2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
86 struct dentry *kvm_debugfs_dir;
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 struct kvm_memory_slot *new, u64 last_generation);
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
108 static bool largepages_enabled = true;
110 bool kvm_is_mmio_pfn(pfn_t pfn)
113 return PageReserved(pfn_to_page(pfn));
119 * Switches to specified vcpu, until a matching vcpu_put()
121 int vcpu_load(struct kvm_vcpu *vcpu)
125 if (mutex_lock_killable(&vcpu->mutex))
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
136 preempt_notifier_register(&vcpu->preempt_notifier);
137 kvm_arch_vcpu_load(vcpu, cpu);
142 void vcpu_put(struct kvm_vcpu *vcpu)
145 kvm_arch_vcpu_put(vcpu);
146 preempt_notifier_unregister(&vcpu->preempt_notifier);
148 mutex_unlock(&vcpu->mutex);
151 static void ack_flush(void *_completed)
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 struct kvm_vcpu *vcpu;
162 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
165 kvm_for_each_vcpu(i, vcpu, kvm) {
166 kvm_make_request(req, vcpu);
169 /* Set ->requests bit before we read ->mode */
172 if (cpus != NULL && cpu != -1 && cpu != me &&
173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 cpumask_set_cpu(cpu, cpus);
176 if (unlikely(cpus == NULL))
177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 else if (!cpumask_empty(cpus))
179 smp_call_function_many(cpus, ack_flush, NULL, 1);
183 free_cpumask_var(cpus);
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 ++kvm->stat.remote_tlb_flush;
191 kvm->tlbs_dirty = false;
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
195 void kvm_reload_remote_mmus(struct kvm *kvm)
197 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
207 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 mutex_init(&vcpu->mutex);
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 vcpu->run = page_address(page);
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
234 r = kvm_arch_vcpu_init(vcpu);
240 free_page((unsigned long)vcpu->run);
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 return container_of(mn, struct kvm, mmu_notifier);
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
292 kvm_flush_remote_tlbs(kvm);
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
298 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
299 struct mm_struct *mm,
300 unsigned long address,
303 struct kvm *kvm = mmu_notifier_to_kvm(mn);
306 idx = srcu_read_lock(&kvm->srcu);
307 spin_lock(&kvm->mmu_lock);
308 kvm->mmu_notifier_seq++;
309 kvm_set_spte_hva(kvm, address, pte);
310 spin_unlock(&kvm->mmu_lock);
311 srcu_read_unlock(&kvm->srcu, idx);
314 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
315 struct mm_struct *mm,
319 struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 int need_tlb_flush = 0, idx;
322 idx = srcu_read_lock(&kvm->srcu);
323 spin_lock(&kvm->mmu_lock);
325 * The count increase must become visible at unlock time as no
326 * spte can be established without taking the mmu_lock and
327 * count is also read inside the mmu_lock critical section.
329 kvm->mmu_notifier_count++;
330 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
331 need_tlb_flush |= kvm->tlbs_dirty;
332 /* we've to flush the tlb before the pages can be freed */
334 kvm_flush_remote_tlbs(kvm);
336 spin_unlock(&kvm->mmu_lock);
337 srcu_read_unlock(&kvm->srcu, idx);
340 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
341 struct mm_struct *mm,
345 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 spin_lock(&kvm->mmu_lock);
349 * This sequence increase will notify the kvm page fault that
350 * the page that is going to be mapped in the spte could have
353 kvm->mmu_notifier_seq++;
356 * The above sequence increase must be visible before the
357 * below count decrease, which is ensured by the smp_wmb above
358 * in conjunction with the smp_rmb in mmu_notifier_retry().
360 kvm->mmu_notifier_count--;
361 spin_unlock(&kvm->mmu_lock);
363 BUG_ON(kvm->mmu_notifier_count < 0);
366 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address)
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 idx = srcu_read_lock(&kvm->srcu);
374 spin_lock(&kvm->mmu_lock);
376 young = kvm_age_hva(kvm, address);
378 kvm_flush_remote_tlbs(kvm);
380 spin_unlock(&kvm->mmu_lock);
381 srcu_read_unlock(&kvm->srcu, idx);
386 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
387 struct mm_struct *mm,
388 unsigned long address)
390 struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 idx = srcu_read_lock(&kvm->srcu);
394 spin_lock(&kvm->mmu_lock);
395 young = kvm_test_age_hva(kvm, address);
396 spin_unlock(&kvm->mmu_lock);
397 srcu_read_unlock(&kvm->srcu, idx);
402 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
403 struct mm_struct *mm)
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
408 idx = srcu_read_lock(&kvm->srcu);
409 kvm_arch_flush_shadow_all(kvm);
410 srcu_read_unlock(&kvm->srcu, idx);
413 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
414 .invalidate_page = kvm_mmu_notifier_invalidate_page,
415 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
416 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
417 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
418 .test_young = kvm_mmu_notifier_test_young,
419 .change_pte = kvm_mmu_notifier_change_pte,
420 .release = kvm_mmu_notifier_release,
423 static int kvm_init_mmu_notifier(struct kvm *kvm)
425 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
426 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
429 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
438 static void kvm_init_memslots_id(struct kvm *kvm)
441 struct kvm_memslots *slots = kvm->memslots;
443 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
444 slots->id_to_index[i] = slots->memslots[i].id = i;
447 static struct kvm *kvm_create_vm(unsigned long type)
450 struct kvm *kvm = kvm_arch_alloc_vm();
453 return ERR_PTR(-ENOMEM);
455 r = kvm_arch_init_vm(kvm, type);
457 goto out_err_nodisable;
459 r = hardware_enable_all();
461 goto out_err_nodisable;
463 #ifdef CONFIG_HAVE_KVM_IRQCHIP
464 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
465 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
468 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
471 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474 kvm_init_memslots_id(kvm);
475 if (init_srcu_struct(&kvm->srcu))
477 for (i = 0; i < KVM_NR_BUSES; i++) {
478 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
484 spin_lock_init(&kvm->mmu_lock);
485 kvm->mm = current->mm;
486 atomic_inc(&kvm->mm->mm_count);
487 kvm_eventfd_init(kvm);
488 mutex_init(&kvm->lock);
489 mutex_init(&kvm->irq_lock);
490 mutex_init(&kvm->slots_lock);
491 atomic_set(&kvm->users_count, 1);
492 INIT_LIST_HEAD(&kvm->devices);
494 r = kvm_init_mmu_notifier(kvm);
498 spin_lock(&kvm_lock);
499 list_add(&kvm->vm_list, &vm_list);
500 spin_unlock(&kvm_lock);
505 cleanup_srcu_struct(&kvm->srcu);
507 hardware_disable_all();
509 for (i = 0; i < KVM_NR_BUSES; i++)
510 kfree(kvm->buses[i]);
511 kfree(kvm->memslots);
512 kvm_arch_free_vm(kvm);
517 * Avoid using vmalloc for a small buffer.
518 * Should not be used when the size is statically known.
