]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
88257b311cb579b5b720330456f99fbec97a58ac
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174         int i, cpu, me;
175         cpumask_var_t cpus;
176         bool called = true;
177         struct kvm_vcpu *vcpu;
178
179         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181         me = get_cpu();
182         kvm_for_each_vcpu(i, vcpu, kvm) {
183                 kvm_make_request(req, vcpu);
184                 cpu = vcpu->cpu;
185
186                 /* Set ->requests bit before we read ->mode. */
187                 smp_mb__after_atomic();
188
189                 if (cpus != NULL && cpu != -1 && cpu != me &&
190                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191                         cpumask_set_cpu(cpu, cpus);
192         }
193         if (unlikely(cpus == NULL))
194                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195         else if (!cpumask_empty(cpus))
196                 smp_call_function_many(cpus, ack_flush, NULL, 1);
197         else
198                 called = false;
199         put_cpu();
200         free_cpumask_var(cpus);
201         return called;
202 }
203
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207         /*
208          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209          * kvm_make_all_cpus_request.
210          */
211         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212
213         /*
214          * We want to publish modifications to the page tables before reading
215          * mode. Pairs with a memory barrier in arch-specific code.
216          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217          * and smp_mb in walk_shadow_page_lockless_begin/end.
218          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219          *
220          * There is already an smp_mb__after_atomic() before
221          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222          * barrier here.
223          */
224         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225                 ++kvm->stat.remote_tlb_flush;
226         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238         struct page *page;
239         int r;
240
241         mutex_init(&vcpu->mutex);
242         vcpu->cpu = -1;
243         vcpu->kvm = kvm;
244         vcpu->vcpu_id = id;
245         vcpu->pid = NULL;
246         init_swait_queue_head(&vcpu->wq);
247         kvm_async_pf_vcpu_init(vcpu);
248
249         vcpu->pre_pcpu = -1;
250         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251
252         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253         if (!page) {
254                 r = -ENOMEM;
255                 goto fail;
256         }
257         vcpu->run = page_address(page);
258
259         kvm_vcpu_set_in_spin_loop(vcpu, false);
260         kvm_vcpu_set_dy_eligible(vcpu, false);
261         vcpu->preempted = false;
262
263         r = kvm_arch_vcpu_init(vcpu);
264         if (r < 0)
265                 goto fail_free_run;
266         return 0;
267
268 fail_free_run:
269         free_page((unsigned long)vcpu->run);
270 fail:
271         return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277         put_pid(vcpu->pid);
278         kvm_arch_vcpu_uninit(vcpu);
279         free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286         return container_of(mn, struct kvm, mmu_notifier);
287 }
288
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290                                              struct mm_struct *mm,
291                                              unsigned long address)
292 {
293         struct kvm *kvm = mmu_notifier_to_kvm(mn);
294         int need_tlb_flush, idx;
295
296         /*
297          * When ->invalidate_page runs, the linux pte has been zapped
298          * already but the page is still allocated until
299          * ->invalidate_page returns. So if we increase the sequence
300          * here the kvm page fault will notice if the spte can't be
301          * established because the page is going to be freed. If
302          * instead the kvm page fault establishes the spte before
303          * ->invalidate_page runs, kvm_unmap_hva will release it
304          * before returning.
305          *
306          * The sequence increase only need to be seen at spin_unlock
307          * time, and not at spin_lock time.
308          *
309          * Increasing the sequence after the spin_unlock would be
310          * unsafe because the kvm page fault could then establish the
311          * pte after kvm_unmap_hva returned, without noticing the page
312          * is going to be freed.
313          */
314         idx = srcu_read_lock(&kvm->srcu);
315         spin_lock(&kvm->mmu_lock);
316
317         kvm->mmu_notifier_seq++;
318         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319         /* we've to flush the tlb before the pages can be freed */
320         if (need_tlb_flush)
321                 kvm_flush_remote_tlbs(kvm);
322
323         spin_unlock(&kvm->mmu_lock);
324
325         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326
327         srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369         srcu_read_unlock(&kvm->srcu, idx);
370 }
371
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373                                                   struct mm_struct *mm,
374                                                   unsigned long start,
375                                                   unsigned long end)
376 {
377         struct kvm *kvm = mmu_notifier_to_kvm(mn);
378
379         spin_lock(&kvm->mmu_lock);
380         /*
381          * This sequence increase will notify the kvm page fault that
382          * the page that is going to be mapped in the spte could have
383          * been freed.
384          */
385         kvm->mmu_notifier_seq++;
386         smp_wmb();
387         /*
388          * The above sequence increase must be visible before the
389          * below count decrease, which is ensured by the smp_wmb above
390          * in conjunction with the smp_rmb in mmu_notifier_retry().
391          */
392         kvm->mmu_notifier_count--;
393         spin_unlock(&kvm->mmu_lock);
394
395         BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399                                               struct mm_struct *mm,
400                                               unsigned long start,
401                                               unsigned long end)
402 {
403         struct kvm *kvm = mmu_notifier_to_kvm(mn);
404         int young, idx;
405
406         idx = srcu_read_lock(&kvm->srcu);
407         spin_lock(&kvm->mmu_lock);
408
409         young = kvm_age_hva(kvm, start, end);
410         if (young)
411                 kvm_flush_remote_tlbs(kvm);
412
413         spin_unlock(&kvm->mmu_lock);
414         srcu_read_unlock(&kvm->srcu, idx);
415
416         return young;
417 }
418
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420                                         struct mm_struct *mm,
421                                         unsigned long start,
422                                         unsigned long end)
423 {
424         struct kvm *kvm = mmu_notifier_to_kvm(mn);
425         int young, idx;
426
427         idx = srcu_read_lock(&kvm->srcu);
428         spin_lock(&kvm->mmu_lock);
429         /*
430          * Even though we do not flush TLB, this will still adversely
431          * affect performance on pre-Haswell Intel EPT, where there is
432          * no EPT Access Bit to clear so that we have to tear down EPT
433          * tables instead. If we find this unacceptable, we can always
434          * add a parameter to kvm_age_hva so that it effectively doesn't
435          * do anything on clear_young.
436          *
437          * Also note that currently we never issue secondary TLB flushes
438          * from clear_young, leaving this job up to the regular system
439          * cadence. If we find this inaccurate, we might come up with a
440          * more sophisticated heuristic later.
441          */
442         young = kvm_age_hva(kvm, start, end);
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450                                        struct mm_struct *mm,
451                                        unsigned long address)
452 {
453         struct kvm *kvm = mmu_notifier_to_kvm(mn);
454         int young, idx;
455
456         idx = srcu_read_lock(&kvm->srcu);
457         spin_lock(&kvm->mmu_lock);
458         young = kvm_test_age_hva(kvm, address);
459         spin_unlock(&kvm->mmu_lock);
460         srcu_read_unlock(&kvm->srcu, idx);
461
462         return young;
463 }
464
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466                                      struct mm_struct *mm)
467 {
468         struct kvm *kvm = mmu_notifier_to_kvm(mn);
469         int idx;
470
471         idx = srcu_read_lock(&kvm->srcu);
472         kvm_arch_flush_shadow_all(kvm);
473         srcu_read_unlock(&kvm->srcu, idx);
474 }
475
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
478         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
479         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
480         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
481         .clear_young            = kvm_mmu_notifier_clear_young,
482         .test_young             = kvm_mmu_notifier_test_young,
483         .change_pte             = kvm_mmu_notifier_change_pte,
484         .release                = kvm_mmu_notifier_release,
485 };
486
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492
493 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497         return 0;
498 }
499
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504         int i;
505         struct kvm_memslots *slots;
506
507         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
508         if (!slots)
509                 return NULL;
510
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0644,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         mmgrab(current->mm);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         refcount_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 struct kvm_memslots *slots = kvm_alloc_memslots();
642                 if (!slots)
643                         goto out_err_no_srcu;
644                 /*
645                  * Generations must be different for each address space.
646                  * Init kvm generation close to the maximum to easily test the
647                  * code of handling generation number wrap-around.
