]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
kvm: Faults which trigger IO release the mmap_sem
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 #include "vfio.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69  * Ordering of locks:
70  *
71  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
72  */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
76 LIST_HEAD(vm_list);
77
78 static cpumask_var_t cpus_hardware_enabled;
79 static int kvm_usage_count = 0;
80 static atomic_t hardware_enable_failed;
81
82 struct kmem_cache *kvm_vcpu_cache;
83 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84
85 static __read_mostly struct preempt_ops kvm_preempt_ops;
86
87 struct dentry *kvm_debugfs_dir;
88
89 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
90                            unsigned long arg);
91 #ifdef CONFIG_COMPAT
92 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
93                                   unsigned long arg);
94 #endif
95 static int hardware_enable_all(void);
96 static void hardware_disable_all(void);
97
98 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99
100 static void kvm_release_pfn_dirty(pfn_t pfn);
101 static void mark_page_dirty_in_slot(struct kvm *kvm,
102                                     struct kvm_memory_slot *memslot, gfn_t gfn);
103
104 __visible bool kvm_rebooting;
105 EXPORT_SYMBOL_GPL(kvm_rebooting);
106
107 static bool largepages_enabled = true;
108
109 bool kvm_is_mmio_pfn(pfn_t pfn)
110 {
111         if (pfn_valid(pfn))
112                 return PageReserved(pfn_to_page(pfn));
113
114         return true;
115 }
116
117 /*
118  * Switches to specified vcpu, until a matching vcpu_put()
119  */
120 int vcpu_load(struct kvm_vcpu *vcpu)
121 {
122         int cpu;
123
124         if (mutex_lock_killable(&vcpu->mutex))
125                 return -EINTR;
126         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
127                 /* The thread running this VCPU changed. */
128                 struct pid *oldpid = vcpu->pid;
129                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
130                 rcu_assign_pointer(vcpu->pid, newpid);
131                 if (oldpid)
132                         synchronize_rcu();
133                 put_pid(oldpid);
134         }
135         cpu = get_cpu();
136         preempt_notifier_register(&vcpu->preempt_notifier);
137         kvm_arch_vcpu_load(vcpu, cpu);
138         put_cpu();
139         return 0;
140 }
141
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144         preempt_disable();
145         kvm_arch_vcpu_put(vcpu);
146         preempt_notifier_unregister(&vcpu->preempt_notifier);
147         preempt_enable();
148         mutex_unlock(&vcpu->mutex);
149 }
150
151 static void ack_flush(void *_completed)
152 {
153 }
154
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157         int i, cpu, me;
158         cpumask_var_t cpus;
159         bool called = true;
160         struct kvm_vcpu *vcpu;
161
162         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163
164         me = get_cpu();
165         kvm_for_each_vcpu(i, vcpu, kvm) {
166                 kvm_make_request(req, vcpu);
167                 cpu = vcpu->cpu;
168
169                 /* Set ->requests bit before we read ->mode */
170                 smp_mb();
171
172                 if (cpus != NULL && cpu != -1 && cpu != me &&
173                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174                         cpumask_set_cpu(cpu, cpus);
175         }
176         if (unlikely(cpus == NULL))
177                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178         else if (!cpumask_empty(cpus))
179                 smp_call_function_many(cpus, ack_flush, NULL, 1);
180         else
181                 called = false;
182         put_cpu();
183         free_cpumask_var(cpus);
184         return called;
185 }
186
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189         long dirty_count = kvm->tlbs_dirty;
190
191         smp_mb();
192         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193                 ++kvm->stat.remote_tlb_flush;
194         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215         struct page *page;
216         int r;
217
218         mutex_init(&vcpu->mutex);
219         vcpu->cpu = -1;
220         vcpu->kvm = kvm;
221         vcpu->vcpu_id = id;
222         vcpu->pid = NULL;
223         init_waitqueue_head(&vcpu->wq);
224         kvm_async_pf_vcpu_init(vcpu);
225
226         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227         if (!page) {
228                 r = -ENOMEM;
229                 goto fail;
230         }
231         vcpu->run = page_address(page);
232
233         kvm_vcpu_set_in_spin_loop(vcpu, false);
234         kvm_vcpu_set_dy_eligible(vcpu, false);
235         vcpu->preempted = false;
236
237         r = kvm_arch_vcpu_init(vcpu);
238         if (r < 0)
239                 goto fail_free_run;
240         return 0;
241
242 fail_free_run:
243         free_page((unsigned long)vcpu->run);
244 fail:
245         return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251         put_pid(vcpu->pid);
252         kvm_arch_vcpu_uninit(vcpu);
253         free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260         return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264                                              struct mm_struct *mm,
265                                              unsigned long address)
266 {
267         struct kvm *kvm = mmu_notifier_to_kvm(mn);
268         int need_tlb_flush, idx;
269
270         /*
271          * When ->invalidate_page runs, the linux pte has been zapped
272          * already but the page is still allocated until
273          * ->invalidate_page returns. So if we increase the sequence
274          * here the kvm page fault will notice if the spte can't be
275          * established because the page is going to be freed. If
276          * instead the kvm page fault establishes the spte before
277          * ->invalidate_page runs, kvm_unmap_hva will release it
278          * before returning.
279          *
280          * The sequence increase only need to be seen at spin_unlock
281          * time, and not at spin_lock time.
282          *
283          * Increasing the sequence after the spin_unlock would be
284          * unsafe because the kvm page fault could then establish the
285          * pte after kvm_unmap_hva returned, without noticing the page
286          * is going to be freed.
287          */
288         idx = srcu_read_lock(&kvm->srcu);
289         spin_lock(&kvm->mmu_lock);
290
291         kvm->mmu_notifier_seq++;
292         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293         /* we've to flush the tlb before the pages can be freed */
294         if (need_tlb_flush)
295                 kvm_flush_remote_tlbs(kvm);
296
297         spin_unlock(&kvm->mmu_lock);
298         srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302                                         struct mm_struct *mm,
303                                         unsigned long address,
304                                         pte_t pte)
305 {
306         struct kvm *kvm = mmu_notifier_to_kvm(mn);
307         int idx;
308
309         idx = srcu_read_lock(&kvm->srcu);
310         spin_lock(&kvm->mmu_lock);
311         kvm->mmu_notifier_seq++;
312         kvm_set_spte_hva(kvm, address, pte);
313         spin_unlock(&kvm->mmu_lock);
314         srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318                                                     struct mm_struct *mm,
319                                                     unsigned long start,
320                                                     unsigned long end)
321 {
322         struct kvm *kvm = mmu_notifier_to_kvm(mn);
323         int need_tlb_flush = 0, idx;
324
325         idx = srcu_read_lock(&kvm->srcu);
326         spin_lock(&kvm->mmu_lock);
327         /*
328          * The count increase must become visible at unlock time as no
329          * spte can be established without taking the mmu_lock and
330          * count is also read inside the mmu_lock critical section.
331          */
332         kvm->mmu_notifier_count++;
333         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334         need_tlb_flush |= kvm->tlbs_dirty;
335         /* we've to flush the tlb before the pages can be freed */
336         if (need_tlb_flush)
337                 kvm_flush_remote_tlbs(kvm);
338
339         spin_unlock(&kvm->mmu_lock);
340         srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344                                                   struct mm_struct *mm,
345                                                   unsigned long start,
346                                                   unsigned long end)
347 {
348         struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * This sequence increase will notify the kvm page fault that
353          * the page that is going to be mapped in the spte could have
354          * been freed.
355          */
356         kvm->mmu_notifier_seq++;
357         smp_wmb();
358         /*
359          * The above sequence increase must be visible before the
360          * below count decrease, which is ensured by the smp_wmb above
361          * in conjunction with the smp_rmb in mmu_notifier_retry().
362          */
363         kvm->mmu_notifier_count--;
364         spin_unlock(&kvm->mmu_lock);
365
366         BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370                                               struct mm_struct *mm,
371                                               unsigned long address)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int young, idx;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378
379         young = kvm_age_hva(kvm, address);
380         if (young)
381                 kvm_flush_remote_tlbs(kvm);
382
383         spin_unlock(&kvm->mmu_lock);
384         srcu_read_unlock(&kvm->srcu, idx);
385
386         return young;
387 }
388
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390                                        struct mm_struct *mm,
391                                        unsigned long address)
392 {
393         struct kvm *kvm = mmu_notifier_to_kvm(mn);
394         int young, idx;
395
396         idx = srcu_read_lock(&kvm->srcu);
397         spin_lock(&kvm->mmu_lock);
398         young = kvm_test_age_hva(kvm, address);
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401
402         return young;
403 }
404
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406                                      struct mm_struct *mm)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int idx;
410
411         idx = srcu_read_lock(&kvm->srcu);
412         kvm_arch_flush_shadow_all(kvm);
413         srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
418         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
420         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
421         .test_young             = kvm_mmu_notifier_test_young,
422         .change_pte             = kvm_mmu_notifier_change_pte,
423         .release                = kvm_mmu_notifier_release,
424 };
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436         return 0;
437 }
438
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443         int i;
444         struct kvm_memslots *slots = kvm->memslots;
445
446         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447                 slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452         int r, i;
453         struct kvm *kvm = kvm_arch_alloc_vm();
454
455         if (!kvm)
456                 return ERR_PTR(-ENOMEM);
457
458         r = kvm_arch_init_vm(kvm, type);
459         if (r)
460                 goto out_err_no_disable;
461
462         r = hardware_enable_all();
463         if (r)
464                 goto out_err_no_disable;
465
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 #endif
469 #ifdef CONFIG_HAVE_KVM_IRQFD
470         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472
473         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
474
475         r = -ENOMEM;
476         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
477         if (!kvm->memslots)
478                 goto out_err_no_srcu;
479
480         /*
481          * Init kvm generation close to the maximum to easily test the
482          * code of handling generation number wrap-around.
483          */
484         kvm->memslots->generation = -150;
485
486         kvm_init_memslots_id(kvm);
487         if (init_srcu_struct(&kvm->srcu))
488                 goto out_err_no_srcu;
489         if (init_srcu_struct(&kvm->irq_srcu))
490                 goto out_err_no_irq_srcu;
491         for (i = 0; i < KVM_NR_BUSES; i++) {
492                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
493                                         GFP_KERNEL);
494                 if (!kvm->buses[i])
495                         goto out_err;
496         }
497
498         spin_lock_init(&kvm->mmu_lock);
499         kvm->mm = current->mm;
500         atomic_inc(&kvm->mm->mm_count);
501         kvm_eventfd_init(kvm);
502         mutex_init(&kvm->lock);
503         mutex_init(&kvm->irq_lock);
504         mutex_init(&kvm->slots_lock);
505         atomic_set(&kvm->users_count, 1);
506         INIT_LIST_HEAD(&kvm->devices);
507
508         r = kvm_init_mmu_notifier(kvm);
509         if (r)
510                 goto out_err;
511
512         spin_lock(&kvm_lock);
513         list_add(&kvm->vm_list, &vm_list);
514         spin_unlock(&kvm_lock);
515
516         return kvm;
517
518 out_err:
519         cleanup_srcu_struct(&kvm->irq_srcu);
520 out_err_no_irq_srcu:
521         cleanup_srcu_struct(&kvm->srcu);
522 out_err_no_srcu:
523         hardware_disable_all();
524 out_err_no_disable:
525         for (i = 0; i < KVM_NR_BUSES; i++)
526                 kfree(kvm->buses[i]);
527         kfree(kvm->memslots);
528         kvm_arch_free_vm(kvm);
529         return ERR_PTR(r);
530 }
531
532 /*
533  * Avoid using vmalloc for a small buffer.