520 void *kvm_kvzalloc(unsigned long size)
522 if (size > PAGE_SIZE)
523 return vzalloc(size);
525 return kzalloc(size, GFP_KERNEL);
528 void kvm_kvfree(const void *addr)
530 if (is_vmalloc_addr(addr))
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 if (!memslot->dirty_bitmap)
541 kvm_kvfree(memslot->dirty_bitmap);
542 memslot->dirty_bitmap = NULL;
546 * Free any memory in @free but not in @dont.
548 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
549 struct kvm_memory_slot *dont)
551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 kvm_destroy_dirty_bitmap(free);
554 kvm_arch_free_memslot(kvm, free, dont);
559 static void kvm_free_physmem(struct kvm *kvm)
561 struct kvm_memslots *slots = kvm->memslots;
562 struct kvm_memory_slot *memslot;
564 kvm_for_each_memslot(memslot, slots)
565 kvm_free_physmem_slot(kvm, memslot, NULL);
567 kfree(kvm->memslots);
570 static void kvm_destroy_devices(struct kvm *kvm)
572 struct list_head *node, *tmp;
574 list_for_each_safe(node, tmp, &kvm->devices) {
575 struct kvm_device *dev =
576 list_entry(node, struct kvm_device, vm_node);
579 dev->ops->destroy(dev);
583 static void kvm_destroy_vm(struct kvm *kvm)
586 struct mm_struct *mm = kvm->mm;
588 kvm_arch_sync_events(kvm);
589 spin_lock(&kvm_lock);
590 list_del(&kvm->vm_list);
591 spin_unlock(&kvm_lock);
592 kvm_free_irq_routing(kvm);
593 for (i = 0; i < KVM_NR_BUSES; i++)
594 kvm_io_bus_destroy(kvm->buses[i]);
595 kvm_coalesced_mmio_free(kvm);
596 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
597 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
599 kvm_arch_flush_shadow_all(kvm);
601 kvm_arch_destroy_vm(kvm);
602 kvm_destroy_devices(kvm);
603 kvm_free_physmem(kvm);
604 cleanup_srcu_struct(&kvm->srcu);
605 kvm_arch_free_vm(kvm);
606 hardware_disable_all();
610 void kvm_get_kvm(struct kvm *kvm)
612 atomic_inc(&kvm->users_count);
614 EXPORT_SYMBOL_GPL(kvm_get_kvm);
616 void kvm_put_kvm(struct kvm *kvm)
618 if (atomic_dec_and_test(&kvm->users_count))
621 EXPORT_SYMBOL_GPL(kvm_put_kvm);
624 static int kvm_vm_release(struct inode *inode, struct file *filp)
626 struct kvm *kvm = filp->private_data;
628 kvm_irqfd_release(kvm);
635 * Allocation size is twice as large as the actual dirty bitmap size.
636 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
638 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
641 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
643 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
644 if (!memslot->dirty_bitmap)
647 #endif /* !CONFIG_S390 */
651 static int cmp_memslot(const void *slot1, const void *slot2)
653 struct kvm_memory_slot *s1, *s2;
655 s1 = (struct kvm_memory_slot *)slot1;
656 s2 = (struct kvm_memory_slot *)slot2;
658 if (s1->npages < s2->npages)
660 if (s1->npages > s2->npages)
667 * Sort the memslots base on its size, so the larger slots
668 * will get better fit.
670 static void sort_memslots(struct kvm_memslots *slots)
674 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
675 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
677 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
678 slots->id_to_index[slots->memslots[i].id] = i;
681 static void update_memslots(struct kvm_memslots *slots,
682 struct kvm_memory_slot *new,
687 struct kvm_memory_slot *old = id_to_memslot(slots, id);
688 unsigned long npages = old->npages;
691 if (new->npages != npages)
692 sort_memslots(slots);
695 slots->generation = last_generation + 1;
698 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
700 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
702 #ifdef KVM_CAP_READONLY_MEM
703 valid_flags |= KVM_MEM_READONLY;
706 if (mem->flags & ~valid_flags)
712 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
713 struct kvm_memslots *slots, struct kvm_memory_slot *new)
715 struct kvm_memslots *old_memslots = kvm->memslots;
717 update_memslots(slots, new, kvm->memslots->generation);
718 rcu_assign_pointer(kvm->memslots, slots);
719 synchronize_srcu_expedited(&kvm->srcu);
721 kvm_arch_memslots_updated(kvm);
727 * Allocate some memory and give it an address in the guest physical address
730 * Discontiguous memory is allowed, mostly for framebuffers.
732 * Must be called holding mmap_sem for write.
734 int __kvm_set_memory_region(struct kvm *kvm,
735 struct kvm_userspace_memory_region *mem)
739 unsigned long npages;
740 struct kvm_memory_slot *slot;
741 struct kvm_memory_slot old, new;
742 struct kvm_memslots *slots = NULL, *old_memslots;
743 enum kvm_mr_change change;
745 r = check_memory_region_flags(mem);
750 /* General sanity checks */
751 if (mem->memory_size & (PAGE_SIZE - 1))
753 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
755 /* We can read the guest memory with __xxx_user() later on. */
756 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
757 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
758 !access_ok(VERIFY_WRITE,
759 (void __user *)(unsigned long)mem->userspace_addr,
762 if (mem->slot >= KVM_MEM_SLOTS_NUM)
764 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
767 slot = id_to_memslot(kvm->memslots, mem->slot);
768 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
769 npages = mem->memory_size >> PAGE_SHIFT;
772 if (npages > KVM_MEM_MAX_NR_PAGES)
776 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
781 new.base_gfn = base_gfn;
783 new.flags = mem->flags;
788 change = KVM_MR_CREATE;
789 else { /* Modify an existing slot. */
790 if ((mem->userspace_addr != old.userspace_addr) ||
791 (npages != old.npages) ||
792 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
795 if (base_gfn != old.base_gfn)
796 change = KVM_MR_MOVE;
797 else if (new.flags != old.flags)
798 change = KVM_MR_FLAGS_ONLY;
799 else { /* Nothing to change. */
804 } else if (old.npages) {
805 change = KVM_MR_DELETE;
806 } else /* Modify a non-existent slot: disallowed. */
809 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
810 /* Check for overlaps */
812 kvm_for_each_memslot(slot, kvm->memslots) {
813 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
814 (slot->id == mem->slot))
816 if (!((base_gfn + npages <= slot->base_gfn) ||
817 (base_gfn >= slot->base_gfn + slot->npages)))
822 /* Free page dirty bitmap if unneeded */
823 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
824 new.dirty_bitmap = NULL;
827 if (change == KVM_MR_CREATE) {
828 new.userspace_addr = mem->userspace_addr;
830 if (kvm_arch_create_memslot(kvm, &new, npages))
834 /* Allocate page dirty bitmap if needed */
835 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
836 if (kvm_create_dirty_bitmap(&new) < 0)
840 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
842 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
846 slot = id_to_memslot(slots, mem->slot);
847 slot->flags |= KVM_MEMSLOT_INVALID;
849 old_memslots = install_new_memslots(kvm, slots, NULL);
851 /* slot was deleted or moved, clear iommu mapping */
852 kvm_iommu_unmap_pages(kvm, &old);
853 /* From this point no new shadow pages pointing to a deleted,
854 * or moved, memslot will be created.