648                  */
649                 slots->generation = i * 2 - 150;
650                 rcu_assign_pointer(kvm->memslots[i], slots);
651         }
652
653         if (init_srcu_struct(&kvm->srcu))
654                 goto out_err_no_srcu;
655         if (init_srcu_struct(&kvm->irq_srcu))
656                 goto out_err_no_irq_srcu;
657         for (i = 0; i < KVM_NR_BUSES; i++) {
658                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659                                         GFP_KERNEL);
660                 if (!kvm->buses[i])
661                         goto out_err;
662         }
663
664         r = kvm_init_mmu_notifier(kvm);
665         if (r)
666                 goto out_err;
667
668         spin_lock(&kvm_lock);
669         list_add(&kvm->vm_list, &vm_list);
670         spin_unlock(&kvm_lock);
671
672         preempt_notifier_inc();
673
674         return kvm;
675
676 out_err:
677         cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679         cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681         hardware_disable_all();
682 out_err_no_disable:
683         for (i = 0; i < KVM_NR_BUSES; i++)
684                 kfree(kvm->buses[i]);
685         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686                 kvm_free_memslots(kvm, kvm->memslots[i]);
687         kvm_arch_free_vm(kvm);
688         mmdrop(current->mm);
689         return ERR_PTR(r);
690 }
691
692 /*
693  * Avoid using vmalloc for a small buffer.
694  * Should not be used when the size is statically known.
695  */
696 void *kvm_kvzalloc(unsigned long size)
697 {
698         if (size > PAGE_SIZE)
699                 return vzalloc(size);
700         else
701                 return kzalloc(size, GFP_KERNEL);
702 }
703
704 static void kvm_destroy_devices(struct kvm *kvm)
705 {
706         struct kvm_device *dev, *tmp;
707
708         /*
709          * We do not need to take the kvm->lock here, because nobody else
710          * has a reference to the struct kvm at this point and therefore
711          * cannot access the devices list anyhow.
712          */
713         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
714                 list_del(&dev->vm_node);
715                 dev->ops->destroy(dev);
716         }
717 }
718
719 static void kvm_destroy_vm(struct kvm *kvm)
720 {
721         int i;
722         struct mm_struct *mm = kvm->mm;
723
724         kvm_destroy_vm_debugfs(kvm);
725         kvm_arch_sync_events(kvm);
726         spin_lock(&kvm_lock);
727         list_del(&kvm->vm_list);
728         spin_unlock(&kvm_lock);
729         kvm_free_irq_routing(kvm);
730         for (i = 0; i < KVM_NR_BUSES; i++) {
731                 if (kvm->buses[i])
732                         kvm_io_bus_destroy(kvm->buses[i]);
733                 kvm->buses[i] = NULL;
734         }
735         kvm_coalesced_mmio_free(kvm);
736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
737         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
738 #else
739         kvm_arch_flush_shadow_all(kvm);
740 #endif
741         kvm_arch_destroy_vm(kvm);
742         kvm_destroy_devices(kvm);
743         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
744                 kvm_free_memslots(kvm, kvm->memslots[i]);
745         cleanup_srcu_struct(&kvm->irq_srcu);
746         cleanup_srcu_struct(&kvm->srcu);
747         kvm_arch_free_vm(kvm);
748         preempt_notifier_dec();
749         hardware_disable_all();
750         mmdrop(mm);
751 }
752
753 void kvm_get_kvm(struct kvm *kvm)
754 {
755         refcount_inc(&kvm->users_count);
756 }
757 EXPORT_SYMBOL_GPL(kvm_get_kvm);
758
759 void kvm_put_kvm(struct kvm *kvm)
760 {
761         if (refcount_dec_and_test(&kvm->users_count))
762                 kvm_destroy_vm(kvm);
763 }
764 EXPORT_SYMBOL_GPL(kvm_put_kvm);
765
766
767 static int kvm_vm_release(struct inode *inode, struct file *filp)
768 {
769         struct kvm *kvm = filp->private_data;
770
771         kvm_irqfd_release(kvm);
772
773         kvm_put_kvm(kvm);
774         return 0;
775 }
776
777 /*
778  * Allocation size is twice as large as the actual dirty bitmap size.
779  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
780  */
781 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
782 {
783         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
784
785         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
786         if (!memslot->dirty_bitmap)
787                 return -ENOMEM;
788
789         return 0;
790 }
791
792 /*
793  * Insert memslot and re-sort memslots based on their GFN,
794  * so binary search could be used to lookup GFN.
795  * Sorting algorithm takes advantage of having initially
796  * sorted array and known changed memslot position.
797  */
798 static void update_memslots(struct kvm_memslots *slots,
799                             struct kvm_memory_slot *new)
800 {
801         int id = new->id;
802         int i = slots->id_to_index[id];
803         struct kvm_memory_slot *mslots = slots->memslots;
804
805         WARN_ON(mslots[i].id != id);
806         if (!new->npages) {
807                 WARN_ON(!mslots[i].npages);
808                 if (mslots[i].npages)
809                         slots->used_slots--;
810         } else {
811                 if (!mslots[i].npages)
812                         slots->used_slots++;
813         }
814
815         while (i < KVM_MEM_SLOTS_NUM - 1 &&
816                new->base_gfn <= mslots[i + 1].base_gfn) {
817                 if (!mslots[i + 1].npages)
818                         break;
819                 mslots[i] = mslots[i + 1];
820                 slots->id_to_index[mslots[i].id] = i;
821                 i++;
822         }
823
824         /*
825          * The ">=" is needed when creating a slot with base_gfn == 0,
826          * so that it moves before all those with base_gfn == npages == 0.
827          *
828          * On the other hand, if new->npages is zero, the above loop has
829          * already left i pointing to the beginning of the empty part of
830          * mslots, and the ">=" would move the hole backwards in this
831          * case---which is wrong.  So skip the loop when deleting a slot.
832          */
833         if (new->npages) {
834                 while (i > 0 &&
835                        new->base_gfn >= mslots[i - 1].base_gfn) {
836                         mslots[i] = mslots[i - 1];
837                         slots->id_to_index[mslots[i].id] = i;
838                         i--;
839                 }
840         } else
841                 WARN_ON_ONCE(i != slots->used_slots);
842
843         mslots[i] = *new;
844         slots->id_to_index[mslots[i].id] = i;
845 }
846
847 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
848 {
849         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
850
851 #ifdef __KVM_HAVE_READONLY_MEM
852         valid_flags |= KVM_MEM_READONLY;
853 #endif
854
855         if (mem->flags & ~valid_flags)
856                 return -EINVAL;
857
858         return 0;
859 }
860
861 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
862                 int as_id, struct kvm_memslots *slots)
863 {
864         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
865
866         /*
867          * Set the low bit in the generation, which disables SPTE caching
868          * until the end of synchronize_srcu_expedited.
869          */
870         WARN_ON(old_memslots->generation & 1);
871         slots->generation = old_memslots->generation + 1;
872
873         rcu_assign_pointer(kvm->memslots[as_id], slots);
874         synchronize_srcu_expedited(&kvm->srcu);
875
876         /*
877          * Increment the new memslot generation a second time. This prevents
878          * vm exits that race with memslot updates from caching a memslot
879          * generation that will (potentially) be valid forever.
880          *
881          * Generations must be unique even across address spaces.  We do not need
882          * a global counter for that, instead the generation space is evenly split
883          * across address spaces.  For example, with two address spaces, address
884          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
885          * use generations 2, 6, 10, 14, ...
886          */
887         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
888
889         kvm_arch_memslots_updated(kvm, slots);
890
891         return old_memslots;
892 }
893
894 /*
895  * Allocate some memory and give it an address in the guest physical address
896  * space.
897  *
898  * Discontiguous memory is allowed, mostly for framebuffers.
899  *
900  * Must be called holding kvm->slots_lock for write.
