi = reg & 0xf;
1006         target_cpus = (reg >> 16) & 0xff;
1007         mode = (reg >> 24) & 3;
1008
1009         switch (mode) {
1010         case 0:
1011                 if (!target_cpus)
1012                         return;
1013                 break;
1014
1015         case 1:
1016                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1017                 break;
1018
1019         case 2:
1020                 target_cpus = 1 << vcpu_id;
1021                 break;
1022         }
1023
1024         kvm_for_each_vcpu(c, vcpu, kvm) {
1025                 if (target_cpus & 1) {
1026                         /* Flag the SGI as pending */
1027                         vgic_dist_irq_set_pending(vcpu, sgi);
1028                         dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
1029                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1030                 }
1031
1032                 target_cpus >>= 1;
1033         }
1034 }
1035
1036 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1037 {
1038         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1039         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1040         unsigned long pending_private, pending_shared;
1041         int vcpu_id;
1042
1043         vcpu_id = vcpu->vcpu_id;
1044         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1045         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1046
1047         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1048         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1049         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1050
1051         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1052         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1053         bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
1054         bitmap_and(pend_shared, pend_shared,
1055                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1056                    VGIC_NR_SHARED_IRQS);
1057
1058         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1059         pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
1060         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1061                 pending_shared < VGIC_NR_SHARED_IRQS);
1062 }
1063
1064 /*
1065  * Update the interrupt state and determine which CPUs have pending
1066  * interrupts. Must be called with distributor lock held.
1067  */
1068 static void vgic_update_state(struct kvm *kvm)
1069 {
1070         struct vgic_dist *dist = &kvm->arch.vgic;
1071         struct kvm_vcpu *vcpu;
1072         int c;
1073
1074         if (!dist->enabled) {
1075                 set_bit(0, &dist->irq_pending_on_cpu);
1076                 return;
1077         }
1078
1079         kvm_for_each_vcpu(c, vcpu, kvm) {
1080                 if (compute_pending_for_cpu(vcpu)) {
1081                         pr_debug("CPU%d has pending interrupts\n", c);
1082                         set_bit(c, &dist->irq_pending_on_cpu);
1083                 }
1084         }
1085 }
1086
1087 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1088 {
1089         return vgic_ops->get_lr(vcpu, lr);
1090 }
1091
1092 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1093                                struct vgic_lr vlr)
1094 {
1095         vgic_ops->set_lr(vcpu, lr, vlr);
1096 }
1097
1098 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1099                                struct vgic_lr vlr)
1100 {
1101         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1102 }
1103
1104 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1105 {
1106         return vgic_ops->get_elrsr(vcpu);
1107 }
1108
1109 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1110 {
1111         return vgic_ops->get_eisr(vcpu);
1112 }
1113
1114 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1115 {
1116         return vgic_ops->get_interrupt_status(vcpu);
1117 }
1118
1119 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1120 {
1121         vgic_ops->enable_underflow(vcpu);
1122 }
1123
1124 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1125 {
1126         vgic_ops->disable_underflow(vcpu);
1127 }
1128
1129 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1130 {
1131         vgic_ops->get_vmcr(vcpu, vmcr);
1132 }
1133
1134 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1135 {
1136         vgic_ops->set_vmcr(vcpu, vmcr);
1137 }
1138
1139 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1140 {
1141         vgic_ops->enable(vcpu);
1142 }
1143
1144 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1145 {
1146         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1147         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1148
1149         vlr.state = 0;
1150         vgic_set_lr(vcpu, lr_nr, vlr);
1151         clear_bit(lr_nr, vgic_cpu->lr_used);
1152         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1153 }
1154
1155 /*
1156  * An interrupt may have been disabled after being made pending on the
1157  * CPU interface (the classic case is a timer running while we're
1158  * rebooting the guest - the interrupt would kick as soon as the CPU
1159  * interface gets enabled, with deadly consequences).
1160  *
1161  * The solution is to examine already active LRs, and check the
1162  * interrupt is still enabled. If not, just retire it.