856 * validation of sp->gfn happens in:
857 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
858 * - kvm_is_visible_gfn (mmu_check_roots)
860 kvm_arch_flush_shadow_memslot(kvm, slot);
861 slots = old_memslots;
864 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
870 * We can re-use the old_memslots from above, the only difference
871 * from the currently installed memslots is the invalid flag. This
872 * will get overwritten by update_memslots anyway.
875 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
881 /* actual memory is freed via old in kvm_free_physmem_slot below */
882 if (change == KVM_MR_DELETE) {
883 new.dirty_bitmap = NULL;
884 memset(&new.arch, 0, sizeof(new.arch));
887 old_memslots = install_new_memslots(kvm, slots, &new);
889 kvm_arch_commit_memory_region(kvm, mem, &old, change);
891 kvm_free_physmem_slot(kvm, &old, &new);
895 * IOMMU mapping: New slots need to be mapped. Old slots need to be
896 * un-mapped and re-mapped if their base changes. Since base change
897 * unmapping is handled above with slot deletion, mapping alone is
898 * needed here. Anything else the iommu might care about for existing
899 * slots (size changes, userspace addr changes and read-only flag
900 * changes) is disallowed above, so any other attribute changes getting
901 * here can be skipped.
903 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
904 r = kvm_iommu_map_pages(kvm, &new);
913 kvm_free_physmem_slot(kvm, &new, &old);
917 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
919 int kvm_set_memory_region(struct kvm *kvm,
920 struct kvm_userspace_memory_region *mem)
924 mutex_lock(&kvm->slots_lock);
925 r = __kvm_set_memory_region(kvm, mem);
926 mutex_unlock(&kvm->slots_lock);
929 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
931 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
932 struct kvm_userspace_memory_region *mem)
934 if (mem->slot >= KVM_USER_MEM_SLOTS)
936 return kvm_set_memory_region(kvm, mem);
939 int kvm_get_dirty_log(struct kvm *kvm,
940 struct kvm_dirty_log *log, int *is_dirty)
942 struct kvm_memory_slot *memslot;
945 unsigned long any = 0;
948 if (log->slot >= KVM_USER_MEM_SLOTS)
951 memslot = id_to_memslot(kvm->memslots, log->slot);
953 if (!memslot->dirty_bitmap)
956 n = kvm_dirty_bitmap_bytes(memslot);
958 for (i = 0; !any && i < n/sizeof(long); ++i)
959 any = memslot->dirty_bitmap[i];
962 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
972 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
974 bool kvm_largepages_enabled(void)
976 return largepages_enabled;
979 void kvm_disable_largepages(void)
981 largepages_enabled = false;
983 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
987 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
989 EXPORT_SYMBOL_GPL(gfn_to_memslot);
991 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
993 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
995 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
996 memslot->flags & KVM_MEMSLOT_INVALID)
1001 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1003 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1005 struct vm_area_struct *vma;
1006 unsigned long addr, size;
1010 addr = gfn_to_hva(kvm, gfn);
1011 if (kvm_is_error_hva(addr))
1014 down_read(¤t->mm->mmap_sem);
1015 vma = find_vma(current->mm, addr);
1019 size = vma_kernel_pagesize(vma);
1022 up_read(¤t->mm->mmap_sem);
1027 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1029 return slot->flags & KVM_MEM_READONLY;
1032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1033 gfn_t *nr_pages, bool write)
1035 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1036 return KVM_HVA_ERR_BAD;
1038 if (memslot_is_readonly(slot) && write)
1039 return KVM_HVA_ERR_RO_BAD;
1042 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1044 return __gfn_to_hva_memslot(slot, gfn);
1047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1050 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1056 return gfn_to_hva_many(slot, gfn, NULL);
1058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1062 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1064 EXPORT_SYMBOL_GPL(gfn_to_hva);
1067 * If writable is set to false, the hva returned by this function is only
1068 * allowed to be read.
1070 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1072 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1073 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1075 if (!kvm_is_error_hva(hva) && writable)
1076 *writable = !memslot_is_readonly(slot);
1081 static int kvm_read_hva(void *data, void __user *hva, int len)
1083 return __copy_from_user(data, hva, len);
1086 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1088 return __copy_from_user_inatomic(data, hva, len);
1091 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1092 unsigned long start, int write, struct page **page)
1094 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1097 flags |= FOLL_WRITE;
1099 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1102 static inline int check_user_page_hwpoison(unsigned long addr)
1104 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1106 rc = __get_user_pages(current, current->mm, addr, 1,
1107 flags, NULL, NULL, NULL);
1108 return rc == -EHWPOISON;
1112 * The atomic path to get the writable pfn which will be stored in @pfn,
1113 * true indicates success, otherwise false is returned.
1115 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1116 bool write_fault, bool *writable, pfn_t *pfn)
1118 struct page *page[1];
1121 if (!(async || atomic))
1125 * Fast pin a writable pfn only if it is a write fault request
1126 * or the caller allows to map a writable pfn for a read fault
1129 if (!(write_fault || writable))
1132 npages = __get_user_pages_fast(addr, 1, 1, page);
1134 *pfn = page_to_pfn(page[0]);
1145 * The slow path to get the pfn of the specified host virtual address,
1146 * 1 indicates success, -errno is returned if error is detected.
1148 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1149 bool *writable, pfn_t *pfn)
1151 struct page *page[1];
1157 *writable = write_fault;
1160 down_read(¤t->mm->mmap_sem);
1161 npages = get_user_page_nowait(current, current->mm,
1162 addr, write_fault, page);
1163 up_read(¤t->mm->mmap_sem);
1165 npages = get_user_pages_fast(addr, 1, write_fault,
1170 /* map read fault as writable if possible */
1171 if (unlikely(!write_fault) && writable) {
1172 struct page *wpage[1];
1174 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1183 *pfn = page_to_pfn(page[0]);
1187 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1189 if (unlikely(!(vma->vm_flags & VM_READ)))
1192 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1199 * Pin guest page in memory and return its pfn.
1200 * @addr: host virtual address which maps memory to the guest
1201 * @atomic: whether this function can sleep
1202 * @async: whether this function need to wait IO complete if the
1203 * host page is not in the memory
1204 * @write_fault: whether we should get a writable host page
1205 * @writable: whether it allows to map a writable host page for !@write_fault
1207 * The function will map a writable host page for these two cases:
1208 * 1): @write_fault = true
1209 * 2): @write_fault = false && @writable, @writable will tell the caller
1210 * whether the mapping is writable.