901  */
902 int __kvm_set_memory_region(struct kvm *kvm,
903                             const struct kvm_userspace_memory_region *mem)
904 {
905         int r;
906         gfn_t base_gfn;
907         unsigned long npages;
908         struct kvm_memory_slot *slot;
909         struct kvm_memory_slot old, new;
910         struct kvm_memslots *slots = NULL, *old_memslots;
911         int as_id, id;
912         enum kvm_mr_change change;
913
914         r = check_memory_region_flags(mem);
915         if (r)
916                 goto out;
917
918         r = -EINVAL;
919         as_id = mem->slot >> 16;
920         id = (u16)mem->slot;
921
922         /* General sanity checks */
923         if (mem->memory_size & (PAGE_SIZE - 1))
924                 goto out;
925         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
926                 goto out;
927         /* We can read the guest memory with __xxx_user() later on. */
928         if ((id < KVM_USER_MEM_SLOTS) &&
929             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
930              !access_ok(VERIFY_WRITE,
931                         (void __user *)(unsigned long)mem->userspace_addr,
932                         mem->memory_size)))
933                 goto out;
934         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
935                 goto out;
936         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
937                 goto out;
938
939         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
940         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
941         npages = mem->memory_size >> PAGE_SHIFT;
942
943         if (npages > KVM_MEM_MAX_NR_PAGES)
944                 goto out;
945
946         new = old = *slot;
947
948         new.id = id;
949         new.base_gfn = base_gfn;
950         new.npages = npages;
951         new.flags = mem->flags;
952
953         if (npages) {
954                 if (!old.npages)
955                         change = KVM_MR_CREATE;
956                 else { /* Modify an existing slot. */
957                         if ((mem->userspace_addr != old.userspace_addr) ||
958                             (npages != old.npages) ||
959                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
960                                 goto out;
961
962                         if (base_gfn != old.base_gfn)
963                                 change = KVM_MR_MOVE;
964                         else if (new.flags != old.flags)
965                                 change = KVM_MR_FLAGS_ONLY;
966                         else { /* Nothing to change. */
967                                 r = 0;
968                                 goto out;
969                         }
970                 }
971         } else {
972                 if (!old.npages)
973                         goto out;
974
975                 change = KVM_MR_DELETE;
976                 new.base_gfn = 0;
977                 new.flags = 0;
978         }
979
980         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
981                 /* Check for overlaps */
982                 r = -EEXIST;
983                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
984                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
985                             (slot->id == id))
986                                 continue;
987                         if (!((base_gfn + npages <= slot->base_gfn) ||
988                               (base_gfn >= slot->base_gfn + slot->npages)))
989                                 goto out;
990                 }
991         }
992
993         /* Free page dirty bitmap if unneeded */
994         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
995                 new.dirty_bitmap = NULL;
996
997         r = -ENOMEM;
998         if (change == KVM_MR_CREATE) {
999                 new.userspace_addr = mem->userspace_addr;
1000
1001                 if (kvm_arch_create_memslot(kvm, &new, npages))
1002                         goto out_free;
1003         }
1004
1005         /* Allocate page dirty bitmap if needed */
1006         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1007                 if (kvm_create_dirty_bitmap(&new) < 0)
1008                         goto out_free;
1009         }
1010
1011         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1012         if (!slots)
1013                 goto out_free;
1014         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1015
1016         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1017                 slot = id_to_memslot(slots, id);
1018                 slot->flags |= KVM_MEMSLOT_INVALID;
1019
1020                 old_memslots = install_new_memslots(kvm, as_id, slots);
1021
1022                 /* slot was deleted or moved, clear iommu mapping */
1023                 kvm_iommu_unmap_pages(kvm, &old);
1024                 /* From this point no new shadow pages pointing to a deleted,
1025                  * or moved, memslot will be created.
1026                  *
1027                  * validation of sp->gfn happens in:
1028                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1029                  *      - kvm_is_visible_gfn (mmu_check_roots)
1030                  */
1031                 kvm_arch_flush_shadow_memslot(kvm, slot);
1032
1033                 /*
1034                  * We can re-use the old_memslots from above, the only difference
1035                  * from the currently installed memslots is the invalid flag.  This
1036                  * will get overwritten by update_memslots anyway.
1037                  */
1038                 slots = old_memslots;
1039         }
1040
1041         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1042         if (r)
1043                 goto out_slots;
1044
1045         /* actual memory is freed via old in kvm_free_memslot below */
1046         if (change == KVM_MR_DELETE) {
1047                 new.dirty_bitmap = NULL;
1048                 memset(&new.arch, 0, sizeof(new.arch));
1049         }
1050
1051         update_memslots(slots, &new);
1052         old_memslots = install_new_memslots(kvm, as_id, slots);
1053
1054         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1055
1056         kvm_free_memslot(kvm, &old, &new);
1057         kvfree(old_memslots);
1058
1059         /*
1060          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1061          * un-mapped and re-mapped if their base changes.  Since base change
1062          * unmapping is handled above with slot deletion, mapping alone is
1063          * needed here.  Anything else the iommu might care about for existing
1064          * slots (size changes, userspace addr changes and read-only flag
1065          * changes) is disallowed above, so any other attribute changes getting
1066          * here can be skipped.
1067          */
1068         if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
1069                 r = kvm_iommu_map_pages(kvm, &new);
1070                 return r;
1071         }
1072
1073         return 0;
1074
1075 out_slots:
1076         kvfree(slots);
1077 out_free:
1078         kvm_free_memslot(kvm, &new, &old);
1079 out:
1080         return r;
1081 }
1082 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1083
1084 int kvm_set_memory_region(struct kvm *kvm,
1085                           const struct kvm_userspace_memory_region *mem)
1086 {
1087         int r;
1088
1089         mutex_lock(&kvm->slots_lock);
1090         r = __kvm_set_memory_region(kvm, mem);
1091         mutex_unlock(&kvm->slots_lock);
1092         return r;
1093 }
1094 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1095
1096 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1097                                           struct kvm_userspace_memory_region *mem)
1098 {
1099         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1100                 return -EINVAL;
1101
1102         return kvm_set_memory_region(kvm, mem);
1103 }
1104
1105 int kvm_get_dirty_log(struct kvm *kvm,
1106                         struct kvm_dirty_log *log, int *is_dirty)
1107 {
1108         struct kvm_memslots *slots;
1109         struct kvm_memory_slot *memslot;
1110         int i, as_id, id;
1111         unsigned long n;
1112         unsigned long any = 0;
1113
1114         as_id = log->slot >> 16;
1115         id = (u16)log->slot;
1116         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1117                 return -EINVAL;
1118
1119         slots = __kvm_memslots(kvm, as_id);
1120         memslot = id_to_memslot(slots, id);
1121         if (!memslot->dirty_bitmap)
1122                 return -ENOENT;
1123
1124         n = kvm_dirty_bitmap_bytes(memslot);
1125
1126         for (i = 0; !any && i < n/sizeof(long); ++i)
1127                 any = memslot->dirty_bitmap[i];
1128
1129         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1130                 return -EFAULT;
1131
1132         if (any)
1133                 *is_dirty = 1;
1134         return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1137
1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1139 /**
1140  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1141  *      are dirty write protect them for next write.
1142  * @kvm:        pointer to kvm instance
1143  * @log:        slot id and address to which we copy the log
1144  * @is_dirty:   flag set if any page is dirty
1145  *
1146  * We need to keep it in mind that VCPU threads can write to the bitmap
1147  * concurrently. So, to avoid losing track of dirty pages we keep the
1148  * following order:
1149  *
1150  *    1. Take a snapshot of the bit and clear it if needed.
1151  *    2. Write protect the corresponding page.
1152  *    3. Copy the snapshot to the userspace.
1153  *    4. Upon return caller flushes TLB's if needed.
1154  *
1155  * Between 2 and 4, the guest may write to the page using the remaining TLB
1156  * entry.  This is not a problem because the page is reported dirty using
1157  * the snapshot taken before and step 4 ensures that writes done after
1158  * exiting to userspace will be logged for the next call.