534  * Should not be used when the size is statically known.
535  */
536 void *kvm_kvzalloc(unsigned long size)
537 {
538         if (size > PAGE_SIZE)
539                 return vzalloc(size);
540         else
541                 return kzalloc(size, GFP_KERNEL);
542 }
543
544 void kvm_kvfree(const void *addr)
545 {
546         if (is_vmalloc_addr(addr))
547                 vfree(addr);
548         else
549                 kfree(addr);
550 }
551
552 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
553 {
554         if (!memslot->dirty_bitmap)
555                 return;
556
557         kvm_kvfree(memslot->dirty_bitmap);
558         memslot->dirty_bitmap = NULL;
559 }
560
561 /*
562  * Free any memory in @free but not in @dont.
563  */
564 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
565                                   struct kvm_memory_slot *dont)
566 {
567         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
568                 kvm_destroy_dirty_bitmap(free);
569
570         kvm_arch_free_memslot(kvm, free, dont);
571
572         free->npages = 0;
573 }
574
575 static void kvm_free_physmem(struct kvm *kvm)
576 {
577         struct kvm_memslots *slots = kvm->memslots;
578         struct kvm_memory_slot *memslot;
579
580         kvm_for_each_memslot(memslot, slots)
581                 kvm_free_physmem_slot(kvm, memslot, NULL);
582
583         kfree(kvm->memslots);
584 }
585
586 static void kvm_destroy_devices(struct kvm *kvm)
587 {
588         struct list_head *node, *tmp;
589
590         list_for_each_safe(node, tmp, &kvm->devices) {
591                 struct kvm_device *dev =
592                         list_entry(node, struct kvm_device, vm_node);
593
594                 list_del(node);
595                 dev->ops->destroy(dev);
596         }
597 }
598
599 static void kvm_destroy_vm(struct kvm *kvm)
600 {
601         int i;
602         struct mm_struct *mm = kvm->mm;
603
604         kvm_arch_sync_events(kvm);
605         spin_lock(&kvm_lock);
606         list_del(&kvm->vm_list);
607         spin_unlock(&kvm_lock);
608         kvm_free_irq_routing(kvm);
609         for (i = 0; i < KVM_NR_BUSES; i++)
610                 kvm_io_bus_destroy(kvm->buses[i]);
611         kvm_coalesced_mmio_free(kvm);
612 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
613         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
614 #else
615         kvm_arch_flush_shadow_all(kvm);
616 #endif
617         kvm_arch_destroy_vm(kvm);
618         kvm_destroy_devices(kvm);
619         kvm_free_physmem(kvm);
620         cleanup_srcu_struct(&kvm->irq_srcu);
621         cleanup_srcu_struct(&kvm->srcu);
622         kvm_arch_free_vm(kvm);
623         hardware_disable_all();
624         mmdrop(mm);
625 }
626
627 void kvm_get_kvm(struct kvm *kvm)
628 {
629         atomic_inc(&kvm->users_count);
630 }
631 EXPORT_SYMBOL_GPL(kvm_get_kvm);
632
633 void kvm_put_kvm(struct kvm *kvm)
634 {
635         if (atomic_dec_and_test(&kvm->users_count))
636                 kvm_destroy_vm(kvm);
637 }
638 EXPORT_SYMBOL_GPL(kvm_put_kvm);
639
640
641 static int kvm_vm_release(struct inode *inode, struct file *filp)
642 {
643         struct kvm *kvm = filp->private_data;
644
645         kvm_irqfd_release(kvm);
646
647         kvm_put_kvm(kvm);
648         return 0;
649 }
650
651 /*
652  * Allocation size is twice as large as the actual dirty bitmap size.
653  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
654  */
655 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
656 {
657         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
658
659         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
660         if (!memslot->dirty_bitmap)
661                 return -ENOMEM;
662
663         return 0;
664 }
665
666 static int cmp_memslot(const void *slot1, const void *slot2)
667 {
668         struct kvm_memory_slot *s1, *s2;
669
670         s1 = (struct kvm_memory_slot *)slot1;
671         s2 = (struct kvm_memory_slot *)slot2;
672
673         if (s1->npages < s2->npages)
674                 return 1;
675         if (s1->npages > s2->npages)
676                 return -1;
677
678         return 0;
679 }
680
681 /*
682  * Sort the memslots base on its size, so the larger slots
683  * will get better fit.
684  */
685 static void sort_memslots(struct kvm_memslots *slots)
686 {
687         int i;
688
689         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
690               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
691
692         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
693                 slots->id_to_index[slots->memslots[i].id] = i;
694 }
695
696 static void update_memslots(struct kvm_memslots *slots,
697                             struct kvm_memory_slot *new)
698 {
699         if (new) {
700                 int id = new->id;
701                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
702                 unsigned long npages = old->npages;
703
704                 *old = *new;
705                 if (new->npages != npages)
706                         sort_memslots(slots);
707         }
708 }
709
710 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
711 {
712         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
713
714 #ifdef __KVM_HAVE_READONLY_MEM
715         valid_flags |= KVM_MEM_READONLY;
716 #endif
717
718         if (mem->flags & ~valid_flags)
719                 return -EINVAL;
720
721         return 0;
722 }
723
724 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
725                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
726 {
727         struct kvm_memslots *old_memslots = kvm->memslots;
728
729         /*
730          * Set the low bit in the generation, which disables SPTE caching
731          * until the end of synchronize_srcu_expedited.
732          */
733         WARN_ON(old_memslots->generation & 1);
734         slots->generation = old_memslots->generation + 1;
735
736         update_memslots(slots, new);
737         rcu_assign_pointer(kvm->memslots, slots);
738         synchronize_srcu_expedited(&kvm->srcu);
739
740         /*
741          * Increment the new memslot generation a second time. This prevents
742          * vm exits that race with memslot updates from caching a memslot
743          * generation that will (potentially) be valid forever.
744          */
745         slots->generation++;
746
747         kvm_arch_memslots_updated(kvm);
748
749         return old_memslots;
750 }
751
752 /*
753  * Allocate some memory and give it an address in the guest physical address
754  * space.
755  *
756  * Discontiguous memory is allowed, mostly for framebuffers.
757  *
758  * Must be called holding mmap_sem for write.
759  */
760 int __kvm_set_memory_region(struct kvm *kvm,
761                             struct kvm_userspace_memory_region *mem)
762 {
763         int r;
764         gfn_t base_gfn;
765         unsigned long npages;
766         struct kvm_memory_slot *slot;
767         struct kvm_memory_slot old, new;
768         struct kvm_memslots *slots = NULL, *old_memslots;
769         enum kvm_mr_change change;
770
771         r = check_memory_region_flags(mem);
772         if (r)
773                 goto out;
774
775         r = -EINVAL;
776         /* General sanity checks */
777         if (mem->memory_size & (PAGE_SIZE - 1))
778                 goto out;
779         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
780                 goto out;
781         /* We can read the guest memory with __xxx_user() later on. */
782         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
783             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
784              !access_ok(VERIFY_WRITE,
785                         (void __user *)(unsigned long)mem->userspace_addr,
786                         mem->memory_size)))
787                 goto out;
788         if (mem->slot >= KVM_MEM_SLOTS_NUM)
789                 goto out;
790         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
791                 goto out;
792
793         slot = id_to_memslot(kvm->memslots, mem->slot);
794         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
795         npages = mem->memory_size >> PAGE_SHIFT;
796
797         if (npages > KVM_MEM_MAX_NR_PAGES)
798                 goto out;
799
800         if (!npages)
801                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
802
803         new = old = *slot;
804
805         new.id = mem->slot;
806         new.base_gfn = base_gfn;
807         new.npages = npages;
808         new.flags = mem->flags;
809
810         if (npages) {
811                 if (!old.npages)
812                         change = KVM_MR_CREATE;
813                 else { /* Modify an existing slot. */
814                         if ((mem->userspace_addr != old.userspace_addr) ||
815                             (npages != old.npages) ||
816                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
817                                 goto out;
818
819                         if (base_gfn != old.base_gfn)
820                                 change = KVM_MR_MOVE;
821                         else if (new.flags != old.flags)
822                                 change = KVM_MR_FLAGS_ONLY;
823                         else { /* Nothing to change. */
824                                 r = 0;
825                                 goto out;
826                         }
827                 }
828         } else if (old.npages) {
829                 change = KVM_MR_DELETE;
830         } else /* Modify a non-existent slot: disallowed. */
831                 goto out;
832
833         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
834                 /* Check for overlaps */
835                 r = -EEXIST;
836                 kvm_for_each_memslot(slot, kvm->memslots) {
837                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
838                             (slot->id == mem->slot))
839                                 continue;
840                         if (!((base_gfn + npages <= slot->base_gfn) ||
841                               (base_gfn >= slot->base_gfn + slot->npages)))
842                                 goto out;
843                 }
844         }
845
846         /* Free page dirty bitmap if unneeded */
847         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
848                 new.dirty_bitmap = NULL;
849
850         r = -ENOMEM;
851         if (change == KVM_MR_CREATE) {
852                 new.userspace_addr = mem->userspace_addr;
853
854                 if (kvm_arch_create_memslot(kvm, &new, npages))
855                         goto out_free;
856         }
857
858         /* Allocate page dirty bitmap if needed */
859         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
860                 if (kvm_create_dirty_bitmap(&new) < 0)
861                         goto out_free;
862         }
863
864         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
865                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
866                                 GFP_KERNEL);
867                 if (!slots)
868                         goto out_free;
869                 slot = id_to_memslot(slots, mem->slot);
870                 slot->flags |= KVM_MEMSLOT_INVALID;
871
872                 old_memslots = install_new_memslots(kvm, slots, NULL);
873
874                 /* slot was deleted or moved, clear iommu mapping */
875                 kvm_iommu_unmap_pages(kvm, &old);
876                 /* From this point no new shadow pages pointing to a deleted,
877                  * or moved, memslot will be created.
878                  *
879                  * validation of sp->gfn happens in:
880                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
881                  *      - kvm_is_visible_gfn (mmu_check_roots)
882                  */
883                 kvm_arch_flush_shadow_memslot(kvm, slot);
884                 slots = old_memslots;
885         }
886
887         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
888         if (r)
889                 goto out_slots;
890
891         r = -ENOMEM;
892         /*
893          * We can re-use the old_memslots from above, the only difference
894          * from the currently installed memslots is the invalid flag.  This
895          * will get overwritten by update_memslots anyway.