1163  */
1164 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1165 {
1166         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1167         int lr;
1168
1169         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1170                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1171
1172                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1173                         vgic_retire_lr(lr, vlr.irq, vcpu);
1174                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1175                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1176                 }
1177         }
1178 }
1179
1180 /*
1181  * Queue an interrupt to a CPU virtual interface. Return true on success,
1182  * or false if it wasn't possible to queue it.
1183  */
1184 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1185 {
1186         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1187         struct vgic_lr vlr;
1188         int lr;
1189
1190         /* Sanitize the input... */
1191         BUG_ON(sgi_source_id & ~7);
1192         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1193         BUG_ON(irq >= VGIC_NR_IRQS);
1194
1195         kvm_debug("Queue IRQ%d\n", irq);
1196
1197         lr = vgic_cpu->vgic_irq_lr_map[irq];
1198
1199         /* Do we have an active interrupt for the same CPUID? */
1200         if (lr != LR_EMPTY) {
1201                 vlr = vgic_get_lr(vcpu, lr);
1202                 if (vlr.source == sgi_source_id) {
1203                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1204                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1205                         vlr.state |= LR_STATE_PENDING;
1206                         vgic_set_lr(vcpu, lr, vlr);
1207                         return true;
1208                 }
1209         }
1210
1211         /* Try to use another LR for this interrupt */
1212         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1213                                vgic->nr_lr);
1214         if (lr >= vgic->nr_lr)
1215                 return false;
1216
1217         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1218         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1219         set_bit(lr, vgic_cpu->lr_used);
1220
1221         vlr.irq = irq;
1222         vlr.source = sgi_source_id;
1223         vlr.state = LR_STATE_PENDING;
1224         if (!vgic_irq_is_edge(vcpu, irq))
1225                 vlr.state |= LR_EOI_INT;
1226
1227         vgic_set_lr(vcpu, lr, vlr);
1228
1229         return true;
1230 }
1231
1232 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1233 {
1234         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1235         unsigned long sources;
1236         int vcpu_id = vcpu->vcpu_id;
1237         int c;
1238
1239         sources = dist->irq_sgi_sources[vcpu_id][irq];
1240
1241         for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1242                 if (vgic_queue_irq(vcpu, c, irq))
1243                         clear_bit(c, &sources);
1244         }
1245
1246         dist->irq_sgi_sources[vcpu_id][irq] = sources;
1247
1248         /*
1249          * If the sources bitmap has been cleared it means that we
1250          * could queue all the SGIs onto link registers (see the
1251          * clear_bit above), and therefore we are done with them in
1252          * our emulated gic and can get rid of them.
1253          */
1254         if (!sources) {
1255                 vgic_dist_irq_clear_pending(vcpu, irq);
1256                 vgic_cpu_irq_clear(vcpu, irq);
1257                 return true;
1258         }
1259
1260         return false;
1261 }
1262
1263 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1264 {
1265         if (!vgic_can_sample_irq(vcpu, irq))
1266                 return true; /* level interrupt, already queued */
1267
1268         if (vgic_queue_irq(vcpu, 0, irq)) {
1269                 if (vgic_irq_is_edge(vcpu, irq)) {
1270                         vgic_dist_irq_clear_pending(vcpu, irq);
1271                         vgic_cpu_irq_clear(vcpu, irq);
1272                 } else {
1273                         vgic_irq_set_queued(vcpu, irq);
1274                 }
1275
1276                 return true;
1277         }
1278
1279         return false;
1280 }
1281
1282 /*
1283  * Fill the list registers with pending interrupts before running the
1284  * guest.
1285  */
1286 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1287 {
1288         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1289         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1290         int i, vcpu_id;
1291         int overflow = 0;
1292
1293         vcpu_id = vcpu->vcpu_id;
1294
1295         /*
1296          * We may not have any pending interrupt, or the interrupts
1297          * may have been serviced from another vcpu. In all cases,
1298          * move along.