1159  *
1160  */
1161 int kvm_get_dirty_log_protect(struct kvm *kvm,
1162                         struct kvm_dirty_log *log, bool *is_dirty)
1163 {
1164         struct kvm_memslots *slots;
1165         struct kvm_memory_slot *memslot;
1166         int i, as_id, id;
1167         unsigned long n;
1168         unsigned long *dirty_bitmap;
1169         unsigned long *dirty_bitmap_buffer;
1170
1171         as_id = log->slot >> 16;
1172         id = (u16)log->slot;
1173         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1174                 return -EINVAL;
1175
1176         slots = __kvm_memslots(kvm, as_id);
1177         memslot = id_to_memslot(slots, id);
1178
1179         dirty_bitmap = memslot->dirty_bitmap;
1180         if (!dirty_bitmap)
1181                 return -ENOENT;
1182
1183         n = kvm_dirty_bitmap_bytes(memslot);
1184
1185         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1186         memset(dirty_bitmap_buffer, 0, n);
1187
1188         spin_lock(&kvm->mmu_lock);
1189         *is_dirty = false;
1190         for (i = 0; i < n / sizeof(long); i++) {
1191                 unsigned long mask;
1192                 gfn_t offset;
1193
1194                 if (!dirty_bitmap[i])
1195                         continue;
1196
1197                 *is_dirty = true;
1198
1199                 mask = xchg(&dirty_bitmap[i], 0);
1200                 dirty_bitmap_buffer[i] = mask;
1201
1202                 if (mask) {
1203                         offset = i * BITS_PER_LONG;
1204                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1205                                                                 offset, mask);
1206                 }
1207         }
1208
1209         spin_unlock(&kvm->mmu_lock);
1210         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1211                 return -EFAULT;
1212         return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216
1217 bool kvm_largepages_enabled(void)
1218 {
1219         return largepages_enabled;
1220 }
1221
1222 void kvm_disable_largepages(void)
1223 {
1224         largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242
1243         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244               memslot->flags & KVM_MEMSLOT_INVALID)
1245                 return false;
1246
1247         return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253         struct vm_area_struct *vma;
1254         unsigned long addr, size;
1255
1256         size = PAGE_SIZE;
1257
1258         addr = gfn_to_hva(kvm, gfn);
1259         if (kvm_is_error_hva(addr))
1260                 return PAGE_SIZE;
1261
1262         down_read(&current->mm->mmap_sem);
1263         vma = find_vma(current->mm, addr);
1264         if (!vma)
1265                 goto out;
1266
1267         size = vma_kernel_pagesize(vma);
1268
1269 out:
1270         up_read(&current->mm->mmap_sem);
1271
1272         return size;
1273 }
1274
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277         return slot->flags & KVM_MEM_READONLY;
1278 }
1279
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281                                        gfn_t *nr_pages, bool write)
1282 {
1283         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284                 return KVM_HVA_ERR_BAD;
1285
1286         if (memslot_is_readonly(slot) && write)
1287                 return KVM_HVA_ERR_RO_BAD;
1288
1289         if (nr_pages)
1290                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1291
1292         return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296                                      gfn_t *nr_pages)
1297 {
1298         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302                                         gfn_t gfn)
1303 {
1304         return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325                                       gfn_t gfn, bool *writable)
1326 {
1327         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328
1329         if (!kvm_is_error_hva(hva) && writable)
1330                 *writable = !memslot_is_readonly(slot);
1331
1332         return hva;
1333 }
1334
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338
1339         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345
1346         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
1349 static int get_user_page_nowait(unsigned long start, int write,
1350                 struct page **page)
1351 {
1352         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353
1354         if (write)
1355                 flags |= FOLL_WRITE;
1356
1357         return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363
1364         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365         return rc == -EHWPOISON;
1366 }
1367
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375         struct page *page[1];
1376         int npages;
1377
1378         if (!(async || atomic))
1379                 return false;
1380
1381         /*
1382          * Fast pin a writable pfn only if it is a write fault request
1383          * or the caller allows to map a writable pfn for a read fault
1384          * request.
1385          */
1386         if (!(write_fault || writable))
1387                 return false;
1388
1389         npages = __get_user_pages_fast(addr, 1, 1, page);
1390         if (npages == 1) {
1391                 *pfn = page_to_pfn(page[0]);
1392
1393                 if (writable)
1394                         *writable = true;
1395                 return true;
1396         }
1397
1398         return false;
1399 }
1400
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406                            bool *writable, kvm_pfn_t *pfn)
1407 {
1408         struct page *page[1];
1409         int npages = 0;
1410
1411         might_sleep();
1412
1413         if (writable)
1414                 *writable = write_fault;
1415
1416         if (async) {
1417                 down_read(&current->mm->mmap_sem);
1418                 npages = get_user_page_nowait(addr, write_fault, page);
1419                 up_read(&current->mm->mmap_sem);
1420         } else {
1421                 unsigned int flags = FOLL_HWPOISON;
1422
1423                 if (write_fault)
1424                         flags |= FOLL_WRITE;
1425
1426                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1427         }
1428         if (npages != 1)
1429                 return npages;
1430
1431         /* map read fault as writable if possible */
1432         if (unlikely(!write_fault) && writable) {
1433                 struct page *wpage[1];
1434
1435                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436                 if (npages == 1) {
1437                         *writable = true;
1438                         put_page(page[0]);
1439                         page[0] = wpage[0];
1440                 }
1441
1442                 npages = 1;
1443         }
1444         *pfn = page_to_pfn(page[0]);
1445         return npages;
1446 }
1447
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450         if (unlikely(!(vma->vm_flags & VM_READ)))
1451                 return false;
1452
1453         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454                 return false;
1455
1456         return true;
1457 }
1458
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460                                unsigned long addr, bool *async,
1461                                bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463         unsigned long pfn;
1464         int r;
1465
1466         r = follow_pfn(vma, addr, &pfn);
1467         if (r) {
1468                 /*
1469                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470                  * not call the fault handler, so do it here.
1471                  */
1472                 bool unlocked = false;
1473                 r = fixup_user_fault(current, current->mm, addr,
1474                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1475                                      &unlocked);
1476                 if (unlocked)
1477                         return -EAGAIN;
1478                 if (r)
1479                         return r;
1480
1481                 r = follow_pfn(vma, addr, &pfn);
1482                 if (r)
1483                         return r;
1484
1485         }
1486
1487
1488         /*
1489          * Get a reference here because callers of *hva_to_pfn* and
1490          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1492          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493          * simply do nothing for reserved pfns.
1494          *
1495          * Whoever called remap_pfn_range is also going to call e.g.
1496          * unmap_mapping_range before the underlying pages are freed,
1497          * causing a call to our MMU notifier.
1498          */ 
1499         kvm_get_pfn(pfn);
1500
1501         *p_pfn = pfn;
1502         return 0;
1503 }
1504
1505 /*
1506  * Pin guest page in memory and return its pfn.
1507  * @addr: host virtual address which maps memory to the guest
1508  * @atomic: whether this function can sleep
1509  * @async: whether this function need to wait IO complete if the
1510  *         host page is not in the memory
1511  * @write_fault: whether we should get a writable host page
1512  * @writable: whether it allows to map a writable host page for !@write_fault
1513  *
1514  * The function will map a writable host page for these two cases:
1515  * 1): @write_fault = true
1516  * 2): @write_fault = false && @writable, @writable will tell the caller
1517  *     whether the mapping is writable.
1518  */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520                         bool write_fault, bool *writable)
1521 {
1522         struct vm_area_struct *vma;
1523         kvm_pfn_t pfn = 0;
1524         int npages, r;
1525
1526         /* we can do it either atomically or asynchronously, not both */
1527         BUG_ON(atomic && async);
1528
1529         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530                 return pfn;
1531
1532         if (atomic)
1533                 return KVM_PFN_ERR_FAULT;
1534
1535         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536         if (npages == 1)
1537                 return pfn;
1538
1539         down_read(&current->mm->mmap_sem);
1540         if (npages == -EHWPOISON ||
1541               (!async && check_user_page_hwpoison(addr))) {
1542                 pfn = KVM_PFN_ERR_HWPOISON;
1543                 goto exit;
1544         }
1545
1546 retry:
1547         vma = find_vma_intersection(current->mm, addr, addr + 1);
1548
1549         if (vma == NULL)
1550                 pfn = KVM_PFN_ERR_FAULT;
1551         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553                 if (r == -EAGAIN)
1554                         goto retry;
1555                 if (r < 0)
1556                         pfn = KVM_PFN_ERR_FAULT;
1557         } else {
1558                 if (async && vma_is_valid(vma, write_fault))
1559                         *async = true;
1560                 pfn = KVM_PFN_ERR_FAULT;
1561         }
1562 exit:
1563         up_read(&current->mm->mmap_sem);
1564         return pfn;
1565 }
1566
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568                                bool atomic, bool *async, bool write_fault,
1569                                bool *writable)
1570 {
1571         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572
1573         if (addr == KVM_HVA_ERR_RO_BAD) {
1574                 if (writable)
1575                         *writable = false;
1576                 return KVM_PFN_ERR_RO_FAULT;
1577         }
1578
1579         if (kvm_is_error_hva(addr)) {
1580                 if (writable)
1581                         *writable = false;
1582                 return KVM_PFN_NOSLOT;
1583         }
1584
1585         /* Do not map writable pfn in the readonly memslot. */
1586         if (writable && memslot_is_readonly(slot)) {
1587                 *writable = false;
1588                 writable = NULL;
1589         }
1590
1591         return hva_to_pfn(addr, atomic, async, write_fault,
1592                           writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597                       bool *writable)
1598 {
1599         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600                                     write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641                             struct page **pages, int nr_pages)
1642 {
1643         unsigned long addr;
1644         gfn_t entry;
1645
1646         addr = gfn_to_hva_many(slot, gfn, &entry);
1647         if (kvm_is_error_hva(addr))
1648                 return -1;
1649
1650         if (entry < nr_pages)
1651                 return 0;
1652
1653         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659         if (is_error_noslot_pfn(pfn))
1660                 return KVM_ERR_PTR_BAD_PAGE;
1661
1662         if (kvm_is_reserved_pfn(pfn)) {
1663                 WARN_ON(1);
1664                 return KVM_ERR_PTR_BAD_PAGE;
1665         }
1666
1667         return pfn_to_page(pfn);
1668 }
1669
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672         kvm_pfn_t pfn;
1673
1674         pfn = gfn_to_pfn(kvm, gfn);
1675
1676         return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682         kvm_pfn_t pfn;
1683
1684         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685