1212 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1213 bool write_fault, bool *writable)
1215 struct vm_area_struct *vma;
1219 /* we can do it either atomically or asynchronously, not both */
1220 BUG_ON(atomic && async);
1222 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1226 return KVM_PFN_ERR_FAULT;
1228 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1232 down_read(¤t->mm->mmap_sem);
1233 if (npages == -EHWPOISON ||
1234 (!async && check_user_page_hwpoison(addr))) {
1235 pfn = KVM_PFN_ERR_HWPOISON;
1239 vma = find_vma_intersection(current->mm, addr, addr + 1);
1242 pfn = KVM_PFN_ERR_FAULT;
1243 else if ((vma->vm_flags & VM_PFNMAP)) {
1244 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1246 BUG_ON(!kvm_is_mmio_pfn(pfn));
1248 if (async && vma_is_valid(vma, write_fault))
1250 pfn = KVM_PFN_ERR_FAULT;
1253 up_read(¤t->mm->mmap_sem);
1258 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1259 bool *async, bool write_fault, bool *writable)
1261 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1263 if (addr == KVM_HVA_ERR_RO_BAD)
1264 return KVM_PFN_ERR_RO_FAULT;
1266 if (kvm_is_error_hva(addr))
1267 return KVM_PFN_NOSLOT;
1269 /* Do not map writable pfn in the readonly memslot. */
1270 if (writable && memslot_is_readonly(slot)) {
1275 return hva_to_pfn(addr, atomic, async, write_fault,
1279 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1280 bool write_fault, bool *writable)
1282 struct kvm_memory_slot *slot;
1287 slot = gfn_to_memslot(kvm, gfn);
1289 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1293 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1295 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1297 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1299 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1300 bool write_fault, bool *writable)
1302 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1304 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1306 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1308 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1312 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1315 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1317 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1319 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1321 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1324 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1326 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1328 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1330 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1336 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1337 if (kvm_is_error_hva(addr))
1340 if (entry < nr_pages)
1343 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1345 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1347 static struct page *kvm_pfn_to_page(pfn_t pfn)
1349 if (is_error_noslot_pfn(pfn))
1350 return KVM_ERR_PTR_BAD_PAGE;
1352 if (kvm_is_mmio_pfn(pfn)) {
1354 return KVM_ERR_PTR_BAD_PAGE;
1357 return pfn_to_page(pfn);
1360 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1364 pfn = gfn_to_pfn(kvm, gfn);
1366 return kvm_pfn_to_page(pfn);
1369 EXPORT_SYMBOL_GPL(gfn_to_page);
1371 void kvm_release_page_clean(struct page *page)
1373 WARN_ON(is_error_page(page));
1375 kvm_release_pfn_clean(page_to_pfn(page));
1377 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1379 void kvm_release_pfn_clean(pfn_t pfn)
1381 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1382 put_page(pfn_to_page(pfn));
1384 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1386 void kvm_release_page_dirty(struct page *page)
1388 WARN_ON(is_error_page(page));
1390 kvm_release_pfn_dirty(page_to_pfn(page));
1392 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1394 static void kvm_release_pfn_dirty(pfn_t pfn)
1396 kvm_set_pfn_dirty(pfn);
1397 kvm_release_pfn_clean(pfn);
1400 void kvm_set_pfn_dirty(pfn_t pfn)
1402 if (!kvm_is_mmio_pfn(pfn)) {
1403 struct page *page = pfn_to_page(pfn);
1404 if (!PageReserved(page))
1408 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1410 void kvm_set_pfn_accessed(pfn_t pfn)
1412 if (!kvm_is_mmio_pfn(pfn))
1413 mark_page_accessed(pfn_to_page(pfn));
1415 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1417 void kvm_get_pfn(pfn_t pfn)
1419 if (!kvm_is_mmio_pfn(pfn))
1420 get_page(pfn_to_page(pfn));
1422 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1424 static int next_segment(unsigned long len, int offset)
1426 if (len > PAGE_SIZE - offset)
1427 return PAGE_SIZE - offset;
1432 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1438 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1439 if (kvm_is_error_hva(addr))
1441 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1446 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1448 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1450 gfn_t gfn = gpa >> PAGE_SHIFT;
1452 int offset = offset_in_page(gpa);
1455 while ((seg = next_segment(len, offset)) != 0) {
1456 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1466 EXPORT_SYMBOL_GPL(kvm_read_guest);
1468 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1473 gfn_t gfn = gpa >> PAGE_SHIFT;
1474 int offset = offset_in_page(gpa);
1476 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1477 if (kvm_is_error_hva(addr))
1479 pagefault_disable();
1480 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1486 EXPORT_SYMBOL(kvm_read_guest_atomic);
1488 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1489 int offset, int len)
1494 addr = gfn_to_hva(kvm, gfn);
1495 if (kvm_is_error_hva(addr))
1497 r = __copy_to_user((void __user *)addr + offset, data, len);
1500 mark_page_dirty(kvm, gfn);
1503 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1505 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1508 gfn_t gfn = gpa >> PAGE_SHIFT;
1510 int offset = offset_in_page(gpa);
1513 while ((seg = next_segment(len, offset)) != 0) {
1514 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1525 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1526 gpa_t gpa, unsigned long len)
1528 struct kvm_memslots *slots = kvm_memslots(kvm);
1529 int offset = offset_in_page(gpa);
1530 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1531 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1532 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1533 gfn_t nr_pages_avail;
1536 ghc->generation = slots->generation;
1538 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1539 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1540 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 * If the requested region crosses two memslots, we still
1545 * verify that the entire region is valid here.
1547 while (start_gfn <= end_gfn) {
1548 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1549 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1551 if (kvm_is_error_hva(ghc->hva))
1553 start_gfn += nr_pages_avail;
1555 /* Use the slow path for cross page reads and writes. */
1556 ghc->memslot = NULL;
1560 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1563 void *data, unsigned long len)
1565 struct kvm_memslots *slots = kvm_memslots(kvm);
1568 BUG_ON(len > ghc->len);
1570 if (slots->generation != ghc->generation)
1571 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1573 if (unlikely(!ghc->memslot))
1574 return kvm_write_guest(kvm, ghc->gpa, data, len);
1576 if (kvm_is_error_hva(ghc->hva))
1579 r = __copy_to_user((void __user *)ghc->hva, data, len);
1582 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1588 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1589 void *data, unsigned long len)
1591 struct kvm_memslots *slots = kvm_memslots(kvm);
1594 BUG_ON(len > ghc->len);
1596 if (slots->generation != ghc->generation)
1597 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1599 if (unlikely(!ghc->memslot))
1600 return kvm_read_guest(kvm, ghc->gpa, data, len);
1602 if (kvm_is_error_hva(ghc->hva))
1605 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1611 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1613 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1615 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1617 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1623 gfn_t gfn = gpa >> PAGE_SHIFT;
1625 int offset = offset_in_page(gpa);
1628 while ((seg = next_segment(len, offset)) != 0) {
1629 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1638 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1640 static void mark_page_dirty_in_slot(struct kvm *kvm,
1641 struct kvm_memory_slot *memslot,
1644 if (memslot && memslot->dirty_bitmap) {
1645 unsigned long rel_gfn = gfn - memslot->base_gfn;
1647 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1653 struct kvm_memory_slot *memslot;
1655 memslot = gfn_to_memslot(kvm, gfn);
1656 mark_page_dirty_in_slot(kvm, memslot, gfn);
1658 EXPORT_SYMBOL_GPL(mark_page_dirty);
1661 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1668 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1670 if (kvm_arch_vcpu_runnable(vcpu)) {
1671 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1674 if (kvm_cpu_has_pending_timer(vcpu))
1676 if (signal_pending(current))
1682 finish_wait(&vcpu->wq, &wait);
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1688 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1690 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 int cpu = vcpu->cpu;
1694 wait_queue_head_t *wqp;
1696 wqp = kvm_arch_vcpu_wq(vcpu);
1697 if (waitqueue_active(wqp)) {
1698 wake_up_interruptible(wqp);
1699 ++vcpu->stat.halt_wakeup;
1703 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1704 if (kvm_arch_vcpu_should_kick(vcpu))
1705 smp_send_reschedule(cpu);
1708 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1709 #endif /* !CONFIG_S390 */
1711 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1714 struct task_struct *task = NULL;
1718 pid = rcu_dereference(target->pid);
1720 task = get_pid_task(target->pid, PIDTYPE_PID);
1724 if (task->flags & PF_VCPU) {
1725 put_task_struct(task);
1728 ret = yield_to(task, 1);
1729 put_task_struct(task);
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1736 * Helper that checks whether a VCPU is eligible for directed yield.