896          */
897         if (!slots) {
898                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
899                                 GFP_KERNEL);
900                 if (!slots)
901                         goto out_free;
902         }
903
904         /* actual memory is freed via old in kvm_free_physmem_slot below */
905         if (change == KVM_MR_DELETE) {
906                 new.dirty_bitmap = NULL;
907                 memset(&new.arch, 0, sizeof(new.arch));
908         }
909
910         old_memslots = install_new_memslots(kvm, slots, &new);
911
912         kvm_arch_commit_memory_region(kvm, mem, &old, change);
913
914         kvm_free_physmem_slot(kvm, &old, &new);
915         kfree(old_memslots);
916
917         /*
918          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
919          * un-mapped and re-mapped if their base changes.  Since base change
920          * unmapping is handled above with slot deletion, mapping alone is
921          * needed here.  Anything else the iommu might care about for existing
922          * slots (size changes, userspace addr changes and read-only flag
923          * changes) is disallowed above, so any other attribute changes getting
924          * here can be skipped.
925          */
926         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
927                 r = kvm_iommu_map_pages(kvm, &new);
928                 return r;
929         }
930
931         return 0;
932
933 out_slots:
934         kfree(slots);
935 out_free:
936         kvm_free_physmem_slot(kvm, &new, &old);
937 out:
938         return r;
939 }
940 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
941
942 int kvm_set_memory_region(struct kvm *kvm,
943                           struct kvm_userspace_memory_region *mem)
944 {
945         int r;
946
947         mutex_lock(&kvm->slots_lock);
948         r = __kvm_set_memory_region(kvm, mem);
949         mutex_unlock(&kvm->slots_lock);
950         return r;
951 }
952 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
953
954 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
955                                           struct kvm_userspace_memory_region *mem)
956 {
957         if (mem->slot >= KVM_USER_MEM_SLOTS)
958                 return -EINVAL;
959         return kvm_set_memory_region(kvm, mem);
960 }
961
962 int kvm_get_dirty_log(struct kvm *kvm,
963                         struct kvm_dirty_log *log, int *is_dirty)
964 {
965         struct kvm_memory_slot *memslot;
966         int r, i;
967         unsigned long n;
968         unsigned long any = 0;
969
970         r = -EINVAL;
971         if (log->slot >= KVM_USER_MEM_SLOTS)
972                 goto out;
973
974         memslot = id_to_memslot(kvm->memslots, log->slot);
975         r = -ENOENT;
976         if (!memslot->dirty_bitmap)
977                 goto out;
978
979         n = kvm_dirty_bitmap_bytes(memslot);
980
981         for (i = 0; !any && i < n/sizeof(long); ++i)
982                 any = memslot->dirty_bitmap[i];
983
984         r = -EFAULT;
985         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
986                 goto out;
987
988         if (any)
989                 *is_dirty = 1;
990
991         r = 0;
992 out:
993         return r;
994 }
995 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
996
997 bool kvm_largepages_enabled(void)
998 {
999         return largepages_enabled;
1000 }
1001
1002 void kvm_disable_largepages(void)
1003 {
1004         largepages_enabled = false;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1007
1008 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1009 {
1010         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1011 }
1012 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1013
1014 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1015 {
1016         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1017
1018         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1019               memslot->flags & KVM_MEMSLOT_INVALID)
1020                 return 0;
1021
1022         return 1;
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1025
1026 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1027 {
1028         struct vm_area_struct *vma;
1029         unsigned long addr, size;
1030
1031         size = PAGE_SIZE;
1032
1033         addr = gfn_to_hva(kvm, gfn);
1034         if (kvm_is_error_hva(addr))
1035                 return PAGE_SIZE;
1036
1037         down_read(&current->mm->mmap_sem);
1038         vma = find_vma(current->mm, addr);
1039         if (!vma)
1040                 goto out;
1041
1042         size = vma_kernel_pagesize(vma);
1043
1044 out:
1045         up_read(&current->mm->mmap_sem);
1046
1047         return size;
1048 }
1049
1050 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1051 {
1052         return slot->flags & KVM_MEM_READONLY;
1053 }
1054
1055 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1056                                        gfn_t *nr_pages, bool write)
1057 {
1058         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1059                 return KVM_HVA_ERR_BAD;
1060
1061         if (memslot_is_readonly(slot) && write)
1062                 return KVM_HVA_ERR_RO_BAD;
1063
1064         if (nr_pages)
1065                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1066
1067         return __gfn_to_hva_memslot(slot, gfn);
1068 }
1069
1070 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1071                                      gfn_t *nr_pages)
1072 {
1073         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1074 }
1075
1076 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1077                                         gfn_t gfn)
1078 {
1079         return gfn_to_hva_many(slot, gfn, NULL);
1080 }
1081 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1082
1083 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1084 {
1085         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1086 }
1087 EXPORT_SYMBOL_GPL(gfn_to_hva);
1088
1089 /*
1090  * If writable is set to false, the hva returned by this function is only
1091  * allowed to be read.
1092  */
1093 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1094 {
1095         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1096         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1097
1098         if (!kvm_is_error_hva(hva) && writable)
1099                 *writable = !memslot_is_readonly(slot);
1100
1101         return hva;
1102 }
1103
1104 static int kvm_read_hva(void *data, void __user *hva, int len)
1105 {
1106         return __copy_from_user(data, hva, len);
1107 }
1108
1109 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1110 {
1111         return __copy_from_user_inatomic(data, hva, len);
1112 }
1113
1114 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1115         unsigned long start, int write, struct page **page)
1116 {
1117         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1118
1119         if (write)
1120                 flags |= FOLL_WRITE;
1121
1122         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1123 }
1124
1125 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1126                          unsigned long addr, bool write_fault,
1127                          struct page **pagep)
1128 {
1129         int npages;
1130         int locked = 1;
1131         int flags = FOLL_TOUCH | FOLL_HWPOISON |
1132                     (pagep ? FOLL_GET : 0) |
1133                     (write_fault ? FOLL_WRITE : 0);
1134
1135         /*
1136          * If retrying the fault, we get here *not* having allowed the filemap
1137          * to wait on the page lock. We should now allow waiting on the IO with
1138          * the mmap semaphore released.
1139          */
1140         down_read(&mm->mmap_sem);
1141         npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1142                                   &locked);
1143         if (!locked) {
1144                 VM_BUG_ON(npages != -EBUSY);
1145
1146                 if (!pagep)
1147                         return 0;
1148
1149                 /*
1150                  * The previous call has now waited on the IO. Now we can
1151                  * retry and complete. Pass TRIED to ensure we do not re
1152                  * schedule async IO (see e.g. filemap_fault).
1153                  */
1154                 down_read(&mm->mmap_sem);
1155                 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1156                                           pagep, NULL, NULL);
1157         }
1158         up_read(&mm->mmap_sem);
1159         return npages;
1160 }
1161
1162 static inline int check_user_page_hwpoison(unsigned long addr)
1163 {
1164         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1165
1166         rc = __get_user_pages(current, current->mm, addr, 1,
1167                               flags, NULL, NULL, NULL);
1168         return rc == -EHWPOISON;
1169 }
1170
1171 /*
1172  * The atomic path to get the writable pfn which will be stored in @pfn,
1173  * true indicates success, otherwise false is returned.
1174  */
1175 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1176                             bool write_fault, bool *writable, pfn_t *pfn)
1177 {
1178         struct page *page[1];
1179         int npages;
1180
1181         if (!(async || atomic))
1182                 return false;
1183
1184         /*
1185          * Fast pin a writable pfn only if it is a write fault request
1186          * or the caller allows to map a writable pfn for a read fault
1187          * request.
1188          */
1189         if (!(write_fault || writable))
1190                 return false;
1191
1192         npages = __get_user_pages_fast(addr, 1, 1, page);
1193         if (npages == 1) {
1194                 *pfn = page_to_pfn(page[0]);
1195
1196                 if (writable)
1197                         *writable = true;
1198                 return true;
1199         }
1200
1201         return false;
1202 }
1203
1204 /*
1205  * The slow path to get the pfn of the specified host virtual address,
1206  * 1 indicates success, -errno is returned if error is detected.
1207  */
1208 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1209                            bool *writable, pfn_t *pfn)
1210 {
1211         struct page *page[1];
1212         int npages = 0;
1213
1214         might_sleep();
1215
1216         if (writable)
1217                 *writable = write_fault;
1218
1219         if (async) {
1220                 down_read(&current->mm->mmap_sem);
1221                 npages = get_user_page_nowait(current, current->mm,
1222                                               addr, write_fault, page);
1223                 up_read(&current->mm->mmap_sem);
1224         } else {
1225                 /*
1226                  * By now we have tried gup_fast, and possibly async_pf, and we
1227                  * are certainly not atomic. Time to retry the gup, allowing
1228                  * mmap semaphore to be relinquished in the case of IO.
1229                  */
1230                 npages = kvm_get_user_page_io(current, current->mm, addr,
1231                                               write_fault, page);
1232         }
1233         if (npages != 1)
1234                 return npages;
1235
1236         /* map read fault as writable if possible */
1237         if (unlikely(!write_fault) && writable) {
1238                 struct page *wpage[1];
1239
1240                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1241                 if (npages == 1) {
1242                         *writable = true;
1243                         put_page(page[0]);
1244                         page[0] = wpage[0];
1245                 }
1246
1247                 npages = 1;
1248         }
1249         *pfn = page_to_pfn(page[0]);
1250         return npages;
1251 }
1252
1253 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1254 {
1255         if (unlikely(!(vma->vm_flags & VM_READ)))
1256                 return false;
1257
1258         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1259                 return false;
1260
1261         return true;
1262 }
1263
1264 /*
1265  * Pin guest page in memory and return its pfn.
1266  * @addr: host virtual address which maps memory to the guest
1267  * @atomic: whether this function can sleep
1268  * @async: whether this function need to wait IO complete if the
1269  *         host page is not in the memory
1270  * @write_fault: whether we should get a writable host page
1271  * @writable: whether it allows to map a writable host page for !@write_fault
1272  *
1273  * The function will map a writable host page for these two cases:
1274  * 1): @write_fault = true
1275  * 2): @write_fault = false && @writable, @writable will tell the caller
1276  *     whether the mapping is writable.