1299          */
1300         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1301                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1302                 goto epilog;
1303         }
1304
1305         /* SGIs */
1306         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1307                 if (!vgic_queue_sgi(vcpu, i))
1308                         overflow = 1;
1309         }
1310
1311         /* PPIs */
1312         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1313                 if (!vgic_queue_hwirq(vcpu, i))
1314                         overflow = 1;
1315         }
1316
1317         /* SPIs */
1318         for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1319                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1320                         overflow = 1;
1321         }
1322
1323 epilog:
1324         if (overflow) {
1325                 vgic_enable_underflow(vcpu);
1326         } else {
1327                 vgic_disable_underflow(vcpu);
1328                 /*
1329                  * We're about to run this VCPU, and we've consumed
1330                  * everything the distributor had in store for
1331                  * us. Claim we don't have anything pending. We'll
1332                  * adjust that if needed while exiting.
1333                  */
1334                 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1335         }
1336 }
1337
1338 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1339 {
1340         u32 status = vgic_get_interrupt_status(vcpu);
1341         bool level_pending = false;
1342
1343         kvm_debug("STATUS = %08x\n", status);
1344
1345         if (status & INT_STATUS_EOI) {
1346                 /*
1347                  * Some level interrupts have been EOIed. Clear their
1348                  * active bit.
1349                  */
1350                 u64 eisr = vgic_get_eisr(vcpu);
1351                 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1352                 int lr;
1353
1354                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1355                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1356                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1357
1358                         vgic_irq_clear_queued(vcpu, vlr.irq);
1359                         WARN_ON(vlr.state & LR_STATE_MASK);
1360                         vlr.state = 0;
1361                         vgic_set_lr(vcpu, lr, vlr);
1362
1363                         /*
1364                          * If the IRQ was EOIed it was also ACKed and we we
1365                          * therefore assume we can clear the soft pending
1366                          * state (should it had been set) for this interrupt.
1367                          *
1368                          * Note: if the IRQ soft pending state was set after
1369                          * the IRQ was acked, it actually shouldn't be
1370                          * cleared, but we have no way of knowing that unless
1371                          * we start trapping ACKs when the soft-pending state
1372                          * is set.
1373                          */
1374                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1375
1376                         /* Any additional pending interrupt? */
1377                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1378                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1379                                 level_pending = true;
1380                         } else {
1381                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1382                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1383                         }
1384
1385                         /*
1386                          * Despite being EOIed, the LR may not have
1387                          * been marked as empty.
1388                          */
1389                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1390                 }
1391         }
1392
1393         if (status & INT_STATUS_UNDERFLOW)
1394                 vgic_disable_underflow(vcpu);
1395
1396         return level_pending;
1397 }
1398
1399 /*
1400  * Sync back the VGIC state after a guest run. The distributor lock is
1401  * needed so we don't get preempted in the middle of the state processing.
1402  */
1403 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1404 {
1405         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1406         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1407         u64 elrsr;
1408         unsigned long *elrsr_ptr;
1409         int lr, pending;
1410         bool level_pending;
1411
1412         level_pending = vgic_process_maintenance(vcpu);
1413         elrsr = vgic_get_elrsr(vcpu);
1414         elrsr_ptr = (unsigned long *)&elrsr;
1415
1416         /* Clear mappings for empty LRs */
1417         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1418                 struct vgic_lr vlr;
1419
1420                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1421                         continue;
1422
1423                 vlr = vgic_get_lr(vcpu, lr);
1424
1425                 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1426                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1427         }
1428
1429         /* Check if we still have something up our sleeve... */
1430         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1431         if (level_pending || pending < vgic->nr_lr)
1432                 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1433 }
1434
1435 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1436 {
1437         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1438
1439         if (!irqchip_in_kernel(vcpu->kvm))
1440                 return;
1441
1442         spin_lock(&dist->lock);
1443         __kvm_vgic_flush_hwstate(vcpu);
1444         spin_unlock(&dist->lock);
1445 }
1446
1447 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1448 {
1449         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1450
1451         if (!irqchip_in_kernel(vcpu->kvm))
1452                 return;
1453
1454         spin_lock(&dist->lock);
1455         __kvm_vgic_sync_hwstate(vcpu);
1456         spin_unlock(&dist->lock);
1457 }
1458
1459 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1460 {
1461         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1462
1463         if (!irqchip_in_kernel(vcpu->kvm))
1464                 return 0;
1465
1466         return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1467 }
1468
1469 static void vgic_kick_vcpus(struct kvm *kvm)
1470 {
1471         struct kvm_vcpu *vcpu;
1472         int c;
1473
1474         /*
1475          * We've injected an interrupt, time to find out who deserves
1476          * a good kick...