1737 * Most eligible candidate to yield is decided by following heuristics:
1739 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1740 * (preempted lock holder), indicated by @in_spin_loop.
1741 * Set at the beiginning and cleared at the end of interception/PLE handler.
1743 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1744 * chance last time (mostly it has become eligible now since we have probably
1745 * yielded to lockholder in last iteration. This is done by toggling
1746 * @dy_eligible each time a VCPU checked for eligibility.)
1748 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1749 * to preempted lock-holder could result in wrong VCPU selection and CPU
1750 * burning. Giving priority for a potential lock-holder increases lock
1753 * Since algorithm is based on heuristics, accessing another VCPU data without
1754 * locking does not harm. It may result in trying to yield to same VCPU, fail
1755 * and continue with next VCPU and so on.
1757 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1759 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1762 eligible = !vcpu->spin_loop.in_spin_loop ||
1763 (vcpu->spin_loop.in_spin_loop &&
1764 vcpu->spin_loop.dy_eligible);
1766 if (vcpu->spin_loop.in_spin_loop)
1767 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1775 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1777 struct kvm *kvm = me->kvm;
1778 struct kvm_vcpu *vcpu;
1779 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1785 kvm_vcpu_set_in_spin_loop(me, true);
1787 * We boost the priority of a VCPU that is runnable but not
1788 * currently running, because it got preempted by something
1789 * else and called schedule in __vcpu_run. Hopefully that
1790 * VCPU is holding the lock that we need and will release it.
1791 * We approximate round-robin by starting at the last boosted VCPU.
1793 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1794 kvm_for_each_vcpu(i, vcpu, kvm) {
1795 if (!pass && i <= last_boosted_vcpu) {
1796 i = last_boosted_vcpu;
1798 } else if (pass && i > last_boosted_vcpu)
1800 if (!ACCESS_ONCE(vcpu->preempted))
1804 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1806 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1809 yielded = kvm_vcpu_yield_to(vcpu);
1811 kvm->last_boosted_vcpu = i;
1813 } else if (yielded < 0) {
1820 kvm_vcpu_set_in_spin_loop(me, false);
1822 /* Ensure vcpu is not eligible during next spinloop */
1823 kvm_vcpu_set_dy_eligible(me, false);
1825 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1827 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1832 if (vmf->pgoff == 0)
1833 page = virt_to_page(vcpu->run);
1835 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1836 page = virt_to_page(vcpu->arch.pio_data);
1838 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1839 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1840 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1843 return kvm_arch_vcpu_fault(vcpu, vmf);
1849 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1850 .fault = kvm_vcpu_fault,
1853 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1855 vma->vm_ops = &kvm_vcpu_vm_ops;
1859 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1861 struct kvm_vcpu *vcpu = filp->private_data;
1863 kvm_put_kvm(vcpu->kvm);
1867 static struct file_operations kvm_vcpu_fops = {
1868 .release = kvm_vcpu_release,
1869 .unlocked_ioctl = kvm_vcpu_ioctl,
1870 #ifdef CONFIG_COMPAT
1871 .compat_ioctl = kvm_vcpu_compat_ioctl,
1873 .mmap = kvm_vcpu_mmap,
1874 .llseek = noop_llseek,
1878 * Allocates an inode for the vcpu.
1880 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1882 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886 * Creates some virtual cpus. Good luck creating more than one.
1888 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1891 struct kvm_vcpu *vcpu, *v;
1893 if (id >= KVM_MAX_VCPUS)
1896 vcpu = kvm_arch_vcpu_create(kvm, id);
1898 return PTR_ERR(vcpu);
1900 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1902 r = kvm_arch_vcpu_setup(vcpu);
1906 mutex_lock(&kvm->lock);
1907 if (!kvm_vcpu_compatible(vcpu)) {
1909 goto unlock_vcpu_destroy;
1911 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1913 goto unlock_vcpu_destroy;
1916 kvm_for_each_vcpu(r, v, kvm)
1917 if (v->vcpu_id == id) {
1919 goto unlock_vcpu_destroy;
1922 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1924 /* Now it's all set up, let userspace reach it */
1926 r = create_vcpu_fd(vcpu);
1929 goto unlock_vcpu_destroy;
1932 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1934 atomic_inc(&kvm->online_vcpus);
1936 mutex_unlock(&kvm->lock);
1937 kvm_arch_vcpu_postcreate(vcpu);
1940 unlock_vcpu_destroy:
1941 mutex_unlock(&kvm->lock);
1943 kvm_arch_vcpu_destroy(vcpu);
1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1950 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951 vcpu->sigset_active = 1;
1952 vcpu->sigset = *sigset;
1954 vcpu->sigset_active = 0;
1958 static long kvm_vcpu_ioctl(struct file *filp,
1959 unsigned int ioctl, unsigned long arg)
1961 struct kvm_vcpu *vcpu = filp->private_data;
1962 void __user *argp = (void __user *)arg;
1964 struct kvm_fpu *fpu = NULL;
1965 struct kvm_sregs *kvm_sregs = NULL;
1967 if (vcpu->kvm->mm != current->mm)
1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1972 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1973 * so vcpu_load() would break it.