1277  */
1278 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1279                         bool write_fault, bool *writable)
1280 {
1281         struct vm_area_struct *vma;
1282         pfn_t pfn = 0;
1283         int npages;
1284
1285         /* we can do it either atomically or asynchronously, not both */
1286         BUG_ON(atomic && async);
1287
1288         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1289                 return pfn;
1290
1291         if (atomic)
1292                 return KVM_PFN_ERR_FAULT;
1293
1294         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1295         if (npages == 1)
1296                 return pfn;
1297
1298         down_read(&current->mm->mmap_sem);
1299         if (npages == -EHWPOISON ||
1300               (!async && check_user_page_hwpoison(addr))) {
1301                 pfn = KVM_PFN_ERR_HWPOISON;
1302                 goto exit;
1303         }
1304
1305         vma = find_vma_intersection(current->mm, addr, addr + 1);
1306
1307         if (vma == NULL)
1308                 pfn = KVM_PFN_ERR_FAULT;
1309         else if ((vma->vm_flags & VM_PFNMAP)) {
1310                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1311                         vma->vm_pgoff;
1312                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1313         } else {
1314                 if (async && vma_is_valid(vma, write_fault))
1315                         *async = true;
1316                 pfn = KVM_PFN_ERR_FAULT;
1317         }
1318 exit:
1319         up_read(&current->mm->mmap_sem);
1320         return pfn;
1321 }
1322
1323 static pfn_t
1324 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1325                      bool *async, bool write_fault, bool *writable)
1326 {
1327         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1328
1329         if (addr == KVM_HVA_ERR_RO_BAD)
1330                 return KVM_PFN_ERR_RO_FAULT;
1331
1332         if (kvm_is_error_hva(addr))
1333                 return KVM_PFN_NOSLOT;
1334
1335         /* Do not map writable pfn in the readonly memslot. */
1336         if (writable && memslot_is_readonly(slot)) {
1337                 *writable = false;
1338                 writable = NULL;
1339         }
1340
1341         return hva_to_pfn(addr, atomic, async, write_fault,
1342                           writable);
1343 }
1344
1345 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1346                           bool write_fault, bool *writable)
1347 {
1348         struct kvm_memory_slot *slot;
1349
1350         if (async)
1351                 *async = false;
1352
1353         slot = gfn_to_memslot(kvm, gfn);
1354
1355         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1356                                     writable);
1357 }
1358
1359 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1360 {
1361         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1362 }
1363 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1364
1365 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1366                        bool write_fault, bool *writable)
1367 {
1368         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1369 }
1370 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1371
1372 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1373 {
1374         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1377
1378 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1379                       bool *writable)
1380 {
1381         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1382 }
1383 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1384
1385 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1386 {
1387         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1388 }
1389
1390 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1391 {
1392         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1393 }
1394 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1395
1396 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1397                                                                   int nr_pages)
1398 {
1399         unsigned long addr;
1400         gfn_t entry;
1401
1402         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1403         if (kvm_is_error_hva(addr))
1404                 return -1;
1405
1406         if (entry < nr_pages)
1407                 return 0;
1408
1409         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1410 }
1411 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1412
1413 static struct page *kvm_pfn_to_page(pfn_t pfn)
1414 {
1415         if (is_error_noslot_pfn(pfn))
1416                 return KVM_ERR_PTR_BAD_PAGE;
1417
1418         if (kvm_is_mmio_pfn(pfn)) {
1419                 WARN_ON(1);
1420                 return KVM_ERR_PTR_BAD_PAGE;
1421         }
1422
1423         return pfn_to_page(pfn);
1424 }
1425
1426 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1427 {
1428         pfn_t pfn;
1429
1430         pfn = gfn_to_pfn(kvm, gfn);
1431
1432         return kvm_pfn_to_page(pfn);
1433 }
1434
1435 EXPORT_SYMBOL_GPL(gfn_to_page);
1436
1437 void kvm_release_page_clean(struct page *page)
1438 {
1439         WARN_ON(is_error_page(page));
1440
1441         kvm_release_pfn_clean(page_to_pfn(page));
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1444
1445 void kvm_release_pfn_clean(pfn_t pfn)
1446 {
1447         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1448                 put_page(pfn_to_page(pfn));
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1451
1452 void kvm_release_page_dirty(struct page *page)
1453 {
1454         WARN_ON(is_error_page(page));
1455
1456         kvm_release_pfn_dirty(page_to_pfn(page));
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1459
1460 static void kvm_release_pfn_dirty(pfn_t pfn)
1461 {
1462         kvm_set_pfn_dirty(pfn);
1463         kvm_release_pfn_clean(pfn);
1464 }
1465
1466 void kvm_set_pfn_dirty(pfn_t pfn)
1467 {
1468         if (!kvm_is_mmio_pfn(pfn)) {
1469                 struct page *page = pfn_to_page(pfn);
1470                 if (!PageReserved(page))
1471                         SetPageDirty(page);
1472         }
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1475
1476 void kvm_set_pfn_accessed(pfn_t pfn)
1477 {
1478         if (!kvm_is_mmio_pfn(pfn))
1479                 mark_page_accessed(pfn_to_page(pfn));
1480 }
1481 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1482
1483 void kvm_get_pfn(pfn_t pfn)
1484 {
1485         if (!kvm_is_mmio_pfn(pfn))
1486                 get_page(pfn_to_page(pfn));
1487 }
1488 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1489
1490 static int next_segment(unsigned long len, int offset)
1491 {
1492         if (len > PAGE_SIZE - offset)
1493                 return PAGE_SIZE - offset;
1494         else
1495                 return len;
1496 }
1497
1498 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1499                         int len)
1500 {
1501         int r;
1502         unsigned long addr;
1503
1504         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1505         if (kvm_is_error_hva(addr))
1506                 return -EFAULT;
1507         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1508         if (r)
1509                 return -EFAULT;
1510         return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1513
1514 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1515 {
1516         gfn_t gfn = gpa >> PAGE_SHIFT;
1517         int seg;
1518         int offset = offset_in_page(gpa);
1519         int ret;
1520
1521         while ((seg = next_segment(len, offset)) != 0) {
1522                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1523                 if (ret < 0)
1524                         return ret;
1525                 offset = 0;
1526                 len -= seg;
1527                 data += seg;
1528                 ++gfn;
1529         }
1530         return 0;
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_read_guest);
1533
1534 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1535                           unsigned long len)
1536 {
1537         int r;
1538         unsigned long addr;
1539         gfn_t gfn = gpa >> PAGE_SHIFT;
1540         int offset = offset_in_page(gpa);
1541
1542         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1543         if (kvm_is_error_hva(addr))
1544                 return -EFAULT;
1545         pagefault_disable();
1546         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1547         pagefault_enable();
1548         if (r)
1549                 return -EFAULT;
1550         return 0;
1551 }
1552 EXPORT_SYMBOL(kvm_read_guest_atomic);
1553
1554 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1555                          int offset, int len)
1556 {
1557         int r;
1558         unsigned long addr;
1559
1560         addr = gfn_to_hva(kvm, gfn);
1561         if (kvm_is_error_hva(addr))
1562                 return -EFAULT;
1563         r = __copy_to_user((void __user *)addr + offset, data, len);
1564         if (r)
1565                 return -EFAULT;
1566         mark_page_dirty(kvm, gfn);
1567         return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1570
1571 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1572                     unsigned long len)
1573 {
1574         gfn_t gfn = gpa >> PAGE_SHIFT;
1575         int seg;
1576         int offset = offset_in_page(gpa);
1577         int ret;
1578
1579         while ((seg = next_segment(len, offset)) != 0) {
1580                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1581                 if (ret < 0)
1582                         return ret;
1583                 offset = 0;
1584                 len -= seg;
1585                 data += seg;
1586                 ++gfn;
1587         }
1588         return 0;
1589 }
1590
1591 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592                               gpa_t gpa, unsigned long len)
1593 {
1594         struct kvm_memslots *slots = kvm_memslots(kvm);
1595         int offset = offset_in_page(gpa);
1596         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1597         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1598         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1599         gfn_t nr_pages_avail;
1600
1601         ghc->gpa = gpa;
1602         ghc->generation = slots->generation;
1603         ghc->len = len;
1604         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1605         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1606         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1607                 ghc->hva += offset;
1608         } else {
1609                 /*
1610                  * If the requested region crosses two memslots, we still
1611                  * verify that the entire region is valid here.
1612                  */
1613                 while (start_gfn <= end_gfn) {
1614                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1615                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1616                                                    &nr_pages_avail);
1617                         if (kvm_is_error_hva(ghc->hva))
1618                                 return -EFAULT;
1619                         start_gfn += nr_pages_avail;
1620                 }
1621                 /* Use the slow path for cross page reads and writes. */
1622                 ghc->memslot = NULL;
1623         }
1624         return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1627
1628 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1629                            void *data, unsigned long len)
1630 {
1631         struct kvm_memslots *slots = kvm_memslots(kvm);
1632         int r;
1633
1634         BUG_ON(len > ghc->len);
1635
1636         if (slots->generation != ghc->generation)
1637                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1638
1639         if (unlikely(!ghc->memslot))
1640                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1641
1642         if (kvm_is_error_hva(ghc->hva))
1643                 return -EFAULT;
1644
1645         r = __copy_to_user((void __user *)ghc->hva, data, len);
1646         if (r)
1647                 return -EFAULT;
1648         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1649
1650         return 0;
1651 }
1652 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1653
1654 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1655                            void *data, unsigned long len)
1656 {
1657         struct kvm_memslots *slots = kvm_memslots(kvm);
1658         int r;
1659
1660         BUG_ON(len > ghc->len);
1661
1662         if (slots->generation != ghc->generation)
1663                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1664
1665         if (unlikely(!ghc->memslot))
1666                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1667
1668         if (kvm_is_error_hva(ghc->hva))
1669                 return -EFAULT;
1670
1671         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1672         if (r)
1673                 return -EFAULT;
1674
1675         return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1678
1679 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1680 {
1681         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1682
1683         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1686
1687 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1688 {
1689         gfn_t gfn = gpa >> PAGE_SHIFT;
1690         int seg;
1691         int offset = offset_in_page(gpa);
1692         int ret;
1693
1694         while ((seg = next_segment(len, offset)) != 0) {
1695                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1696                 if (ret < 0)
1697                         return ret;
1698                 offset = 0;
1699                 len -= seg;
1700                 ++gfn;
1701         }
1702         return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1705
1706 static void mark_page_dirty_in_slot(struct kvm *kvm,
1707                                     struct kvm_memory_slot *memslot,
1708                                     gfn_t gfn)
1709 {
1710         if (memslot && memslot->dirty_bitmap) {
1711                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1712
1713                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1714         }
1715 }
1716
1717 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1718 {
1719         struct kvm_memory_slot *memslot;
1720
1721         memslot = gfn_to_memslot(kvm, gfn);
1722         mark_page_dirty_in_slot(kvm, memslot, gfn);
1723 }
1724 EXPORT_SYMBOL_GPL(mark_page_dirty);
1725
1726 /*
1727  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1728  */
1729 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1730 {
1731         DEFINE_WAIT(wait);
1732
1733         for (;;) {
1734                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1735
1736                 if (kvm_arch_vcpu_runnable(vcpu)) {
1737                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1738                         break;
1739                 }
1740                 if (kvm_cpu_has_pending_timer(vcpu))
1741                         break;
1742                 if (signal_pending(current))
1743                         break;
1744
1745                 schedule();
1746         }
1747
1748         finish_wait(&vcpu->wq, &wait);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1751
1752 #ifndef CONFIG_S390
1753 /*
1754  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1755  */
1756 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1757 {
1758         int me;
1759         int cpu = vcpu->cpu;
1760         wait_queue_head_t *wqp;
1761
1762         wqp = kvm_arch_vcpu_wq(vcpu);
1763         if (waitqueue_active(wqp)) {
1764                 wake_up_interruptible(wqp);
1765                 ++vcpu->stat.halt_wakeup;
1766         }
1767
1768         me = get_cpu();
1769         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1770                 if (kvm_arch_vcpu_should_kick(vcpu))
1771                         smp_send_reschedule(cpu);
1772         put_cpu();
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1775 #endif /* !CONFIG_S390 */
1776
1777 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1778 {
1779         struct pid *pid;
1780         struct task_struct *task = NULL;
1781         int ret = 0;
1782
1783         rcu_read_lock();
1784         pid = rcu_dereference(target->pid);
1785         if (pid)
1786                 task = get_pid_task(target->pid, PIDTYPE_PID);
1787         rcu_read_unlock();
1788         if (!task)
1789                 return ret;
1790         if (task->flags & PF_VCPU) {
1791                 put_task_struct(task);
1792                 return ret;
1793         }
1794         ret = yield_to(task, 1);
1795         put_task_struct(task);
1796
1797         return ret;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1800
1801 /*
1802  * Helper that checks whether a VCPU is eligible for directed yield.