1686         return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692         WARN_ON(is_error_page(page));
1693
1694         kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701                 put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707         WARN_ON(is_error_page(page));
1708
1709         kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715         kvm_set_pfn_dirty(pfn);
1716         kvm_release_pfn_clean(pfn);
1717 }
1718
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721         if (!kvm_is_reserved_pfn(pfn)) {
1722                 struct page *page = pfn_to_page(pfn);
1723
1724                 if (!PageReserved(page))
1725                         SetPageDirty(page);
1726         }
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732         if (!kvm_is_reserved_pfn(pfn))
1733                 mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739         if (!kvm_is_reserved_pfn(pfn))
1740                 get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746         if (len > PAGE_SIZE - offset)
1747                 return PAGE_SIZE - offset;
1748         else
1749                 return len;
1750 }
1751
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753                                  void *data, int offset, int len)
1754 {
1755         int r;
1756         unsigned long addr;
1757
1758         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759         if (kvm_is_error_hva(addr))
1760                 return -EFAULT;
1761         r = __copy_from_user(data, (void __user *)addr + offset, len);
1762         if (r)
1763                 return -EFAULT;
1764         return 0;
1765 }
1766
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768                         int len)
1769 {
1770         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771
1772         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777                              int offset, int len)
1778 {
1779         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780
1781         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787         gfn_t gfn = gpa >> PAGE_SHIFT;
1788         int seg;
1789         int offset = offset_in_page(gpa);
1790         int ret;
1791
1792         while ((seg = next_segment(len, offset)) != 0) {
1793                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794                 if (ret < 0)
1795                         return ret;
1796                 offset = 0;
1797                 len -= seg;
1798                 data += seg;
1799                 ++gfn;
1800         }
1801         return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807         gfn_t gfn = gpa >> PAGE_SHIFT;
1808         int seg;
1809         int offset = offset_in_page(gpa);
1810         int ret;
1811
1812         while ((seg = next_segment(len, offset)) != 0) {
1813                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814                 if (ret < 0)
1815                         return ret;
1816                 offset = 0;
1817                 len -= seg;
1818                 data += seg;
1819                 ++gfn;
1820         }
1821         return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826                                    void *data, int offset, unsigned long len)
1827 {
1828         int r;
1829         unsigned long addr;
1830
1831         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832         if (kvm_is_error_hva(addr))
1833                 return -EFAULT;
1834         pagefault_disable();
1835         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836         pagefault_enable();
1837         if (r)
1838                 return -EFAULT;
1839         return 0;
1840 }
1841
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843                           unsigned long len)
1844 {
1845         gfn_t gfn = gpa >> PAGE_SHIFT;
1846         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847         int offset = offset_in_page(gpa);
1848
1849         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854                                void *data, unsigned long len)
1855 {
1856         gfn_t gfn = gpa >> PAGE_SHIFT;
1857         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858         int offset = offset_in_page(gpa);
1859
1860         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865                                   const void *data, int offset, int len)
1866 {
1867         int r;
1868         unsigned long addr;
1869
1870         addr = gfn_to_hva_memslot(memslot, gfn);
1871         if (kvm_is_error_hva(addr))
1872                 return -EFAULT;
1873         r = __copy_to_user((void __user *)addr + offset, data, len);
1874         if (r)
1875                 return -EFAULT;
1876         mark_page_dirty_in_slot(memslot, gfn);
1877         return 0;
1878 }
1879
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881                          const void *data, int offset, int len)
1882 {
1883         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884
1885         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890                               const void *data, int offset, int len)
1891 {
1892         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893
1894         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899                     unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 data += seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920                          unsigned long len)
1921 {
1922         gfn_t gfn = gpa >> PAGE_SHIFT;
1923         int seg;
1924         int offset = offset_in_page(gpa);
1925         int ret;
1926
1927         while ((seg = next_segment(len, offset)) != 0) {
1928                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929                 if (ret < 0)
1930                         return ret;
1931                 offset = 0;
1932                 len -= seg;
1933                 data += seg;
1934                 ++gfn;
1935         }
1936         return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939
1940 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1941                                        struct gfn_to_hva_cache *ghc,
1942                                        gpa_t gpa, unsigned long len)
1943 {
1944         int offset = offset_in_page(gpa);
1945         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948         gfn_t nr_pages_avail;
1949
1950         ghc->gpa = gpa;
1951         ghc->generation = slots->generation;
1952         ghc->len = len;
1953         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956                 ghc->hva += offset;
1957         } else {
1958                 /*
1959                  * If the requested region crosses two memslots, we still
1960                  * verify that the entire region is valid here.
1961                  */
1962                 while (start_gfn <= end_gfn) {
1963                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1964                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965                                                    &nr_pages_avail);
1966                         if (kvm_is_error_hva(ghc->hva))
1967                                 return -EFAULT;
1968                         start_gfn += nr_pages_avail;
1969                 }
1970                 /* Use the slow path for cross page reads and writes. */
1971                 ghc->memslot = NULL;
1972         }
1973         return 0;
1974 }
1975
1976 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1977                               gpa_t gpa, unsigned long len)
1978 {
1979         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1980         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1983
1984 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1985                                        void *data, int offset, unsigned long len)
1986 {
1987         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1988         int r;
1989         gpa_t gpa = ghc->gpa + offset;
1990
1991         BUG_ON(len + offset > ghc->len);
1992
1993         if (slots->generation != ghc->generation)
1994                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1995
1996         if (unlikely(!ghc->memslot))
1997                 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1998
1999         if (kvm_is_error_hva(ghc->hva))
2000                 return -EFAULT;
2001
2002         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2003         if (r)
2004                 return -EFAULT;
2005         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2006
2007         return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2010
2011 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2012                                void *data, unsigned long len)
2013 {
2014         return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2017
2018 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2019                                void *data, unsigned long len)
2020 {
2021         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2022         int r;
2023
2024         BUG_ON(len > ghc->len);
2025
2026         if (slots->generation != ghc->generation)
2027                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2028
2029         if (unlikely(!ghc->memslot))
2030                 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2031
2032         if (kvm_is_error_hva(ghc->hva))
2033                 return -EFAULT;
2034
2035         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2036         if (r)
2037                 return -EFAULT;
2038
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2042
2043 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2044 {
2045         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2046
2047         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2050
2051 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2052 {
2053         gfn_t gfn = gpa >> PAGE_SHIFT;
2054         int seg;
2055         int offset = offset_in_page(gpa);
2056         int ret;
2057
2058         while ((seg = next_segment(len, offset)) != 0) {
2059                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2060                 if (ret < 0)
2061                         return ret;
2062                 offset = 0;
2063                 len -= seg;
2064                 ++gfn;
2065         }
2066         return 0;
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2069
2070 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2071                                     gfn_t gfn)
2072 {
2073         if (memslot && memslot->dirty_bitmap) {
2074                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2075
2076                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2077         }
2078 }
2079
2080 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2081 {
2082         struct kvm_memory_slot *memslot;
2083
2084         memslot = gfn_to_memslot(kvm, gfn);
2085         mark_page_dirty_in_slot(memslot, gfn);
2086 }
2087 EXPORT_SYMBOL_GPL(mark_page_dirty);
2088
2089 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2090 {
2091         struct kvm_memory_slot *memslot;
2092
2093         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2094         mark_page_dirty_in_slot(memslot, gfn);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2097
2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 {
2100         unsigned int old, val, grow;
2101
2102         old = val = vcpu->halt_poll_ns;
2103         grow = READ_ONCE(halt_poll_ns_grow);
2104         /* 10us base */
2105         if (val == 0 && grow)
2106                 val = 10000;
2107         else
2108                 val *= grow;
2109
2110         if (val > halt_poll_ns)
2111                 val = halt_poll_ns;
2112
2113         vcpu->halt_poll_ns = val;
2114         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115 }
2116
2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118 {
2119         unsigned int old, val, shrink;
2120
2121         old = val = vcpu->halt_poll_ns;
2122         shrink = READ_ONCE(halt_poll_ns_shrink);
2123         if (shrink == 0)
2124                 val = 0;
2125         else
2126                 val /= shrink;
2127
2128         vcpu->halt_poll_ns = val;
2129         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130 }
2131
2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133 {
2134         if (kvm_arch_vcpu_runnable(vcpu)) {
2135                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2136                 return -EINTR;
2137         }
2138         if (kvm_cpu_has_pending_timer(vcpu))
2139                 return -EINTR;
2140         if (signal_pending(current))
2141                 return -EINTR;
2142
2143         return 0;
2144 }
2145
2146 /*
2147  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2148  */
2149 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2150 {
2151         ktime_t start, cur;
2152         DECLARE_SWAITQUEUE(wait);
2153         bool waited = false;
2154         u64 block_ns;
2155
2156         start = cur = ktime_get();
2157         if (vcpu->halt_poll_ns) {
2158                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2159
2160                 ++vcpu->stat.halt_attempted_poll;
2161                 do {
2162                         /*
2163                          * This sets KVM_REQ_UNHALT if an interrupt
2164                          * arrives.