1975 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1980 r = vcpu_load(vcpu);
1988 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1991 case KVM_GET_REGS: {
1992 struct kvm_regs *kvm_regs;
1995 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1998 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2002 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2009 case KVM_SET_REGS: {
2010 struct kvm_regs *kvm_regs;
2013 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014 if (IS_ERR(kvm_regs)) {
2015 r = PTR_ERR(kvm_regs);
2018 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2022 case KVM_GET_SREGS: {
2023 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2027 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2031 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2036 case KVM_SET_SREGS: {
2037 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038 if (IS_ERR(kvm_sregs)) {
2039 r = PTR_ERR(kvm_sregs);
2043 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2046 case KVM_GET_MP_STATE: {
2047 struct kvm_mp_state mp_state;
2049 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2053 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2058 case KVM_SET_MP_STATE: {
2059 struct kvm_mp_state mp_state;
2062 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2064 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2067 case KVM_TRANSLATE: {
2068 struct kvm_translation tr;
2071 if (copy_from_user(&tr, argp, sizeof tr))
2073 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2077 if (copy_to_user(argp, &tr, sizeof tr))
2082 case KVM_SET_GUEST_DEBUG: {
2083 struct kvm_guest_debug dbg;
2086 if (copy_from_user(&dbg, argp, sizeof dbg))
2088 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2091 case KVM_SET_SIGNAL_MASK: {
2092 struct kvm_signal_mask __user *sigmask_arg = argp;
2093 struct kvm_signal_mask kvm_sigmask;
2094 sigset_t sigset, *p;
2099 if (copy_from_user(&kvm_sigmask, argp,
2100 sizeof kvm_sigmask))
2103 if (kvm_sigmask.len != sizeof sigset)
2106 if (copy_from_user(&sigset, sigmask_arg->sigset,
2111 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2115 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2119 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2123 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2129 fpu = memdup_user(argp, sizeof(*fpu));
2135 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2139 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2148 #ifdef CONFIG_COMPAT
2149 static long kvm_vcpu_compat_ioctl(struct file *filp,
2150 unsigned int ioctl, unsigned long arg)
2152 struct kvm_vcpu *vcpu = filp->private_data;
2153 void __user *argp = compat_ptr(arg);
2156 if (vcpu->kvm->mm != current->mm)
2160 case KVM_SET_SIGNAL_MASK: {
2161 struct kvm_signal_mask __user *sigmask_arg = argp;
2162 struct kvm_signal_mask kvm_sigmask;
2163 compat_sigset_t csigset;
2168 if (copy_from_user(&kvm_sigmask, argp,
2169 sizeof kvm_sigmask))
2172 if (kvm_sigmask.len != sizeof csigset)
2175 if (copy_from_user(&csigset, sigmask_arg->sigset,
2178 sigset_from_compat(&sigset, &csigset);
2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2181 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2185 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2193 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194 int (*accessor)(struct kvm_device *dev,
2195 struct kvm_device_attr *attr),
2198 struct kvm_device_attr attr;
2203 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2206 return accessor(dev, &attr);
2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2212 struct kvm_device *dev = filp->private_data;
2215 case KVM_SET_DEVICE_ATTR:
2216 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217 case KVM_GET_DEVICE_ATTR:
2218 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219 case KVM_HAS_DEVICE_ATTR:
2220 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2222 if (dev->ops->ioctl)
2223 return dev->ops->ioctl(dev, ioctl, arg);
2229 static int kvm_device_release(struct inode *inode, struct file *filp)
2231 struct kvm_device *dev = filp->private_data;
2232 struct kvm *kvm = dev->kvm;
2238 static const struct file_operations kvm_device_fops = {
2239 .unlocked_ioctl = kvm_device_ioctl,
2240 #ifdef CONFIG_COMPAT
2241 .compat_ioctl = kvm_device_ioctl,
2243 .release = kvm_device_release,
2246 struct kvm_device *kvm_device_from_filp(struct file *filp)
2248 if (filp->f_op != &kvm_device_fops)
2251 return filp->private_data;
2254 static int kvm_ioctl_create_device(struct kvm *kvm,
2255 struct kvm_create_device *cd)
2257 struct kvm_device_ops *ops = NULL;
2258 struct kvm_device *dev;
2259 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2263 #ifdef CONFIG_KVM_MPIC
2264 case KVM_DEV_TYPE_FSL_MPIC_20:
2265 case KVM_DEV_TYPE_FSL_MPIC_42:
2266 ops = &kvm_mpic_ops;
2269 #ifdef CONFIG_KVM_XICS
2270 case KVM_DEV_TYPE_XICS:
2271 ops = &kvm_xics_ops;
2274 #ifdef CONFIG_KVM_VFIO
2275 case KVM_DEV_TYPE_VFIO:
2276 ops = &kvm_vfio_ops;
2279 #ifdef CONFIG_KVM_ARM_VGIC
2280 case KVM_DEV_TYPE_ARM_VGIC_V2:
2281 ops = &kvm_arm_vgic_v2_ops;
2285 case KVM_DEV_TYPE_FLIC:
2286 ops = &kvm_flic_ops;
2296 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2303 ret = ops->create(dev, cd->type);
2309 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2315 list_add(&dev->vm_node, &kvm->devices);
2321 static long kvm_vm_ioctl(struct file *filp,
2322 unsigned int ioctl, unsigned long arg)
2324 struct kvm *kvm = filp->private_data;
2325 void __user *argp = (void __user *)arg;
2328 if (kvm->mm != current->mm)
2331 case KVM_CREATE_VCPU:
2332 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2334 case KVM_SET_USER_MEMORY_REGION: {
2335 struct kvm_userspace_memory_region kvm_userspace_mem;
2338 if (copy_from_user(&kvm_userspace_mem, argp,
2339 sizeof kvm_userspace_mem))
2342 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2345 case KVM_GET_DIRTY_LOG: {
2346 struct kvm_dirty_log log;
2349 if (copy_from_user(&log, argp, sizeof log))
2351 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2354 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2355 case KVM_REGISTER_COALESCED_MMIO: {
2356 struct kvm_coalesced_mmio_zone zone;
2358 if (copy_from_user(&zone, argp, sizeof zone))
2360 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2363 case KVM_UNREGISTER_COALESCED_MMIO: {
2364 struct kvm_coalesced_mmio_zone zone;
2366 if (copy_from_user(&zone, argp, sizeof zone))
2368 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2373 struct kvm_irqfd data;
2376 if (copy_from_user(&data, argp, sizeof data))
2378 r = kvm_irqfd(kvm, &data);
2381 case KVM_IOEVENTFD: {
2382 struct kvm_ioeventfd data;
2385 if (copy_from_user(&data, argp, sizeof data))
2387 r = kvm_ioeventfd(kvm, &data);
2390 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2391 case KVM_SET_BOOT_CPU_ID:
2393 mutex_lock(&kvm->lock);
2394 if (atomic_read(&kvm->online_vcpus) != 0)
2397 kvm->bsp_vcpu_id = arg;
2398 mutex_unlock(&kvm->lock);
2401 #ifdef CONFIG_HAVE_KVM_MSI
2402 case KVM_SIGNAL_MSI: {
2406 if (copy_from_user(&msi, argp, sizeof msi))
2408 r = kvm_send_userspace_msi(kvm, &msi);
2412 #ifdef __KVM_HAVE_IRQ_LINE
2413 case KVM_IRQ_LINE_STATUS:
2414 case KVM_IRQ_LINE: {
2415 struct kvm_irq_level irq_event;
2418 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2421 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2422 ioctl == KVM_IRQ_LINE_STATUS);
2427 if (ioctl == KVM_IRQ_LINE_STATUS) {
2428 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2436 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2437 case KVM_SET_GSI_ROUTING: {
2438 struct kvm_irq_routing routing;
2439 struct kvm_irq_routing __user *urouting;
2440 struct kvm_irq_routing_entry *entries;
2443 if (copy_from_user(&routing, argp, sizeof(routing)))
2446 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2451 entries = vmalloc(routing.nr * sizeof(*entries));
2456 if (copy_from_user(entries, urouting->entries,