1803  * Most eligible candidate to yield is decided by following heuristics:
1804  *
1805  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1806  *  (preempted lock holder), indicated by @in_spin_loop.
1807  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1808  *
1809  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1810  *  chance last time (mostly it has become eligible now since we have probably
1811  *  yielded to lockholder in last iteration. This is done by toggling
1812  *  @dy_eligible each time a VCPU checked for eligibility.)
1813  *
1814  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1815  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1816  *  burning. Giving priority for a potential lock-holder increases lock
1817  *  progress.
1818  *
1819  *  Since algorithm is based on heuristics, accessing another VCPU data without
1820  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1821  *  and continue with next VCPU and so on.
1822  */
1823 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1824 {
1825 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1826         bool eligible;
1827
1828         eligible = !vcpu->spin_loop.in_spin_loop ||
1829                     vcpu->spin_loop.dy_eligible;
1830
1831         if (vcpu->spin_loop.in_spin_loop)
1832                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1833
1834         return eligible;
1835 #else
1836         return true;
1837 #endif
1838 }
1839
1840 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1841 {
1842         struct kvm *kvm = me->kvm;
1843         struct kvm_vcpu *vcpu;
1844         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1845         int yielded = 0;
1846         int try = 3;
1847         int pass;
1848         int i;
1849
1850         kvm_vcpu_set_in_spin_loop(me, true);
1851         /*
1852          * We boost the priority of a VCPU that is runnable but not
1853          * currently running, because it got preempted by something
1854          * else and called schedule in __vcpu_run.  Hopefully that
1855          * VCPU is holding the lock that we need and will release it.
1856          * We approximate round-robin by starting at the last boosted VCPU.
1857          */
1858         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1859                 kvm_for_each_vcpu(i, vcpu, kvm) {
1860                         if (!pass && i <= last_boosted_vcpu) {
1861                                 i = last_boosted_vcpu;
1862                                 continue;
1863                         } else if (pass && i > last_boosted_vcpu)
1864                                 break;
1865                         if (!ACCESS_ONCE(vcpu->preempted))
1866                                 continue;
1867                         if (vcpu == me)
1868                                 continue;
1869                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1870                                 continue;
1871                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1872                                 continue;
1873
1874                         yielded = kvm_vcpu_yield_to(vcpu);
1875                         if (yielded > 0) {
1876                                 kvm->last_boosted_vcpu = i;
1877                                 break;
1878                         } else if (yielded < 0) {
1879                                 try--;
1880                                 if (!try)
1881                                         break;
1882                         }
1883                 }
1884         }
1885         kvm_vcpu_set_in_spin_loop(me, false);
1886
1887         /* Ensure vcpu is not eligible during next spinloop */
1888         kvm_vcpu_set_dy_eligible(me, false);
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1891
1892 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1893 {
1894         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1895         struct page *page;
1896
1897         if (vmf->pgoff == 0)
1898                 page = virt_to_page(vcpu->run);
1899 #ifdef CONFIG_X86
1900         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1901                 page = virt_to_page(vcpu->arch.pio_data);
1902 #endif
1903 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1904         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1905                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1906 #endif
1907         else
1908                 return kvm_arch_vcpu_fault(vcpu, vmf);
1909         get_page(page);
1910         vmf->page = page;
1911         return 0;
1912 }
1913
1914 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1915         .fault = kvm_vcpu_fault,
1916 };
1917
1918 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1919 {
1920         vma->vm_ops = &kvm_vcpu_vm_ops;
1921         return 0;
1922 }
1923
1924 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1925 {
1926         struct kvm_vcpu *vcpu = filp->private_data;
1927
1928         kvm_put_kvm(vcpu->kvm);
1929         return 0;
1930 }
1931
1932 static struct file_operations kvm_vcpu_fops = {
1933         .release        = kvm_vcpu_release,
1934         .unlocked_ioctl = kvm_vcpu_ioctl,
1935 #ifdef CONFIG_COMPAT
1936         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1937 #endif
1938         .mmap           = kvm_vcpu_mmap,
1939         .llseek         = noop_llseek,
1940 };
1941
1942 /*
1943  * Allocates an inode for the vcpu.
1944  */
1945 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1946 {
1947         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1948 }
1949
1950 /*
1951  * Creates some virtual cpus.  Good luck creating more than one.
1952  */
1953 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1954 {
1955         int r;
1956         struct kvm_vcpu *vcpu, *v;
1957
1958         if (id >= KVM_MAX_VCPUS)
1959                 return -EINVAL;
1960
1961         vcpu = kvm_arch_vcpu_create(kvm, id);
1962         if (IS_ERR(vcpu))
1963                 return PTR_ERR(vcpu);
1964
1965         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1966
1967         r = kvm_arch_vcpu_setup(vcpu);
1968         if (r)
1969                 goto vcpu_destroy;
1970
1971         mutex_lock(&kvm->lock);
1972         if (!kvm_vcpu_compatible(vcpu)) {
1973                 r = -EINVAL;
1974                 goto unlock_vcpu_destroy;
1975         }
1976         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1977                 r = -EINVAL;
1978                 goto unlock_vcpu_destroy;
1979         }
1980
1981         kvm_for_each_vcpu(r, v, kvm)
1982                 if (v->vcpu_id == id) {
1983                         r = -EEXIST;
1984                         goto unlock_vcpu_destroy;
1985                 }
1986
1987         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1988
1989         /* Now it's all set up, let userspace reach it */
1990         kvm_get_kvm(kvm);
1991         r = create_vcpu_fd(vcpu);
1992         if (r < 0) {
1993                 kvm_put_kvm(kvm);
1994                 goto unlock_vcpu_destroy;
1995         }
1996
1997         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1998         smp_wmb();
1999         atomic_inc(&kvm->online_vcpus);
2000
2001         mutex_unlock(&kvm->lock);
2002         kvm_arch_vcpu_postcreate(vcpu);
2003         return r;
2004
2005 unlock_vcpu_destroy:
2006         mutex_unlock(&kvm->lock);
2007 vcpu_destroy:
2008         kvm_arch_vcpu_destroy(vcpu);
2009         return r;
2010 }
2011
2012 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2013 {
2014         if (sigset) {
2015                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2016                 vcpu->sigset_active = 1;
2017                 vcpu->sigset = *sigset;
2018         } else
2019                 vcpu->sigset_active = 0;
2020         return 0;
2021 }
2022
2023 static long kvm_vcpu_ioctl(struct file *filp,
2024                            unsigned int ioctl, unsigned long arg)
2025 {
2026         struct kvm_vcpu *vcpu = filp->private_data;
2027         void __user *argp = (void __user *)arg;
2028         int r;
2029         struct kvm_fpu *fpu = NULL;
2030         struct kvm_sregs *kvm_sregs = NULL;
2031
2032         if (vcpu->kvm->mm != current->mm)
2033                 return -EIO;
2034
2035 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2036         /*
2037          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2038          * so vcpu_load() would break it.