1477          */
1478         kvm_for_each_vcpu(c, vcpu, kvm) {
1479                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1480                         kvm_vcpu_kick(vcpu);
1481         }
1482 }
1483
1484 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1485 {
1486         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1487
1488         /*
1489          * Only inject an interrupt if:
1490          * - edge triggered and we have a rising edge
1491          * - level triggered and we change level
1492          */
1493         if (edge_triggered) {
1494                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1495                 return level > state;
1496         } else {
1497                 int state = vgic_dist_irq_get_level(vcpu, irq);
1498                 return level != state;
1499         }
1500 }
1501
1502 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1503                                   unsigned int irq_num, bool level)
1504 {
1505         struct vgic_dist *dist = &kvm->arch.vgic;
1506         struct kvm_vcpu *vcpu;
1507         int edge_triggered, level_triggered;
1508         int enabled;
1509         bool ret = true;
1510
1511         spin_lock(&dist->lock);
1512
1513         vcpu = kvm_get_vcpu(kvm, cpuid);
1514         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1515         level_triggered = !edge_triggered;
1516
1517         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1518                 ret = false;
1519                 goto out;
1520         }
1521
1522         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1523                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1524                 vcpu = kvm_get_vcpu(kvm, cpuid);
1525         }
1526
1527         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1528
1529         if (level) {
1530                 if (level_triggered)
1531                         vgic_dist_irq_set_level(vcpu, irq_num);
1532                 vgic_dist_irq_set_pending(vcpu, irq_num);
1533         } else {
1534                 if (level_triggered) {
1535                         vgic_dist_irq_clear_level(vcpu, irq_num);
1536                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1537                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1538                 } else {
1539                         vgic_dist_irq_clear_pending(vcpu, irq_num);
1540                 }
1541         }
1542
1543         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1544
1545         if (!enabled) {
1546                 ret = false;
1547                 goto out;
1548         }
1549
1550         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1551                 /*
1552                  * Level interrupt in progress, will be picked up
1553                  * when EOId.
1554                  */
1555                 ret = false;
1556                 goto out;
1557         }
1558
1559         if (level) {
1560                 vgic_cpu_irq_set(vcpu, irq_num);
1561                 set_bit(cpuid, &dist->irq_pending_on_cpu);
1562         }
1563
1564 out:
1565         spin_unlock(&dist->lock);
1566
1567         return ret;
1568 }
1569
1570 /**
1571  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1572  * @kvm:     The VM structure pointer
1573  * @cpuid:   The CPU for PPIs
1574  * @irq_num: The IRQ number that is assigned to the device
1575  * @level:   Edge-triggered:  true:  to trigger the interrupt
1576  *                            false: to ignore the call
1577  *           Level-sensitive  true:  activates an interrupt
1578  *                            false: deactivates an interrupt
1579  *
1580  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1581  * level-sensitive interrupts.  You can think of the level parameter as 1
1582  * being HIGH and 0 being LOW and all devices being active-HIGH.
1583  */
1584 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1585                         bool level)
1586 {
1587         if (vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1588                 vgic_kick_vcpus(kvm);
1589
1590         return 0;
1591 }
1592
1593 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1594 {
1595         /*
1596          * We cannot rely on the vgic maintenance interrupt to be
1597          * delivered synchronously. This means we can only use it to
1598          * exit the VM, and we perform the handling of EOIed
1599          * interrupts on the exit path (see vgic_process_maintenance).