2457 routing.nr * sizeof(*entries)))
2458 goto out_free_irq_routing;
2459 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2461 out_free_irq_routing:
2465 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2466 case KVM_CREATE_DEVICE: {
2467 struct kvm_create_device cd;
2470 if (copy_from_user(&cd, argp, sizeof(cd)))
2473 r = kvm_ioctl_create_device(kvm, &cd);
2478 if (copy_to_user(argp, &cd, sizeof(cd)))
2485 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2487 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2493 #ifdef CONFIG_COMPAT
2494 struct compat_kvm_dirty_log {
2498 compat_uptr_t dirty_bitmap; /* one bit per page */
2503 static long kvm_vm_compat_ioctl(struct file *filp,
2504 unsigned int ioctl, unsigned long arg)
2506 struct kvm *kvm = filp->private_data;
2509 if (kvm->mm != current->mm)
2512 case KVM_GET_DIRTY_LOG: {
2513 struct compat_kvm_dirty_log compat_log;
2514 struct kvm_dirty_log log;
2517 if (copy_from_user(&compat_log, (void __user *)arg,
2518 sizeof(compat_log)))
2520 log.slot = compat_log.slot;
2521 log.padding1 = compat_log.padding1;
2522 log.padding2 = compat_log.padding2;
2523 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2525 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2529 r = kvm_vm_ioctl(filp, ioctl, arg);
2537 static struct file_operations kvm_vm_fops = {
2538 .release = kvm_vm_release,
2539 .unlocked_ioctl = kvm_vm_ioctl,
2540 #ifdef CONFIG_COMPAT
2541 .compat_ioctl = kvm_vm_compat_ioctl,
2543 .llseek = noop_llseek,
2546 static int kvm_dev_ioctl_create_vm(unsigned long type)
2551 kvm = kvm_create_vm(type);
2553 return PTR_ERR(kvm);
2554 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2555 r = kvm_coalesced_mmio_init(kvm);
2561 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2568 static long kvm_dev_ioctl_check_extension_generic(long arg)
2571 case KVM_CAP_USER_MEMORY:
2572 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2573 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2574 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2575 case KVM_CAP_SET_BOOT_CPU_ID:
2577 case KVM_CAP_INTERNAL_ERROR_DATA:
2578 #ifdef CONFIG_HAVE_KVM_MSI
2579 case KVM_CAP_SIGNAL_MSI:
2581 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2582 case KVM_CAP_IRQFD_RESAMPLE:
2585 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2586 case KVM_CAP_IRQ_ROUTING:
2587 return KVM_MAX_IRQ_ROUTES;
2592 return kvm_dev_ioctl_check_extension(arg);
2595 static long kvm_dev_ioctl(struct file *filp,
2596 unsigned int ioctl, unsigned long arg)
2601 case KVM_GET_API_VERSION:
2605 r = KVM_API_VERSION;
2608 r = kvm_dev_ioctl_create_vm(arg);
2610 case KVM_CHECK_EXTENSION:
2611 r = kvm_dev_ioctl_check_extension_generic(arg);
2613 case KVM_GET_VCPU_MMAP_SIZE:
2617 r = PAGE_SIZE; /* struct kvm_run */
2619 r += PAGE_SIZE; /* pio data page */
2621 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2622 r += PAGE_SIZE; /* coalesced mmio ring page */
2625 case KVM_TRACE_ENABLE:
2626 case KVM_TRACE_PAUSE:
2627 case KVM_TRACE_DISABLE:
2631 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2637 static struct file_operations kvm_chardev_ops = {
2638 .unlocked_ioctl = kvm_dev_ioctl,
2639 .compat_ioctl = kvm_dev_ioctl,
2640 .llseek = noop_llseek,
2643 static struct miscdevice kvm_dev = {
2649 static void hardware_enable_nolock(void *junk)
2651 int cpu = raw_smp_processor_id();
2654 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2657 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2659 r = kvm_arch_hardware_enable(NULL);
2662 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2663 atomic_inc(&hardware_enable_failed);
2664 printk(KERN_INFO "kvm: enabling virtualization on "
2665 "CPU%d failed\n", cpu);
2669 static void hardware_enable(void)
2671 raw_spin_lock(&kvm_count_lock);
2672 if (kvm_usage_count)
2673 hardware_enable_nolock(NULL);
2674 raw_spin_unlock(&kvm_count_lock);
2677 static void hardware_disable_nolock(void *junk)
2679 int cpu = raw_smp_processor_id();
2681 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2683 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2684 kvm_arch_hardware_disable(NULL);
2687 static void hardware_disable(void)
2689 raw_spin_lock(&kvm_count_lock);
2690 if (kvm_usage_count)
2691 hardware_disable_nolock(NULL);
2692 raw_spin_unlock(&kvm_count_lock);
2695 static void hardware_disable_all_nolock(void)
2697 BUG_ON(!kvm_usage_count);
2700 if (!kvm_usage_count)
2701 on_each_cpu(hardware_disable_nolock, NULL, 1);
2704 static void hardware_disable_all(void)
2706 raw_spin_lock(&kvm_count_lock);
2707 hardware_disable_all_nolock();
2708 raw_spin_unlock(&kvm_count_lock);
2711 static int hardware_enable_all(void)
2715 raw_spin_lock(&kvm_count_lock);
2718 if (kvm_usage_count == 1) {
2719 atomic_set(&hardware_enable_failed, 0);
2720 on_each_cpu(hardware_enable_nolock, NULL, 1);
2722 if (atomic_read(&hardware_enable_failed)) {
2723 hardware_disable_all_nolock();
2728 raw_spin_unlock(&kvm_count_lock);
2733 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2738 val &= ~CPU_TASKS_FROZEN;
2741 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2746 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2754 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2758 * Some (well, at least mine) BIOSes hang on reboot if
2761 * And Intel TXT required VMX off for all cpu when system shutdown.
2763 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2764 kvm_rebooting = true;
2765 on_each_cpu(hardware_disable_nolock, NULL, 1);
2769 static struct notifier_block kvm_reboot_notifier = {
2770 .notifier_call = kvm_reboot,
2774 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2778 for (i = 0; i < bus->dev_count; i++) {
2779 struct kvm_io_device *pos = bus->range[i].dev;
2781 kvm_iodevice_destructor(pos);
2786 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2787 const struct kvm_io_range *r2)
2789 if (r1->addr < r2->addr)
2791 if (r1->addr + r1->len > r2->addr + r2->len)
2796 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2798 return kvm_io_bus_cmp(p1, p2);
2801 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2802 gpa_t addr, int len)
2804 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2810 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2811 kvm_io_bus_sort_cmp, NULL);
2816 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2817 gpa_t addr, int len)
2819 struct kvm_io_range *range, key;
2822 key = (struct kvm_io_range) {
2827 range = bsearch(&key, bus->range, bus->dev_count,
2828 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2832 off = range - bus->range;
2834 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2840 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2841 struct kvm_io_range *range, const void *val)
2845 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2849 while (idx < bus->dev_count &&
2850 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2851 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2860 /* kvm_io_bus_write - called under kvm->slots_lock */
2861 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2862 int len, const void *val)
2864 struct kvm_io_bus *bus;
2865 struct kvm_io_range range;
2868 range = (struct kvm_io_range) {
2873 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2874 r = __kvm_io_bus_write(bus, &range, val);
2875 return r < 0 ? r : 0;
2878 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2879 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880 int len, const void *val, long cookie)
2882 struct kvm_io_bus *bus;
2883 struct kvm_io_range range;
2885 range = (struct kvm_io_range) {
2890 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2892 /* First try the device referenced by cookie. */
2893 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2894 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2895 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2900 * cookie contained garbage; fall back to search and return the
2901 * correct cookie value.