2165                          */
2166                         if (kvm_vcpu_check_block(vcpu) < 0) {
2167                                 ++vcpu->stat.halt_successful_poll;
2168                                 if (!vcpu_valid_wakeup(vcpu))
2169                                         ++vcpu->stat.halt_poll_invalid;
2170                                 goto out;
2171                         }
2172                         cur = ktime_get();
2173                 } while (single_task_running() && ktime_before(cur, stop));
2174         }
2175
2176         kvm_arch_vcpu_blocking(vcpu);
2177
2178         for (;;) {
2179                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2180
2181                 if (kvm_vcpu_check_block(vcpu) < 0)
2182                         break;
2183
2184                 waited = true;
2185                 schedule();
2186         }
2187
2188         finish_swait(&vcpu->wq, &wait);
2189         cur = ktime_get();
2190
2191         kvm_arch_vcpu_unblocking(vcpu);
2192 out:
2193         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2194
2195         if (!vcpu_valid_wakeup(vcpu))
2196                 shrink_halt_poll_ns(vcpu);
2197         else if (halt_poll_ns) {
2198                 if (block_ns <= vcpu->halt_poll_ns)
2199                         ;
2200                 /* we had a long block, shrink polling */
2201                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2202                         shrink_halt_poll_ns(vcpu);
2203                 /* we had a short halt and our poll time is too small */
2204                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2205                         block_ns < halt_poll_ns)
2206                         grow_halt_poll_ns(vcpu);
2207         } else
2208                 vcpu->halt_poll_ns = 0;
2209
2210         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2211         kvm_arch_vcpu_block_finish(vcpu);
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2214
2215 #ifndef CONFIG_S390
2216 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2217 {
2218         struct swait_queue_head *wqp;
2219
2220         wqp = kvm_arch_vcpu_wq(vcpu);
2221         if (swait_active(wqp)) {
2222                 swake_up(wqp);
2223                 ++vcpu->stat.halt_wakeup;
2224         }
2225
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2228
2229 /*
2230  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2231  */
2232 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2233 {
2234         int me;
2235         int cpu = vcpu->cpu;
2236
2237         kvm_vcpu_wake_up(vcpu);
2238         me = get_cpu();
2239         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2240                 if (kvm_arch_vcpu_should_kick(vcpu))
2241                         smp_send_reschedule(cpu);
2242         put_cpu();
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2245 #endif /* !CONFIG_S390 */
2246
2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2248 {
2249         struct pid *pid;
2250         struct task_struct *task = NULL;
2251         int ret = 0;
2252
2253         rcu_read_lock();
2254         pid = rcu_dereference(target->pid);
2255         if (pid)
2256                 task = get_pid_task(pid, PIDTYPE_PID);
2257         rcu_read_unlock();
2258         if (!task)
2259                 return ret;
2260         ret = yield_to(task, 1);
2261         put_task_struct(task);
2262
2263         return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2266
2267 /*
2268  * Helper that checks whether a VCPU is eligible for directed yield.
2269  * Most eligible candidate to yield is decided by following heuristics:
2270  *
2271  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2272  *  (preempted lock holder), indicated by @in_spin_loop.
2273  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2274  *
2275  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2276  *  chance last time (mostly it has become eligible now since we have probably
2277  *  yielded to lockholder in last iteration. This is done by toggling
2278  *  @dy_eligible each time a VCPU checked for eligibility.)
2279  *
2280  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2281  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2282  *  burning. Giving priority for a potential lock-holder increases lock
2283  *  progress.
2284  *
2285  *  Since algorithm is based on heuristics, accessing another VCPU data without
2286  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2287  *  and continue with next VCPU and so on.
2288  */
2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2290 {
2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2292         bool eligible;
2293
2294         eligible = !vcpu->spin_loop.in_spin_loop ||
2295                     vcpu->spin_loop.dy_eligible;
2296
2297         if (vcpu->spin_loop.in_spin_loop)
2298                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2299
2300         return eligible;
2301 #else
2302         return true;
2303 #endif
2304 }
2305
2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2307 {
2308         struct kvm *kvm = me->kvm;
2309         struct kvm_vcpu *vcpu;
2310         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2311         int yielded = 0;
2312         int try = 3;
2313         int pass;
2314         int i;
2315
2316         kvm_vcpu_set_in_spin_loop(me, true);
2317         /*
2318          * We boost the priority of a VCPU that is runnable but not
2319          * currently running, because it got preempted by something
2320          * else and called schedule in __vcpu_run.  Hopefully that
2321          * VCPU is holding the lock that we need and will release it.
2322          * We approximate round-robin by starting at the last boosted VCPU.
2323          */
2324         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2325                 kvm_for_each_vcpu(i, vcpu, kvm) {
2326                         if (!pass && i <= last_boosted_vcpu) {
2327                                 i = last_boosted_vcpu;
2328                                 continue;
2329                         } else if (pass && i > last_boosted_vcpu)
2330                                 break;
2331                         if (!ACCESS_ONCE(vcpu->preempted))
2332                                 continue;
2333                         if (vcpu == me)
2334                                 continue;
2335                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2336                                 continue;
2337                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2338                                 continue;
2339
2340                         yielded = kvm_vcpu_yield_to(vcpu);
2341                         if (yielded > 0) {
2342                                 kvm->last_boosted_vcpu = i;
2343                                 break;
2344                         } else if (yielded < 0) {
2345                                 try--;
2346                                 if (!try)
2347                                         break;
2348                         }
2349                 }
2350         }
2351         kvm_vcpu_set_in_spin_loop(me, false);
2352
2353         /* Ensure vcpu is not eligible during next spinloop */
2354         kvm_vcpu_set_dy_eligible(me, false);
2355 }
2356 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2357
2358 static int kvm_vcpu_fault(struct vm_fault *vmf)
2359 {
2360         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2361         struct page *page;
2362
2363         if (vmf->pgoff == 0)
2364                 page = virt_to_page(vcpu->run);
2365 #ifdef CONFIG_X86
2366         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2367                 page = virt_to_page(vcpu->arch.pio_data);
2368 #endif
2369 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2370         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2371                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2372 #endif
2373         else
2374                 return kvm_arch_vcpu_fault(vcpu, vmf);
2375         get_page(page);
2376         vmf->page = page;
2377         return 0;
2378 }
2379
2380 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2381         .fault = kvm_vcpu_fault,
2382 };
2383
2384 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2385 {
2386         vma->vm_ops = &kvm_vcpu_vm_ops;
2387         return 0;
2388 }
2389
2390 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2391 {
2392         struct kvm_vcpu *vcpu = filp->private_data;
2393
2394         debugfs_remove_recursive(vcpu->debugfs_dentry);
2395         kvm_put_kvm(vcpu->kvm);
2396         return 0;
2397 }
2398
2399 static struct file_operations kvm_vcpu_fops = {
2400         .release        = kvm_vcpu_release,
2401         .unlocked_ioctl = kvm_vcpu_ioctl,
2402 #ifdef CONFIG_KVM_COMPAT
2403         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2404 #endif
2405         .mmap           = kvm_vcpu_mmap,
2406         .llseek         = noop_llseek,
2407 };
2408
2409 /*
2410  * Allocates an inode for the vcpu.