1600          */
1601         return IRQ_HANDLED;
1602 }
1603
1604 /**
1605  * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1606  * @vcpu: pointer to the vcpu struct
1607  *
1608  * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1609  * this vcpu and enable the VGIC for this VCPU
1610  */
1611 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1612 {
1613         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1614         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1615         int i;
1616
1617         if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1618                 return -EBUSY;
1619
1620         for (i = 0; i < VGIC_NR_IRQS; i++) {
1621                 if (i < VGIC_NR_PPIS)
1622                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1623                                                 vcpu->vcpu_id, i, 1);
1624                 if (i < VGIC_NR_PRIVATE_IRQS)
1625                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1626                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1627
1628                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1629         }
1630
1631         /*
1632          * Store the number of LRs per vcpu, so we don't have to go
1633          * all the way to the distributor structure to find out. Only
1634          * assembly code should use this one.
1635          */
1636         vgic_cpu->nr_lr = vgic->nr_lr;
1637
1638         vgic_enable(vcpu);
1639
1640         return 0;
1641 }
1642
1643 /**
1644  * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1645  * @kvm: pointer to the kvm struct
1646  *
1647  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1648  * can't do this at creation time, because user space must first set the
1649  * virtual CPU interface address in the guest physical address space.  Also
1650  * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1651  */
1652 int kvm_vgic_init(struct kvm *kvm)
1653 {
1654         int ret = 0, i;
1655
1656         if (!irqchip_in_kernel(kvm))
1657                 return 0;
1658
1659         mutex_lock(&kvm->lock);
1660
1661         if (vgic_initialized(kvm))
1662                 goto out;
1663
1664         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1665             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1666                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1667                 ret = -ENXIO;
1668                 goto out;
1669         }
1670
1671         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1672                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1673         if (ret) {
1674                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1675                 goto out;
1676         }
1677
1678         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1679                 vgic_set_target_reg(kvm, 0, i);
1680
1681         kvm->arch.vgic.ready = true;
1682 out:
1683         mutex_unlock(&kvm->lock);
1684         return ret;
1685 }
1686
1687 int kvm_vgic_create(struct kvm *kvm)
1688 {
1689         int i, vcpu_lock_idx = -1, ret = 0;
1690         struct kvm_vcpu *vcpu;
1691
1692         mutex_lock(&kvm->lock);
1693
1694         if (kvm->arch.vgic.vctrl_base) {
1695                 ret = -EEXIST;
1696                 goto out;
1697         }
1698
1699         /*
1700          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1701          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1702          * that no other VCPUs are run while we create the vgic.
1703          */
1704         kvm_for_each_vcpu(i, vcpu, kvm) {
1705                 if (!mutex_trylock(&vcpu->mutex))
1706                         goto out_unlock;
1707                 vcpu_lock_idx = i;
1708         }
1709
1710         kvm_for_each_vcpu(i, vcpu, kvm) {
1711                 if (vcpu->arch.has_run_once) {
1712                         ret = -EBUSY;
1713                         goto out_unlock;
1714                 }
1715         }
1716
1717         spin_lock_init(&kvm->arch.vgic.lock);
1718         kvm->arch.vgic.in_kernel = true;
1719         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1720         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1721         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1722
1723 out_unlock:
1724         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1725                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1726                 mutex_unlock(&vcpu->mutex);
1727         }
1728
1729 out:
1730         mutex_unlock(&kvm->lock);
1731         return ret;
1732 }
1733
1734 static int vgic_ioaddr_overlap(struct kvm *kvm)
1735 {
1736         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1737         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1738
1739         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1740                 return 0;
1741         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1742             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1743                 return -EBUSY;
1744         return 0;
1745 }
1746
1747 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1748                               phys_addr_t addr, phys_addr_t size)
1749 {
1750         int ret;
1751
1752         if (addr & ~KVM_PHYS_MASK)
1753                 return -E2BIG;
1754
1755         if (addr & (SZ_4K - 1))
1756                 return -EINVAL;
1757
1758         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1759                 return -EEXIST;
1760         if (addr + size < addr)
1761                 return -EINVAL;
1762
1763         *ioaddr = addr;
1764         ret = vgic_ioaddr_overlap(kvm);
1765         if (ret)
1766                 *ioaddr = VGIC_ADDR_UNDEF;
1767
1768         return ret;
1769 }
1770
1771 /**
1772  * kvm_vgic_addr - set or get vgic VM base addresses
1773  * @kvm:   pointer to the vm struct
1774  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1775  * @addr:  pointer to address value
1776  * @write: if true set the address in the VM address space, if false read the
1777  *          address
1778  *
1779  * Set or get the vgic base addresses for the distributor and the virtual CPU
1780  * interface in the VM physical address space.  These addresses are properties
1781  * of the emulated core/SoC and therefore user space initially knows this
1782  * information.