2039          */
2040         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2041                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2042 #endif
2043
2044
2045         r = vcpu_load(vcpu);
2046         if (r)
2047                 return r;
2048         switch (ioctl) {
2049         case KVM_RUN:
2050                 r = -EINVAL;
2051                 if (arg)
2052                         goto out;
2053                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2054                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2055                 break;
2056         case KVM_GET_REGS: {
2057                 struct kvm_regs *kvm_regs;
2058
2059                 r = -ENOMEM;
2060                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2061                 if (!kvm_regs)
2062                         goto out;
2063                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2064                 if (r)
2065                         goto out_free1;
2066                 r = -EFAULT;
2067                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2068                         goto out_free1;
2069                 r = 0;
2070 out_free1:
2071                 kfree(kvm_regs);
2072                 break;
2073         }
2074         case KVM_SET_REGS: {
2075                 struct kvm_regs *kvm_regs;
2076
2077                 r = -ENOMEM;
2078                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2079                 if (IS_ERR(kvm_regs)) {
2080                         r = PTR_ERR(kvm_regs);
2081                         goto out;
2082                 }
2083                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2084                 kfree(kvm_regs);
2085                 break;
2086         }
2087         case KVM_GET_SREGS: {
2088                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2089                 r = -ENOMEM;
2090                 if (!kvm_sregs)
2091                         goto out;
2092                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2093                 if (r)
2094                         goto out;
2095                 r = -EFAULT;
2096                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2097                         goto out;
2098                 r = 0;
2099                 break;
2100         }
2101         case KVM_SET_SREGS: {
2102                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2103                 if (IS_ERR(kvm_sregs)) {
2104                         r = PTR_ERR(kvm_sregs);
2105                         kvm_sregs = NULL;
2106                         goto out;
2107                 }
2108                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2109                 break;
2110         }
2111         case KVM_GET_MP_STATE: {
2112                 struct kvm_mp_state mp_state;
2113
2114                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2115                 if (r)
2116                         goto out;
2117                 r = -EFAULT;
2118                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2119                         goto out;
2120                 r = 0;
2121                 break;
2122         }
2123         case KVM_SET_MP_STATE: {
2124                 struct kvm_mp_state mp_state;
2125
2126                 r = -EFAULT;
2127                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2128                         goto out;
2129                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2130                 break;
2131         }
2132         case KVM_TRANSLATE: {
2133                 struct kvm_translation tr;
2134
2135                 r = -EFAULT;
2136                 if (copy_from_user(&tr, argp, sizeof tr))
2137                         goto out;
2138                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2139                 if (r)
2140                         goto out;
2141                 r = -EFAULT;
2142                 if (copy_to_user(argp, &tr, sizeof tr))
2143                         goto out;
2144                 r = 0;
2145                 break;
2146         }
2147         case KVM_SET_GUEST_DEBUG: {
2148                 struct kvm_guest_debug dbg;
2149
2150                 r = -EFAULT;
2151                 if (copy_from_user(&dbg, argp, sizeof dbg))
2152                         goto out;
2153                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2154                 break;
2155         }
2156         case KVM_SET_SIGNAL_MASK: {
2157                 struct kvm_signal_mask __user *sigmask_arg = argp;
2158                 struct kvm_signal_mask kvm_sigmask;
2159                 sigset_t sigset, *p;
2160
2161                 p = NULL;
2162                 if (argp) {
2163                         r = -EFAULT;
2164                         if (copy_from_user(&kvm_sigmask, argp,
2165                                            sizeof kvm_sigmask))
2166                                 goto out;
2167                         r = -EINVAL;
2168                         if (kvm_sigmask.len != sizeof sigset)
2169                                 goto out;
2170                         r = -EFAULT;
2171                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2172                                            sizeof sigset))
2173                                 goto out;
2174                         p = &sigset;
2175                 }
2176                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2177                 break;
2178         }
2179         case KVM_GET_FPU: {
2180                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2181                 r = -ENOMEM;
2182                 if (!fpu)
2183                         goto out;
2184                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2185                 if (r)
2186                         goto out;
2187                 r = -EFAULT;
2188                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2189                         goto out;
2190                 r = 0;
2191                 break;
2192         }
2193         case KVM_SET_FPU: {
2194                 fpu = memdup_user(argp, sizeof(*fpu));
2195                 if (IS_ERR(fpu)) {
2196                         r = PTR_ERR(fpu);
2197                         fpu = NULL;
2198                         goto out;
2199                 }
2200                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2201                 break;
2202         }
2203         default:
2204                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2205         }
2206 out:
2207         vcpu_put(vcpu);
2208         kfree(fpu);
2209         kfree(kvm_sregs);
2210         return r;
2211 }
2212
2213 #ifdef CONFIG_COMPAT
2214 static long kvm_vcpu_compat_ioctl(struct file *filp,
2215                                   unsigned int ioctl, unsigned long arg)
2216 {
2217         struct kvm_vcpu *vcpu = filp->private_data;
2218         void __user *argp = compat_ptr(arg);
2219         int r;
2220
2221         if (vcpu->kvm->mm != current->mm)
2222                 return -EIO;
2223
2224         switch (ioctl) {
2225         case KVM_SET_SIGNAL_MASK: {
2226                 struct kvm_signal_mask __user *sigmask_arg = argp;
2227                 struct kvm_signal_mask kvm_sigmask;
2228                 compat_sigset_t csigset;
2229                 sigset_t sigset;
2230
2231                 if (argp) {
2232                         r = -EFAULT;
2233                         if (copy_from_user(&kvm_sigmask, argp,
2234                                            sizeof kvm_sigmask))
2235                                 goto out;
2236                         r = -EINVAL;
2237                         if (kvm_sigmask.len != sizeof csigset)
2238                                 goto out;
2239                         r = -EFAULT;
2240                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2241                                            sizeof csigset))
2242                                 goto out;
2243                         sigset_from_compat(&sigset, &csigset);
2244                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2245                 } else
2246                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2247                 break;
2248         }
2249         default:
2250                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2251         }
2252
2253 out:
2254         return r;
2255 }
2256 #endif
2257
2258 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2259                                  int (*accessor)(struct kvm_device *dev,
2260                                                  struct kvm_device_attr *attr),
2261                                  unsigned long arg)
2262 {
2263         struct kvm_device_attr attr;
2264
2265         if (!accessor)
2266                 return -EPERM;
2267
2268         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2269                 return -EFAULT;
2270
2271         return accessor(dev, &attr);
2272 }
2273
2274 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2275                              unsigned long arg)
2276 {
2277         struct kvm_device *dev = filp->private_data;
2278
2279         switch (ioctl) {
2280         case KVM_SET_DEVICE_ATTR:
2281                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2282         case KVM_GET_DEVICE_ATTR:
2283                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2284         case KVM_HAS_DEVICE_ATTR:
2285                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2286         default:
2287                 if (dev->ops->ioctl)
2288                         return dev->ops->ioctl(dev, ioctl, arg);
2289
2290                 return -ENOTTY;
2291         }
2292 }
2293
2294 static int kvm_device_release(struct inode *inode, struct file *filp)
2295 {
2296         struct kvm_device *dev = filp->private_data;
2297         struct kvm *kvm = dev->kvm;
2298
2299         kvm_put_kvm(kvm);
2300         return 0;
2301 }
2302
2303 static const struct file_operations kvm_device_fops = {
2304         .unlocked_ioctl = kvm_device_ioctl,
2305 #ifdef CONFIG_COMPAT
2306         .compat_ioctl = kvm_device_ioctl,
2307 #endif
2308         .release = kvm_device_release,
2309 };
2310
2311 struct kvm_device *kvm_device_from_filp(struct file *filp)
2312 {
2313         if (filp->f_op != &kvm_device_fops)
2314                 return NULL;
2315
2316         return filp->private_data;
2317 }
2318
2319 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2320 #ifdef CONFIG_KVM_MPIC
2321         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2322         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2323 #endif
2324
2325 #ifdef CONFIG_KVM_XICS
2326         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2327 #endif
2328 };
2329
2330 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2331 {
2332         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2333                 return -ENOSPC;
2334
2335         if (kvm_device_ops_table[type] != NULL)
2336                 return -EEXIST;
2337
2338         kvm_device_ops_table[type] = ops;
2339         return 0;
2340 }
2341
2342 static int kvm_ioctl_create_device(struct kvm *kvm,
2343                                    struct kvm_create_device *cd)
2344 {
2345         struct kvm_device_ops *ops = NULL;
2346         struct kvm_device *dev;
2347         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2348         int ret;
2349
2350         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2351                 return -ENODEV;
2352
2353         ops = kvm_device_ops_table[cd->type];
2354         if (ops == NULL)
2355                 return -ENODEV;
2356
2357         if (test)
2358                 return 0;
2359
2360         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2361         if (!dev)
2362                 return -ENOMEM;
2363
2364         dev->ops = ops;
2365         dev->kvm = kvm;
2366
2367         ret = ops->create(dev, cd->type);
2368         if (ret < 0) {
2369                 kfree(dev);
2370                 return ret;
2371         }
2372
2373         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2374         if (ret < 0) {
2375                 ops->destroy(dev);
2376                 return ret;
2377         }
2378
2379         list_add(&dev->vm_node, &kvm->devices);
2380         kvm_get_kvm(kvm);
2381         cd->fd = ret;
2382         return 0;
2383 }
2384
2385 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2386 {
2387         switch (arg) {
2388         case KVM_CAP_USER_MEMORY:
2389         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2390         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2391 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2392         case KVM_CAP_SET_BOOT_CPU_ID:
2393 #endif
2394         case KVM_CAP_INTERNAL_ERROR_DATA:
2395 #ifdef CONFIG_HAVE_KVM_MSI
2396         case KVM_CAP_SIGNAL_MSI:
2397 #endif
2398 #ifdef CONFIG_HAVE_KVM_IRQFD
2399         case KVM_CAP_IRQFD_RESAMPLE:
2400 #endif
2401         case KVM_CAP_CHECK_EXTENSION_VM:
2402                 return 1;
2403 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2404         case KVM_CAP_IRQ_ROUTING:
2405                 return KVM_MAX_IRQ_ROUTES;
2406 #endif
2407         default:
2408                 break;
2409         }
2410         return kvm_vm_ioctl_check_extension(kvm, arg);
2411 }
2412
2413 static long kvm_vm_ioctl(struct file *filp,
2414                            unsigned int ioctl, unsigned long arg)
2415 {
2416         struct kvm *kvm = filp->private_data;
2417         void __user *argp = (void __user *)arg;
2418         int r;
2419
2420         if (kvm->mm != current->mm)
2421                 return -EIO;
2422         switch (ioctl) {
2423         case KVM_CREATE_VCPU:
2424                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2425                 break;
2426         case KVM_SET_USER_MEMORY_REGION: {
2427                 struct kvm_userspace_memory_region kvm_userspace_mem;
2428
2429                 r = -EFAULT;
2430                 if (copy_from_user(&kvm_userspace_mem, argp,
2431                                                 sizeof kvm_userspace_mem))
2432                         goto out;
2433
2434                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2435                 break;
2436         }
2437         case KVM_GET_DIRTY_LOG: {
2438                 struct kvm_dirty_log log;
2439
2440                 r = -EFAULT;
2441                 if (copy_from_user(&log, argp, sizeof log))
2442                         goto out;
2443                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2444                 break;
2445         }
2446 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2447         case KVM_REGISTER_COALESCED_MMIO: {
2448                 struct kvm_coalesced_mmio_zone zone;
2449                 r = -EFAULT;
2450                 if (copy_from_user(&zone, argp, sizeof zone))
2451                         goto out;
2452                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2453                 break;
2454         }
2455         case KVM_UNREGISTER_COALESCED_MMIO: {
2456                 struct kvm_coalesced_mmio_zone zone;
2457                 r = -EFAULT;
2458                 if (copy_from_user(&zone, argp, sizeof zone))
2459                         goto out;
2460                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2461                 break;
2462         }
2463 #endif
2464         case KVM_IRQFD: {
2465                 struct kvm_irqfd data;
2466
2467                 r = -EFAULT;
2468                 if (copy_from_user(&data, argp, sizeof data))
2469                         goto out;
2470                 r = kvm_irqfd(kvm, &data);
2471                 break;
2472         }
2473         case KVM_IOEVENTFD: {
2474                 struct kvm_ioeventfd data;
2475
2476                 r = -EFAULT;
2477                 if (copy_from_user(&data, argp, sizeof data))
2478                         goto out;
2479                 r = kvm_ioeventfd(kvm, &data);
2480                 break;
2481         }