2411  */
2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2413 {
2414         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2415 }
2416
2417 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2418 {
2419         char dir_name[ITOA_MAX_LEN * 2];
2420         int ret;
2421
2422         if (!kvm_arch_has_vcpu_debugfs())
2423                 return 0;
2424
2425         if (!debugfs_initialized())
2426                 return 0;
2427
2428         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2429         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2430                                                                 vcpu->kvm->debugfs_dentry);
2431         if (!vcpu->debugfs_dentry)
2432                 return -ENOMEM;
2433
2434         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2435         if (ret < 0) {
2436                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2437                 return ret;
2438         }
2439
2440         return 0;
2441 }
2442
2443 /*
2444  * Creates some virtual cpus.  Good luck creating more than one.
2445  */
2446 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2447 {
2448         int r;
2449         struct kvm_vcpu *vcpu;
2450
2451         if (id >= KVM_MAX_VCPU_ID)
2452                 return -EINVAL;
2453
2454         mutex_lock(&kvm->lock);
2455         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2456                 mutex_unlock(&kvm->lock);
2457                 return -EINVAL;
2458         }
2459
2460         kvm->created_vcpus++;
2461         mutex_unlock(&kvm->lock);
2462
2463         vcpu = kvm_arch_vcpu_create(kvm, id);
2464         if (IS_ERR(vcpu)) {
2465                 r = PTR_ERR(vcpu);
2466                 goto vcpu_decrement;
2467         }
2468
2469         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2470
2471         r = kvm_arch_vcpu_setup(vcpu);
2472         if (r)
2473                 goto vcpu_destroy;
2474
2475         r = kvm_create_vcpu_debugfs(vcpu);
2476         if (r)
2477                 goto vcpu_destroy;
2478
2479         mutex_lock(&kvm->lock);
2480         if (kvm_get_vcpu_by_id(kvm, id)) {
2481                 r = -EEXIST;
2482                 goto unlock_vcpu_destroy;
2483         }
2484
2485         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2486
2487         /* Now it's all set up, let userspace reach it */
2488         kvm_get_kvm(kvm);
2489         r = create_vcpu_fd(vcpu);
2490         if (r < 0) {
2491                 kvm_put_kvm(kvm);
2492                 goto unlock_vcpu_destroy;
2493         }
2494
2495         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2496
2497         /*
2498          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2499          * before kvm->online_vcpu's incremented value.
2500          */
2501         smp_wmb();
2502         atomic_inc(&kvm->online_vcpus);
2503
2504         mutex_unlock(&kvm->lock);
2505         kvm_arch_vcpu_postcreate(vcpu);
2506         return r;
2507
2508 unlock_vcpu_destroy:
2509         mutex_unlock(&kvm->lock);
2510         debugfs_remove_recursive(vcpu->debugfs_dentry);
2511 vcpu_destroy:
2512         kvm_arch_vcpu_destroy(vcpu);
2513 vcpu_decrement:
2514         mutex_lock(&kvm->lock);
2515         kvm->created_vcpus--;
2516         mutex_unlock(&kvm->lock);
2517         return r;
2518 }
2519
2520 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2521 {
2522         if (sigset) {
2523                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2524                 vcpu->sigset_active = 1;
2525                 vcpu->sigset = *sigset;
2526         } else
2527                 vcpu->sigset_active = 0;
2528         return 0;
2529 }
2530
2531 static long kvm_vcpu_ioctl(struct file *filp,
2532                            unsigned int ioctl, unsigned long arg)
2533 {
2534         struct kvm_vcpu *vcpu = filp->private_data;
2535         void __user *argp = (void __user *)arg;
2536         int r;
2537         struct kvm_fpu *fpu = NULL;
2538         struct kvm_sregs *kvm_sregs = NULL;
2539
2540         if (vcpu->kvm->mm != current->mm)
2541                 return -EIO;
2542
2543         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2544                 return -EINVAL;
2545
2546 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2547         /*
2548          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2549          * so vcpu_load() would break it.
2550          */
2551         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2552                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2553 #endif
2554
2555
2556         r = vcpu_load(vcpu);
2557         if (r)
2558                 return r;
2559         switch (ioctl) {
2560         case KVM_RUN:
2561                 r = -EINVAL;
2562                 if (arg)
2563                         goto out;
2564                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2565                         /* The thread running this VCPU changed. */
2566                         struct pid *oldpid = vcpu->pid;
2567                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2568
2569                         rcu_assign_pointer(vcpu->pid, newpid);
2570                         if (oldpid)
2571                                 synchronize_rcu();
2572                         put_pid(oldpid);
2573                 }
2574                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2575                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2576                 break;
2577         case KVM_GET_REGS: {
2578                 struct kvm_regs *kvm_regs;
2579
2580                 r = -ENOMEM;
2581                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2582                 if (!kvm_regs)
2583                         goto out;
2584                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2585                 if (r)
2586                         goto out_free1;
2587                 r = -EFAULT;
2588                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2589                         goto out_free1;
2590                 r = 0;
2591 out_free1:
2592                 kfree(kvm_regs);
2593                 break;
2594         }
2595         case KVM_SET_REGS: {
2596                 struct kvm_regs *kvm_regs;
2597
2598                 r = -ENOMEM;
2599                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2600                 if (IS_ERR(kvm_regs)) {
2601                         r = PTR_ERR(kvm_regs);
2602                         goto out;
2603                 }
2604                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2605                 kfree(kvm_regs);
2606                 break;
2607         }
2608         case KVM_GET_SREGS: {
2609                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2610                 r = -ENOMEM;
2611                 if (!kvm_sregs)
2612                         goto out;
2613                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2614                 if (r)
2615                         goto out;
2616                 r = -EFAULT;
2617                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2618                         goto out;
2619                 r = 0;
2620                 break;
2621         }
2622         case KVM_SET_SREGS: {
2623                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2624                 if (IS_ERR(kvm_sregs)) {
2625                         r = PTR_ERR(kvm_sregs);
2626                         kvm_sregs = NULL;
2627                         goto out;
2628                 }
2629                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2630                 break;
2631         }
2632         case KVM_GET_MP_STATE: {
2633                 struct kvm_mp_state mp_state;
2634
2635                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2636                 if (r)
2637                         goto out;
2638                 r = -EFAULT;
2639                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2640                         goto out;
2641                 r = 0;
2642                 break;
2643         }
2644         case KVM_SET_MP_STATE: {
2645                 struct kvm_mp_state mp_state;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2649                         goto out;
2650                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2651                 break;
2652         }
2653         case KVM_TRANSLATE: {
2654                 struct kvm_translation tr;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&tr, argp, sizeof(tr)))
2658                         goto out;
2659                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2660                 if (r)
2661                         goto out;
2662                 r = -EFAULT;
2663                 if (copy_to_user(argp, &tr, sizeof(tr)))
2664                         goto out;
2665                 r = 0;
2666                 break;
2667         }
2668         case KVM_SET_GUEST_DEBUG: {
2669                 struct kvm_guest_debug dbg;
2670
2671                 r = -EFAULT;
2672                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2673                         goto out;
2674                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2675                 break;
2676         }
2677         case KVM_SET_SIGNAL_MASK: {
2678                 struct kvm_signal_mask __user *sigmask_arg = argp;
2679                 struct kvm_signal_mask kvm_sigmask;
2680                 sigset_t sigset, *p;
2681
2682                 p = NULL;
2683                 if (argp) {
2684                         r = -EFAULT;
2685                         if (copy_from_user(&kvm_sigmask, argp,
2686                                            sizeof(kvm_sigmask)))
2687                                 goto out;
2688                         r = -EINVAL;
2689                         if (kvm_sigmask.len != sizeof(sigset))
2690                                 goto out;
2691                         r = -EFAULT;
2692                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2693                                            sizeof(sigset)))
2694                                 goto out;
2695                         p = &sigset;
2696                 }
2697                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2698                 break;
2699         }
2700         case KVM_GET_FPU: {