1783  */
1784 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1785 {
1786         int r = 0;
1787         struct vgic_dist *vgic = &kvm->arch.vgic;
1788
1789         mutex_lock(&kvm->lock);
1790         switch (type) {
1791         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1792                 if (write) {
1793                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1794                                                *addr, KVM_VGIC_V2_DIST_SIZE);
1795                 } else {
1796                         *addr = vgic->vgic_dist_base;
1797                 }
1798                 break;
1799         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1800                 if (write) {
1801                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1802                                                *addr, KVM_VGIC_V2_CPU_SIZE);
1803                 } else {
1804                         *addr = vgic->vgic_cpu_base;
1805                 }
1806                 break;
1807         default:
1808                 r = -ENODEV;
1809         }
1810
1811         mutex_unlock(&kvm->lock);
1812         return r;
1813 }
1814
1815 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1816                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
1817 {
1818         bool updated = false;
1819         struct vgic_vmcr vmcr;
1820         u32 *vmcr_field;
1821         u32 reg;
1822
1823         vgic_get_vmcr(vcpu, &vmcr);
1824
1825         switch (offset & ~0x3) {
1826         case GIC_CPU_CTRL:
1827                 vmcr_field = &vmcr.ctlr;
1828                 break;
1829         case GIC_CPU_PRIMASK:
1830                 vmcr_field = &vmcr.pmr;
1831                 break;
1832         case GIC_CPU_BINPOINT:
1833                 vmcr_field = &vmcr.bpr;
1834                 break;
1835         case GIC_CPU_ALIAS_BINPOINT:
1836                 vmcr_field = &vmcr.abpr;
1837                 break;
1838         default:
1839                 BUG();
1840         }
1841
1842         if (!mmio->is_write) {
1843                 reg = *vmcr_field;
1844                 mmio_data_write(mmio, ~0, reg);
1845         } else {
1846                 reg = mmio_data_read(mmio, ~0);
1847                 if (reg != *vmcr_field) {
1848                         *vmcr_field = reg;
1849                         vgic_set_vmcr(vcpu, &vmcr);
1850                         updated = true;
1851                 }
1852         }
1853         return updated;
1854 }
1855
1856 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1857                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
1858 {
1859         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1860 }
1861
1862 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1863                                   struct kvm_exit_mmio *mmio,
1864                                   phys_addr_t offset)
1865 {
1866         u32 reg;
1867
1868         if (mmio->is_write)
1869                 return false;
1870
1871         /* GICC_IIDR */
1872         reg = (PRODUCT_ID_KVM << 20) |
1873               (GICC_ARCH_VERSION_V2 << 16) |
1874               (IMPLEMENTER_ARM << 0);
1875         mmio_data_write(mmio, ~0, reg);
1876         return false;
1877 }
1878
1879 /*
1880  * CPU Interface Register accesses - these are not accessed by the VM, but by
1881  * user space for saving and restoring VGIC state.