2482 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2483         case KVM_SET_BOOT_CPU_ID:
2484                 r = 0;
2485                 mutex_lock(&kvm->lock);
2486                 if (atomic_read(&kvm->online_vcpus) != 0)
2487                         r = -EBUSY;
2488                 else
2489                         kvm->bsp_vcpu_id = arg;
2490                 mutex_unlock(&kvm->lock);
2491                 break;
2492 #endif
2493 #ifdef CONFIG_HAVE_KVM_MSI
2494         case KVM_SIGNAL_MSI: {
2495                 struct kvm_msi msi;
2496
2497                 r = -EFAULT;
2498                 if (copy_from_user(&msi, argp, sizeof msi))
2499                         goto out;
2500                 r = kvm_send_userspace_msi(kvm, &msi);
2501                 break;
2502         }
2503 #endif
2504 #ifdef __KVM_HAVE_IRQ_LINE
2505         case KVM_IRQ_LINE_STATUS:
2506         case KVM_IRQ_LINE: {
2507                 struct kvm_irq_level irq_event;
2508
2509                 r = -EFAULT;
2510                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2511                         goto out;
2512
2513                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2514                                         ioctl == KVM_IRQ_LINE_STATUS);
2515                 if (r)
2516                         goto out;
2517
2518                 r = -EFAULT;
2519                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2520                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2521                                 goto out;
2522                 }
2523
2524                 r = 0;
2525                 break;
2526         }
2527 #endif
2528 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2529         case KVM_SET_GSI_ROUTING: {
2530                 struct kvm_irq_routing routing;
2531                 struct kvm_irq_routing __user *urouting;
2532                 struct kvm_irq_routing_entry *entries;
2533
2534                 r = -EFAULT;
2535                 if (copy_from_user(&routing, argp, sizeof(routing)))
2536                         goto out;
2537                 r = -EINVAL;
2538                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2539                         goto out;
2540                 if (routing.flags)
2541                         goto out;
2542                 r = -ENOMEM;
2543                 entries = vmalloc(routing.nr * sizeof(*entries));
2544                 if (!entries)
2545                         goto out;
2546                 r = -EFAULT;
2547                 urouting = argp;
2548                 if (copy_from_user(entries, urouting->entries,
2549                                    routing.nr * sizeof(*entries)))
2550                         goto out_free_irq_routing;
2551                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2552                                         routing.flags);
2553         out_free_irq_routing:
2554                 vfree(entries);
2555                 break;
2556         }
2557 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2558         case KVM_CREATE_DEVICE: {
2559                 struct kvm_create_device cd;
2560
2561                 r = -EFAULT;
2562                 if (copy_from_user(&cd, argp, sizeof(cd)))
2563                         goto out;
2564
2565                 r = kvm_ioctl_create_device(kvm, &cd);
2566                 if (r)
2567                         goto out;
2568
2569                 r = -EFAULT;
2570                 if (copy_to_user(argp, &cd, sizeof(cd)))
2571                         goto out;
2572
2573                 r = 0;
2574                 break;
2575         }
2576         case KVM_CHECK_EXTENSION:
2577                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2578                 break;
2579         default:
2580                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2581                 if (r == -ENOTTY)
2582                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2583         }
2584 out:
2585         return r;
2586 }
2587
2588 #ifdef CONFIG_COMPAT
2589 struct compat_kvm_dirty_log {
2590         __u32 slot;
2591         __u32 padding1;
2592         union {
2593                 compat_uptr_t dirty_bitmap; /* one bit per page */
2594                 __u64 padding2;
2595         };
2596 };
2597
2598 static long kvm_vm_compat_ioctl(struct file *filp,
2599                            unsigned int ioctl, unsigned long arg)
2600 {
2601         struct kvm *kvm = filp->private_data;
2602         int r;
2603
2604         if (kvm->mm != current->mm)
2605                 return -EIO;
2606         switch (ioctl) {
2607         case KVM_GET_DIRTY_LOG: {
2608                 struct compat_kvm_dirty_log compat_log;
2609                 struct kvm_dirty_log log;
2610
2611                 r = -EFAULT;
2612                 if (copy_from_user(&compat_log, (void __user *)arg,
2613                                    sizeof(compat_log)))
2614                         goto out;
2615                 log.slot         = compat_log.slot;
2616                 log.padding1     = compat_log.padding1;
2617                 log.padding2     = compat_log.padding2;
2618                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2619
2620                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2621                 break;
2622         }
2623         default:
2624                 r = kvm_vm_ioctl(filp, ioctl, arg);
2625         }
2626
2627 out:
2628         return r;
2629 }
2630 #endif
2631
2632 static struct file_operations kvm_vm_fops = {
2633         .release        = kvm_vm_release,
2634         .unlocked_ioctl = kvm_vm_ioctl,
2635 #ifdef CONFIG_COMPAT
2636         .compat_ioctl   = kvm_vm_compat_ioctl,
2637 #endif
2638         .llseek         = noop_llseek,
2639 };
2640
2641 static int kvm_dev_ioctl_create_vm(unsigned long type)
2642 {
2643         int r;
2644         struct kvm *kvm;
2645
2646         kvm = kvm_create_vm(type);
2647         if (IS_ERR(kvm))
2648                 return PTR_ERR(kvm);
2649 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2650         r = kvm_coalesced_mmio_init(kvm);
2651         if (r < 0) {
2652                 kvm_put_kvm(kvm);
2653                 return r;
2654         }
2655 #endif
2656         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2657         if (r < 0)
2658                 kvm_put_kvm(kvm);
2659
2660         return r;
2661 }
2662
2663 static long kvm_dev_ioctl(struct file *filp,
2664                           unsigned int ioctl, unsigned long arg)
2665 {
2666         long r = -EINVAL;
2667
2668         switch (ioctl) {
2669         case KVM_GET_API_VERSION:
2670                 if (arg)
2671                         goto out;
2672                 r = KVM_API_VERSION;
2673                 break;
2674         case KVM_CREATE_VM:
2675                 r = kvm_dev_ioctl_create_vm(arg);
2676                 break;
2677         case KVM_CHECK_EXTENSION:
2678                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2679                 break;
2680         case KVM_GET_VCPU_MMAP_SIZE:
2681                 if (arg)
2682                         goto out;
2683                 r = PAGE_SIZE;     /* struct kvm_run */
2684 #ifdef CONFIG_X86
2685                 r += PAGE_SIZE;    /* pio data page */
2686 #endif
2687 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2688                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2689 #endif
2690                 break;
2691         case KVM_TRACE_ENABLE:
2692         case KVM_TRACE_PAUSE:
2693         case KVM_TRACE_DISABLE:
2694                 r = -EOPNOTSUPP;
2695                 break;
2696         default:
2697                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2698         }
2699 out:
2700         return r;
2701 }
2702
2703 static struct file_operations kvm_chardev_ops = {
2704         .unlocked_ioctl = kvm_dev_ioctl,
2705         .compat_ioctl   = kvm_dev_ioctl,
2706         .llseek         = noop_llseek,
2707 };
2708
2709 static struct miscdevice kvm_dev = {
2710         KVM_MINOR,
2711         "kvm",
2712         &kvm_chardev_ops,
2713 };
2714
2715 static void hardware_enable_nolock(void *junk)
2716 {
2717         int cpu = raw_smp_processor_id();
2718         int r;
2719
2720         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2721                 return;
2722
2723         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2724
2725         r = kvm_arch_hardware_enable();
2726
2727         if (r) {
2728                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2729                 atomic_inc(&hardware_enable_failed);
2730                 printk(KERN_INFO "kvm: enabling virtualization on "
2731                                  "CPU%d failed\n", cpu);
2732         }
2733 }
2734
2735 static void hardware_enable(void)
2736 {
2737         raw_spin_lock(&kvm_count_lock);
2738         if (kvm_usage_count)
2739                 hardware_enable_nolock(NULL);
2740         raw_spin_unlock(&kvm_count_lock);
2741 }
2742
2743 static void hardware_disable_nolock(void *junk)
2744 {
2745         int cpu = raw_smp_processor_id();
2746
2747         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2748                 return;
2749         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2750         kvm_arch_hardware_disable();
2751 }
2752
2753 static void hardware_disable(void)
2754 {
2755         raw_spin_lock(&kvm_count_lock);
2756         if (kvm_usage_count)
2757                 hardware_disable_nolock(NULL);
2758         raw_spin_unlock(&kvm_count_lock);
2759 }
2760
2761 static void hardware_disable_all_nolock(void)
2762 {
2763         BUG_ON(!kvm_usage_count);
2764
2765         kvm_usage_count--;
2766         if (!kvm_usage_count)
2767                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2768 }
2769
2770 static void hardware_disable_all(void)
2771 {
2772         raw_spin_lock(&kvm_count_lock);
2773         hardware_disable_all_nolock();
2774         raw_spin_unlock(&kvm_count_lock);
2775 }
2776
2777 static int hardware_enable_all(void)
2778 {
2779         int r = 0;
2780
2781         raw_spin_lock(&kvm_count_lock);
2782
2783         kvm_usage_count++;
2784         if (kvm_usage_count == 1) {
2785                 atomic_set(&hardware_enable_failed, 0);
2786                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2787
2788                 if (atomic_read(&hardware_enable_failed)) {
2789                         hardware_disable_all_nolock();
2790                         r = -EBUSY;
2791                 }
2792         }
2793
2794         raw_spin_unlock(&kvm_count_lock);
2795
2796         return r;
2797 }
2798
2799 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2800                            void *v)
2801 {
2802         int cpu = (long)v;
2803
2804         val &= ~CPU_TASKS_FROZEN;
2805         switch (val) {
2806         case CPU_DYING:
2807                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2808                        cpu);
2809                 hardware_disable();
2810                 break;
2811         case CPU_STARTING:
2812                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2813                        cpu);
2814                 hardware_enable();
2815                 break;
2816         }
2817         return NOTIFY_OK;
2818 }
2819
2820 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2821                       void *v)
2822 {
2823         /*
2824          * Some (well, at least mine) BIOSes hang on reboot if
2825          * in vmx root mode.
2826          *
2827          * And Intel TXT required VMX off for all cpu when system shutdown.
2828          */
2829         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2830         kvm_rebooting = true;
2831         on_each_cpu(hardware_disable_nolock, NULL, 1);
2832         return NOTIFY_OK;
2833 }
2834
2835 static struct notifier_block kvm_reboot_notifier = {
2836         .notifier_call = kvm_reboot,
2837         .priority = 0,
2838 };
2839
2840 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2841 {
2842         int i;
2843
2844         for (i = 0; i < bus->dev_count; i++) {
2845                 struct kvm_io_device *pos = bus->range[i].dev;
2846
2847                 kvm_iodevice_destructor(pos);
2848         }
2849         kfree(bus);
2850 }
2851
2852 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2853                                  const struct kvm_io_range *r2)
2854 {
2855         if (r1->addr < r2->addr)
2856                 return -1;
2857         if (r1->addr + r1->len > r2->addr + r2->len)
2858                 return 1;
2859         return 0;
2860 }
2861
2862 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2863 {
2864         return kvm_io_bus_cmp(p1, p2);
2865 }
2866
2867 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2868                           gpa_t addr, int len)
2869 {
2870         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2871                 .addr = addr,
2872                 .len = len,
2873                 .dev = dev,
2874         };
2875
2876         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2877                 kvm_io_bus_sort_cmp, NULL);
2878
2879         return 0;
2880 }
2881
2882 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2883                              gpa_t addr, int len)
2884 {
2885         struct kvm_io_range *range, key;
2886         int off;
2887
2888         key = (struct kvm_io_range) {
2889                 .addr = addr,
2890                 .len = len,
2891         };
2892
2893         range = bsearch(&key, bus->range, bus->dev_count,
2894                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2895         if (range == NULL)
2896                 return -ENOENT;
2897
2898         off = range - bus->range;
2899
2900         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2901                 off--;
2902
2903         return off;
2904 }
2905
2906 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2907                               struct kvm_io_range *range, const void *val)
2908 {
2909         int idx;
2910
2911         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2912         if (idx < 0)
2913                 return -EOPNOTSUPP;
2914
2915         while (idx < bus->dev_count &&
2916                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2917                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2918                                         range->len, val))
2919                         return idx;
2920                 idx++;
2921         }
2922
2923         return -EOPNOTSUPP;
2924 }
2925
2926 /* kvm_io_bus_write - called under kvm->slots_lock */
2927 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2928                      int len, const void *val)
2929 {
2930         struct kvm_io_bus *bus;
2931         struct kvm_io_range range;
2932         int r;
2933
2934         range = (struct kvm_io_range) {
2935                 .addr = addr,
2936                 .len = len,
2937         };
2938
2939         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2940         r = __kvm_io_bus_write(bus, &range, val);
2941         return r < 0 ? r : 0;
2942 }
2943
2944 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2945 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946                             int len, const void *val, long cookie)
2947 {
2948         struct kvm_io_bus *bus;
2949         struct kvm_io_range range;
2950
2951         range = (struct kvm_io_range) {
2952                 .addr = addr,
2953                 .len = len,
2954         };
2955
2956         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2957
2958         /* First try the device referenced by cookie. */
2959         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2960             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2961                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2962                                         val))
2963                         return cookie;
2964
2965         /*
2966          * cookie contained garbage; fall back to search and return the
2967          * correct cookie value.