2903 return __kvm_io_bus_write(bus, &range, val);
2906 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2911 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2915 while (idx < bus->dev_count &&
2916 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2917 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2926 /* kvm_io_bus_read - called under kvm->slots_lock */
2927 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2930 struct kvm_io_bus *bus;
2931 struct kvm_io_range range;
2934 range = (struct kvm_io_range) {
2939 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2940 r = __kvm_io_bus_read(bus, &range, val);
2941 return r < 0 ? r : 0;
2945 /* Caller must hold slots_lock. */
2946 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2947 int len, struct kvm_io_device *dev)
2949 struct kvm_io_bus *new_bus, *bus;
2951 bus = kvm->buses[bus_idx];
2952 /* exclude ioeventfd which is limited by maximum fd */
2953 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2956 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2957 sizeof(struct kvm_io_range)), GFP_KERNEL);
2960 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2961 sizeof(struct kvm_io_range)));
2962 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2963 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2964 synchronize_srcu_expedited(&kvm->srcu);
2970 /* Caller must hold slots_lock. */
2971 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2972 struct kvm_io_device *dev)
2975 struct kvm_io_bus *new_bus, *bus;
2977 bus = kvm->buses[bus_idx];
2979 for (i = 0; i < bus->dev_count; i++)
2980 if (bus->range[i].dev == dev) {
2988 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2989 sizeof(struct kvm_io_range)), GFP_KERNEL);
2993 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2994 new_bus->dev_count--;
2995 memcpy(new_bus->range + i, bus->range + i + 1,
2996 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2998 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2999 synchronize_srcu_expedited(&kvm->srcu);
3004 static struct notifier_block kvm_cpu_notifier = {
3005 .notifier_call = kvm_cpu_hotplug,
3008 static int vm_stat_get(void *_offset, u64 *val)
3010 unsigned offset = (long)_offset;
3014 spin_lock(&kvm_lock);
3015 list_for_each_entry(kvm, &vm_list, vm_list)
3016 *val += *(u32 *)((void *)kvm + offset);
3017 spin_unlock(&kvm_lock);
3021 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3023 static int vcpu_stat_get(void *_offset, u64 *val)
3025 unsigned offset = (long)_offset;
3027 struct kvm_vcpu *vcpu;
3031 spin_lock(&kvm_lock);
3032 list_for_each_entry(kvm, &vm_list, vm_list)
3033 kvm_for_each_vcpu(i, vcpu, kvm)
3034 *val += *(u32 *)((void *)vcpu + offset);
3036 spin_unlock(&kvm_lock);
3040 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3042 static const struct file_operations *stat_fops[] = {
3043 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3044 [KVM_STAT_VM] = &vm_stat_fops,
3047 static int kvm_init_debug(void)
3050 struct kvm_stats_debugfs_item *p;
3052 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3053 if (kvm_debugfs_dir == NULL)
3056 for (p = debugfs_entries; p->name; ++p) {
3057 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3058 (void *)(long)p->offset,
3059 stat_fops[p->kind]);
3060 if (p->dentry == NULL)
3067 debugfs_remove_recursive(kvm_debugfs_dir);
3072 static void kvm_exit_debug(void)
3074 struct kvm_stats_debugfs_item *p;
3076 for (p = debugfs_entries; p->name; ++p)
3077 debugfs_remove(p->dentry);
3078 debugfs_remove(kvm_debugfs_dir);
3081 static int kvm_suspend(void)
3083 if (kvm_usage_count)
3084 hardware_disable_nolock(NULL);
3088 static void kvm_resume(void)
3090 if (kvm_usage_count) {
3091 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3092 hardware_enable_nolock(NULL);
3096 static struct syscore_ops kvm_syscore_ops = {
3097 .suspend = kvm_suspend,
3098 .resume = kvm_resume,
3102 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3104 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3107 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3109 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3110 if (vcpu->preempted)
3111 vcpu->preempted = false;
3113 kvm_arch_vcpu_load(vcpu, cpu);
3116 static void kvm_sched_out(struct preempt_notifier *pn,
3117 struct task_struct *next)
3119 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3121 if (current->state == TASK_RUNNING)
3122 vcpu->preempted = true;
3123 kvm_arch_vcpu_put(vcpu);
3126 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3127 struct module *module)
3132 r = kvm_arch_init(opaque);
3137 * kvm_arch_init makes sure there's at most one caller
3138 * for architectures that support multiple implementations,
3139 * like intel and amd on x86.
3140 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3141 * conflicts in case kvm is already setup for another implementation.
3143 r = kvm_irqfd_init();
3147 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3152 r = kvm_arch_hardware_setup();
3156 for_each_online_cpu(cpu) {
3157 smp_call_function_single(cpu,
3158 kvm_arch_check_processor_compat,
3164 r = register_cpu_notifier(&kvm_cpu_notifier);
3167 register_reboot_notifier(&kvm_reboot_notifier);
3169 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3171 vcpu_align = __alignof__(struct kvm_vcpu);
3172 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3174 if (!kvm_vcpu_cache) {
3179 r = kvm_async_pf_init();
3183 kvm_chardev_ops.owner = module;
3184 kvm_vm_fops.owner = module;
3185 kvm_vcpu_fops.owner = module;
3187 r = misc_register(&kvm_dev);
3189 printk(KERN_ERR "kvm: misc device register failed\n");
3193 register_syscore_ops(&kvm_syscore_ops);
3195 kvm_preempt_ops.sched_in = kvm_sched_in;
3196 kvm_preempt_ops.sched_out = kvm_sched_out;
3198 r = kvm_init_debug();
3200 printk(KERN_ERR "kvm: create debugfs files failed\n");
3207 unregister_syscore_ops(&kvm_syscore_ops);
3208 misc_deregister(&kvm_dev);
3210 kvm_async_pf_deinit();
3212 kmem_cache_destroy(kvm_vcpu_cache);
3214 unregister_reboot_notifier(&kvm_reboot_notifier);
3215 unregister_cpu_notifier(&kvm_cpu_notifier);
3218 kvm_arch_hardware_unsetup();
3220 free_cpumask_var(cpus_hardware_enabled);
3228 EXPORT_SYMBOL_GPL(kvm_init);
3233 misc_deregister(&kvm_dev);
3234 kmem_cache_destroy(kvm_vcpu_cache);
3235 kvm_async_pf_deinit();
3236 unregister_syscore_ops(&kvm_syscore_ops);
3237 unregister_reboot_notifier(&kvm_reboot_notifier);
3238 unregister_cpu_notifier(&kvm_cpu_notifier);
3239 on_each_cpu(hardware_disable_nolock, NULL, 1);
3240 kvm_arch_hardware_unsetup();
3243 free_cpumask_var(cpus_hardware_enabled);
3245 EXPORT_SYMBOL_GPL(kvm_exit);