1882  */
1883 static const struct mmio_range vgic_cpu_ranges[] = {
1884         {
1885                 .base           = GIC_CPU_CTRL,
1886                 .len            = 12,
1887                 .handle_mmio    = handle_cpu_mmio_misc,
1888         },
1889         {
1890                 .base           = GIC_CPU_ALIAS_BINPOINT,
1891                 .len            = 4,
1892                 .handle_mmio    = handle_mmio_abpr,
1893         },
1894         {
1895                 .base           = GIC_CPU_ACTIVEPRIO,
1896                 .len            = 16,
1897                 .handle_mmio    = handle_mmio_raz_wi,
1898         },
1899         {
1900                 .base           = GIC_CPU_IDENT,
1901                 .len            = 4,
1902                 .handle_mmio    = handle_cpu_mmio_ident,
1903         },
1904 };
1905
1906 static int vgic_attr_regs_access(struct kvm_device *dev,
1907                                  struct kvm_device_attr *attr,
1908                                  u32 *reg, bool is_write)
1909 {
1910         const struct mmio_range *r = NULL, *ranges;
1911         phys_addr_t offset;
1912         int ret, cpuid, c;
1913         struct kvm_vcpu *vcpu, *tmp_vcpu;
1914         struct vgic_dist *vgic;
1915         struct kvm_exit_mmio mmio;
1916
1917         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1918         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1919                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1920
1921         mutex_lock(&dev->kvm->lock);
1922
1923         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1924                 ret = -EINVAL;
1925                 goto out;
1926         }
1927
1928         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1929         vgic = &dev->kvm->arch.vgic;
1930
1931         mmio.len = 4;
1932         mmio.is_write = is_write;
1933         if (is_write)
1934                 mmio_data_write(&mmio, ~0, *reg);
1935         switch (attr->group) {
1936         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1937                 mmio.phys_addr = vgic->vgic_dist_base + offset;
1938                 ranges = vgic_dist_ranges;
1939                 break;
1940         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1941                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1942                 ranges = vgic_cpu_ranges;
1943                 break;
1944         default:
1945                 BUG();
1946         }
1947         r = find_matching_range(ranges, &mmio, offset);
1948
1949         if (unlikely(!r || !r->handle_mmio)) {
1950                 ret = -ENXIO;
1951                 goto out;
1952         }
1953
1954
1955         spin_lock(&vgic->lock);
1956
1957         /*
1958          * Ensure that no other VCPU is running by checking the vcpu->cpu
1959          * field.  If no other VPCUs are running we can safely access the VGIC
1960          * state, because even if another VPU is run after this point, that
1961          * VCPU will not touch the vgic state, because it will block on
1962          * getting the vgic->lock in kvm_vgic_sync_hwstate().
1963          */
1964         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1965                 if (unlikely(tmp_vcpu->cpu != -1)) {
1966                         ret = -EBUSY;
1967                         goto out_vgic_unlock;
1968                 }
1969         }
1970
1971         /*
1972          * Move all pending IRQs from the LRs on all VCPUs so the pending
1973          * state can be properly represented in the register state accessible
1974          * through this API.
1975          */
1976         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1977                 vgic_unqueue_irqs(tmp_vcpu);
1978
1979         offset -= r->base;
1980         r->handle_mmio(vcpu, &mmio, offset);
1981
1982         if (!is_write)
1983                 *reg = mmio_data_read(&mmio, ~0);
1984
1985         ret = 0;
1986 out_vgic_unlock:
1987         spin_unlock(&vgic->lock);
1988 out:
1989         mutex_unlock(&dev->kvm->lock);
1990         return ret;
1991 }
1992
1993 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1994 {
1995         int r;
1996
1997         switch (attr->group) {
1998         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1999                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2000                 u64 addr;
2001                 unsigned long type = (unsigned long)attr->attr;
2002
2003                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2004                         return -EFAULT;
2005
2006                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2007                 return (r == -ENODEV) ? -ENXIO : r;
2008         }
2009
2010         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2011         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2012                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2013                 u32 reg;
2014
2015                 if (get_user(reg, uaddr))
2016                         return -EFAULT;
2017
2018                 return vgic_attr_regs_access(dev, attr, &reg, true);
2019         }
2020
2021         }
2022
2023         return -ENXIO;
2024 }
2025
2026 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2027 {
2028         int r = -ENXIO;
2029
2030         switch (attr->group) {
2031         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2032                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2033                 u64 addr;