2968          */
2969         return __kvm_io_bus_write(bus, &range, val);
2970 }
2971
2972 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2973                              void *val)
2974 {
2975         int idx;
2976
2977         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2978         if (idx < 0)
2979                 return -EOPNOTSUPP;
2980
2981         while (idx < bus->dev_count &&
2982                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2983                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2984                                        range->len, val))
2985                         return idx;
2986                 idx++;
2987         }
2988
2989         return -EOPNOTSUPP;
2990 }
2991 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2992
2993 /* kvm_io_bus_read - called under kvm->slots_lock */
2994 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2995                     int len, void *val)
2996 {
2997         struct kvm_io_bus *bus;
2998         struct kvm_io_range range;
2999         int r;
3000
3001         range = (struct kvm_io_range) {
3002                 .addr = addr,
3003                 .len = len,
3004         };
3005
3006         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3007         r = __kvm_io_bus_read(bus, &range, val);
3008         return r < 0 ? r : 0;
3009 }
3010
3011
3012 /* Caller must hold slots_lock. */
3013 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3014                             int len, struct kvm_io_device *dev)
3015 {
3016         struct kvm_io_bus *new_bus, *bus;
3017
3018         bus = kvm->buses[bus_idx];
3019         /* exclude ioeventfd which is limited by maximum fd */
3020         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3021                 return -ENOSPC;
3022
3023         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3024                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3025         if (!new_bus)
3026                 return -ENOMEM;
3027         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3028                sizeof(struct kvm_io_range)));
3029         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3030         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3031         synchronize_srcu_expedited(&kvm->srcu);
3032         kfree(bus);
3033
3034         return 0;
3035 }
3036
3037 /* Caller must hold slots_lock. */
3038 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3039                               struct kvm_io_device *dev)
3040 {
3041         int i, r;
3042         struct kvm_io_bus *new_bus, *bus;
3043
3044         bus = kvm->buses[bus_idx];
3045         r = -ENOENT;
3046         for (i = 0; i < bus->dev_count; i++)
3047                 if (bus->range[i].dev == dev) {
3048                         r = 0;
3049                         break;
3050                 }
3051
3052         if (r)
3053                 return r;
3054
3055         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3056                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3057         if (!new_bus)
3058                 return -ENOMEM;
3059
3060         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3061         new_bus->dev_count--;
3062         memcpy(new_bus->range + i, bus->range + i + 1,
3063                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3064
3065         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3066         synchronize_srcu_expedited(&kvm->srcu);
3067         kfree(bus);
3068         return r;
3069 }
3070
3071 static struct notifier_block kvm_cpu_notifier = {
3072         .notifier_call = kvm_cpu_hotplug,
3073 };
3074
3075 static int vm_stat_get(void *_offset, u64 *val)
3076 {
3077         unsigned offset = (long)_offset;
3078         struct kvm *kvm;
3079
3080         *val = 0;
3081         spin_lock(&kvm_lock);
3082         list_for_each_entry(kvm, &vm_list, vm_list)
3083                 *val += *(u32 *)((void *)kvm + offset);
3084         spin_unlock(&kvm_lock);
3085         return 0;
3086 }
3087
3088 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3089
3090 static int vcpu_stat_get(void *_offset, u64 *val)
3091 {
3092         unsigned offset = (long)_offset;
3093         struct kvm *kvm;
3094         struct kvm_vcpu *vcpu;
3095         int i;
3096
3097         *val = 0;
3098         spin_lock(&kvm_lock);
3099         list_for_each_entry(kvm, &vm_list, vm_list)
3100                 kvm_for_each_vcpu(i, vcpu, kvm)
3101                         *val += *(u32 *)((void *)vcpu + offset);
3102
3103         spin_unlock(&kvm_lock);
3104         return 0;
3105 }
3106
3107 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3108
3109 static const struct file_operations *stat_fops[] = {
3110         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3111         [KVM_STAT_VM]   = &vm_stat_fops,
3112 };
3113
3114 static int kvm_init_debug(void)
3115 {
3116         int r = -EEXIST;
3117         struct kvm_stats_debugfs_item *p;
3118
3119         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3120         if (kvm_debugfs_dir == NULL)
3121                 goto out;
3122
3123         for (p = debugfs_entries; p->name; ++p) {
3124                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3125                                                 (void *)(long)p->offset,
3126                                                 stat_fops[p->kind]);
3127                 if (p->dentry == NULL)
3128                         goto out_dir;
3129         }
3130
3131         return 0;
3132
3133 out_dir:
3134         debugfs_remove_recursive(kvm_debugfs_dir);
3135 out:
3136         return r;
3137 }
3138
3139 static void kvm_exit_debug(void)
3140 {
3141         struct kvm_stats_debugfs_item *p;
3142
3143         for (p = debugfs_entries; p->name; ++p)
3144                 debugfs_remove(p->dentry);
3145         debugfs_remove(kvm_debugfs_dir);
3146 }
3147
3148 static int kvm_suspend(void)
3149 {
3150         if (kvm_usage_count)
3151                 hardware_disable_nolock(NULL);
3152         return 0;
3153 }
3154
3155 static void kvm_resume(void)
3156 {
3157         if (kvm_usage_count) {
3158                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3159                 hardware_enable_nolock(NULL);
3160         }
3161 }
3162
3163 static struct syscore_ops kvm_syscore_ops = {
3164         .suspend = kvm_suspend,
3165         .resume = kvm_resume,
3166 };
3167
3168 static inline
3169 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3170 {
3171         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3172 }
3173
3174 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3175 {
3176         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3177         if (vcpu->preempted)
3178                 vcpu->preempted = false;
3179
3180         kvm_arch_sched_in(vcpu, cpu);
3181
3182         kvm_arch_vcpu_load(vcpu, cpu);
3183 }
3184
3185 static void kvm_sched_out(struct preempt_notifier *pn,
3186                           struct task_struct *next)
3187 {
3188         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3189
3190         if (current->state == TASK_RUNNING)
3191                 vcpu->preempted = true;
3192         kvm_arch_vcpu_put(vcpu);
3193 }
3194
3195 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3196                   struct module *module)
3197 {
3198         int r;
3199         int cpu;
3200
3201         r = kvm_arch_init(opaque);
3202         if (r)
3203                 goto out_fail;
3204
3205         /*
3206          * kvm_arch_init makes sure there's at most one caller
3207          * for architectures that support multiple implementations,
3208          * like intel and amd on x86.
3209          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3210          * conflicts in case kvm is already setup for another implementation.
3211          */
3212         r = kvm_irqfd_init();
3213         if (r)
3214                 goto out_irqfd;
3215
3216         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3217                 r = -ENOMEM;
3218                 goto out_free_0;
3219         }
3220
3221         r = kvm_arch_hardware_setup();
3222         if (r < 0)
3223                 goto out_free_0a;
3224
3225         for_each_online_cpu(cpu) {
3226                 smp_call_function_single(cpu,
3227                                 kvm_arch_check_processor_compat,
3228                                 &r, 1);
3229                 if (r < 0)
3230                         goto out_free_1;
3231         }
3232
3233         r = register_cpu_notifier(&kvm_cpu_notifier);
3234         if (r)
3235                 goto out_free_2;
3236         register_reboot_notifier(&kvm_reboot_notifier);
3237
3238         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3239         if (!vcpu_align)
3240                 vcpu_align = __alignof__(struct kvm_vcpu);
3241         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3242                                            0, NULL);
3243         if (!kvm_vcpu_cache) {
3244                 r = -ENOMEM;
3245                 goto out_free_3;
3246         }
3247
3248         r = kvm_async_pf_init();
3249         if (r)
3250                 goto out_free;
3251
3252         kvm_chardev_ops.owner = module;
3253         kvm_vm_fops.owner = module;
3254         kvm_vcpu_fops.owner = module;
3255
3256         r = misc_register(&kvm_dev);
3257         if (r) {
3258                 printk(KERN_ERR "kvm: misc device register failed\n");
3259                 goto out_unreg;
3260         }
3261
3262         register_syscore_ops(&kvm_syscore_ops);
3263
3264         kvm_preempt_ops.sched_in = kvm_sched_in;
3265         kvm_preempt_ops.sched_out = kvm_sched_out;
3266
3267         r = kvm_init_debug();
3268         if (r) {
3269                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3270                 goto out_undebugfs;
3271         }
3272
3273         r = kvm_vfio_ops_init();
3274         WARN_ON(r);
3275
3276         return 0;
3277
3278 out_undebugfs:
3279         unregister_syscore_ops(&kvm_syscore_ops);
3280         misc_deregister(&kvm_dev);
3281 out_unreg:
3282         kvm_async_pf_deinit();
3283 out_free:
3284         kmem_cache_destroy(kvm_vcpu_cache);
3285 out_free_3:
3286         unregister_reboot_notifier(&kvm_reboot_notifier);
3287         unregister_cpu_notifier(&kvm_cpu_notifier);
3288 out_free_2:
3289 out_free_1:
3290         kvm_arch_hardware_unsetup();
3291 out_free_0a:
3292         free_cpumask_var(cpus_hardware_enabled);
3293 out_free_0:
3294         kvm_irqfd_exit();
3295 out_irqfd:
3296         kvm_arch_exit();
3297 out_fail:
3298         return r;
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_init);
3301
3302 void kvm_exit(void)
3303 {
3304         kvm_exit_debug();
3305         misc_deregister(&kvm_dev);
3306         kmem_cache_destroy(kvm_vcpu_cache);
3307         kvm_async_pf_deinit();
3308         unregister_syscore_ops(&kvm_syscore_ops);
3309         unregister_reboot_notifier(&kvm_reboot_notifier);
3310         unregister_cpu_notifier(&kvm_cpu_notifier);
3311         on_each_cpu(hardware_disable_nolock, NULL, 1);
3312         kvm_arch_hardware_unsetup();
3313         kvm_arch_exit();
3314         kvm_irqfd_exit();
3315         free_cpumask_var(cpus_hardware_enabled);
3316 }
3317 EXPORT_SYMBOL_GPL(kvm_exit);