2034                 unsigned long type = (unsigned long)attr->attr;
2035
2036                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2037                 if (r)
2038                         return (r == -ENODEV) ? -ENXIO : r;
2039
2040                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2041                         return -EFAULT;
2042                 break;
2043         }
2044
2045         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2046         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2047                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2048                 u32 reg = 0;
2049
2050                 r = vgic_attr_regs_access(dev, attr, &reg, false);
2051                 if (r)
2052                         return r;
2053                 r = put_user(reg, uaddr);
2054                 break;
2055         }
2056
2057         }
2058
2059         return r;
2060 }
2061
2062 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2063                               phys_addr_t offset)
2064 {
2065         struct kvm_exit_mmio dev_attr_mmio;
2066
2067         dev_attr_mmio.len = 4;
2068         if (find_matching_range(ranges, &dev_attr_mmio, offset))
2069                 return 0;
2070         else
2071                 return -ENXIO;
2072 }
2073
2074 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2075 {
2076         phys_addr_t offset;
2077
2078         switch (attr->group) {
2079         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2080                 switch (attr->attr) {
2081                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2082                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2083                         return 0;
2084                 }
2085                 break;
2086         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2087                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2088                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2089         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2090                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2091                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2092         }
2093         return -ENXIO;
2094 }
2095
2096 static void vgic_destroy(struct kvm_device *dev)
2097 {
2098         kfree(dev);
2099 }
2100
2101 static int vgic_create(struct kvm_device *dev, u32 type)
2102 {
2103         return kvm_vgic_create(dev->kvm);
2104 }
2105
2106 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2107         .name = "kvm-arm-vgic",
2108         .create = vgic_create,
2109         .destroy = vgic_destroy,
2110         .set_attr = vgic_set_attr,
2111         .get_attr = vgic_get_attr,
2112         .has_attr = vgic_has_attr,
2113 };
2114
2115 static void vgic_init_maintenance_interrupt(void *info)
2116 {
2117         enable_percpu_irq(vgic->maint_irq, 0);
2118 }
2119
2120 static int vgic_cpu_notify(struct notifier_block *self,
2121                            unsigned long action, void *cpu)
2122 {
2123         switch (action) {
2124         case CPU_STARTING:
2125         case CPU_STARTING_FROZEN:
2126                 vgic_init_maintenance_interrupt(NULL);
2127                 break;
2128         case CPU_DYING:
2129         case CPU_DYING_FROZEN:
2130                 disable_percpu_irq(vgic->maint_irq);
2131                 break;
2132         }
2133
2134         return NOTIFY_OK;
2135 }
2136
2137 static struct notifier_block vgic_cpu_nb = {
2138         .notifier_call = vgic_cpu_notify,
2139 };
2140
2141 static const struct of_device_id vgic_ids[] = {
2142         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2143         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2144         {},
2145 };
2146
2147 int kvm_vgic_hyp_init(void)
2148 {
2149         const struct of_device_id *matched_id;
2150         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2151                                 const struct vgic_params **);
2152         struct device_node *vgic_node;
2153         int ret;
2154
2155         vgic_node = of_find_matching_node_and_match(NULL,
2156                                                     vgic_ids, &matched_id);
2157         if (!vgic_node) {
2158                 kvm_err("error: no compatible GIC node found\n");
2159                 return -ENODEV;
2160         }
2161
2162         vgic_probe = matched_id->data;
2163         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2164         if (ret)
2165                 return ret;
2166
2167         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2168                                  "vgic", kvm_get_running_vcpus());
2169         if (ret) {
2170                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2171                 return ret;
2172         }
2173
2174         ret = __register_cpu_notifier(&vgic_cpu_nb);
2175         if (ret) {
2176                 kvm_err("Cannot register vgic CPU notifier\n");
2177                 goto out_free_irq;
2178         }
2179
2180         /* Callback into for arch code for setup */
2181         vgic_arch_setup(vgic);
2182
2183         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2184
2185         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2186                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2187
2188 out_free_irq:
2189         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2190         return ret;
2191 }