2701                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2702                 r = -ENOMEM;
2703                 if (!fpu)
2704                         goto out;
2705                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2706                 if (r)
2707                         goto out;
2708                 r = -EFAULT;
2709                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2710                         goto out;
2711                 r = 0;
2712                 break;
2713         }
2714         case KVM_SET_FPU: {
2715                 fpu = memdup_user(argp, sizeof(*fpu));
2716                 if (IS_ERR(fpu)) {
2717                         r = PTR_ERR(fpu);
2718                         fpu = NULL;
2719                         goto out;
2720                 }
2721                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2722                 break;
2723         }
2724         default:
2725                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2726         }
2727 out:
2728         vcpu_put(vcpu);
2729         kfree(fpu);
2730         kfree(kvm_sregs);
2731         return r;
2732 }
2733
2734 #ifdef CONFIG_KVM_COMPAT
2735 static long kvm_vcpu_compat_ioctl(struct file *filp,
2736                                   unsigned int ioctl, unsigned long arg)
2737 {
2738         struct kvm_vcpu *vcpu = filp->private_data;
2739         void __user *argp = compat_ptr(arg);
2740         int r;
2741
2742         if (vcpu->kvm->mm != current->mm)
2743                 return -EIO;
2744
2745         switch (ioctl) {
2746         case KVM_SET_SIGNAL_MASK: {
2747                 struct kvm_signal_mask __user *sigmask_arg = argp;
2748                 struct kvm_signal_mask kvm_sigmask;
2749                 compat_sigset_t csigset;
2750                 sigset_t sigset;
2751
2752                 if (argp) {
2753                         r = -EFAULT;
2754                         if (copy_from_user(&kvm_sigmask, argp,
2755                                            sizeof(kvm_sigmask)))
2756                                 goto out;
2757                         r = -EINVAL;
2758                         if (kvm_sigmask.len != sizeof(csigset))
2759                                 goto out;
2760                         r = -EFAULT;
2761                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2762                                            sizeof(csigset)))
2763                                 goto out;
2764                         sigset_from_compat(&sigset, &csigset);
2765                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2766                 } else
2767                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2768                 break;
2769         }
2770         default:
2771                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2772         }
2773
2774 out:
2775         return r;
2776 }
2777 #endif
2778
2779 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2780                                  int (*accessor)(struct kvm_device *dev,
2781                                                  struct kvm_device_attr *attr),
2782                                  unsigned long arg)
2783 {
2784         struct kvm_device_attr attr;
2785
2786         if (!accessor)
2787                 return -EPERM;
2788
2789         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2790                 return -EFAULT;
2791
2792         return accessor(dev, &attr);
2793 }
2794
2795 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2796                              unsigned long arg)
2797 {
2798         struct kvm_device *dev = filp->private_data;
2799
2800         switch (ioctl) {
2801         case KVM_SET_DEVICE_ATTR:
2802                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2803         case KVM_GET_DEVICE_ATTR:
2804                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2805         case KVM_HAS_DEVICE_ATTR:
2806                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2807         default:
2808                 if (dev->ops->ioctl)
2809                         return dev->ops->ioctl(dev, ioctl, arg);
2810
2811                 return -ENOTTY;
2812         }
2813 }
2814
2815 static int kvm_device_release(struct inode *inode, struct file *filp)
2816 {
2817         struct kvm_device *dev = filp->private_data;
2818         struct kvm *kvm = dev->kvm;
2819
2820         kvm_put_kvm(kvm);
2821         return 0;
2822 }
2823
2824 static const struct file_operations kvm_device_fops = {
2825         .unlocked_ioctl = kvm_device_ioctl,
2826 #ifdef CONFIG_KVM_COMPAT
2827         .compat_ioctl = kvm_device_ioctl,
2828 #endif
2829         .release = kvm_device_release,
2830 };
2831
2832 struct kvm_device *kvm_device_from_filp(struct file *filp)
2833 {
2834         if (filp->f_op != &kvm_device_fops)
2835                 return NULL;
2836
2837         return filp->private_data;
2838 }
2839
2840 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2841 #ifdef CONFIG_KVM_MPIC
2842         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2843         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2844 #endif
2845
2846 #ifdef CONFIG_KVM_XICS
2847         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2848 #endif
2849 };
2850
2851 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2852 {
2853         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2854                 return -ENOSPC;
2855
2856         if (kvm_device_ops_table[type] != NULL)
2857                 return -EEXIST;
2858
2859         kvm_device_ops_table[type] = ops;
2860         return 0;
2861 }
2862
2863 void kvm_unregister_device_ops(u32 type)
2864 {
2865         if (kvm_device_ops_table[type] != NULL)
2866                 kvm_device_ops_table[type] = NULL;
2867 }
2868
2869 static int kvm_ioctl_create_device(struct kvm *kvm,
2870                                    struct kvm_create_device *cd)
2871 {
2872         struct kvm_device_ops *ops = NULL;
2873         struct kvm_device *dev;
2874         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2875         int ret;
2876
2877         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2878                 return -ENODEV;
2879
2880         ops = kvm_device_ops_table[cd->type];
2881         if (ops == NULL)
2882                 return -ENODEV;
2883
2884         if (test)
2885                 return 0;
2886
2887         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2888         if (!dev)
2889                 return -ENOMEM;
2890
2891         dev->ops = ops;
2892         dev->kvm = kvm;
2893
2894         mutex_lock(&kvm->lock);
2895         ret = ops->create(dev, cd->type);
2896         if (ret < 0) {
2897                 mutex_unlock(&kvm->lock);
2898                 kfree(dev);
2899                 return ret;
2900         }
2901         list_add(&dev->vm_node, &kvm->devices);
2902         mutex_unlock(&kvm->lock);
2903
2904         if (ops->init)
2905                 ops->init(dev);
2906
2907         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2908         if (ret < 0) {
2909                 mutex_lock(&kvm->lock);
2910                 list_del(&dev->vm_node);
2911                 mutex_unlock(&kvm->lock);
2912                 ops->destroy(dev);
2913                 return ret;
2914         }
2915
2916         kvm_get_kvm(kvm);
2917         cd->fd = ret;
2918         return 0;
2919 }
2920
2921 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2922 {
2923         switch (arg) {
2924         case KVM_CAP_USER_MEMORY:
2925         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2926         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2927         case KVM_CAP_INTERNAL_ERROR_DATA:
2928 #ifdef CONFIG_HAVE_KVM_MSI
2929         case KVM_CAP_SIGNAL_MSI:
2930 #endif
2931 #ifdef CONFIG_HAVE_KVM_IRQFD
2932         case KVM_CAP_IRQFD:
2933         case KVM_CAP_IRQFD_RESAMPLE:
2934 #endif
2935         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2936         case KVM_CAP_CHECK_EXTENSION_VM:
2937                 return 1;
2938 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2939         case KVM_CAP_IRQ_ROUTING:
2940                 return KVM_MAX_IRQ_ROUTES;
2941 #endif
2942 #if KVM_ADDRESS_SPACE_NUM > 1
2943         case KVM_CAP_MULTI_ADDRESS_SPACE:
2944                 return KVM_ADDRESS_SPACE_NUM;
2945 #endif
2946         case KVM_CAP_MAX_VCPU_ID:
2947                 return KVM_MAX_VCPU_ID;
2948         default:
2949                 break;
2950         }
2951         return kvm_vm_ioctl_check_extension(kvm, arg);
2952 }
2953
2954 static long kvm_vm_ioctl(struct file *filp,
2955                            unsigned int ioctl, unsigned long arg)
2956 {
2957         struct kvm *kvm = filp->private_data;
2958         void __user *argp = (void __user *)arg;
2959         int r;
2960
2961         if (kvm->mm != current->mm)
2962                 return -EIO;
2963         switch (ioctl) {
2964         case KVM_CREATE_VCPU:
2965                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2966                 break;
2967         case KVM_SET_USER_MEMORY_REGION: {
2968                 struct kvm_userspace_memory_region kvm_userspace_mem;
2969
2970                 r = -EFAULT;
2971                 if (copy_from_user(&kvm_userspace_mem, argp,
2972                                                 sizeof(kvm_userspace_mem)))
2973                         goto out;
2974
2975                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2976                 break;
2977         }
2978         case KVM_GET_DIRTY_LOG: {
2979                 struct kvm_dirty_log log;
2980
2981                 r = -EFAULT;
2982                 if (copy_from_user(&log, argp, sizeof(log)))
2983                         goto out;
2984                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2985                 break;
2986         }
2987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2988         case KVM_REGISTER_COALESCED_MMIO: {
2989                 struct kvm_coalesced_mmio_zone zone;
2990
2991                 r = -EFAULT;
2992                 if (copy_from_user(&zone, argp, sizeof(zone)))
2993                         goto out;
2994                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2995                 break;
2996         }
2997         case KVM_UNREGISTER_COALESCED_MMIO: {
2998                 struct kvm_coalesced_mmio_zone zone;
2999
3000                 r = -EFAULT;
3001                 if (copy_from_user(&zone, argp, sizeof(zone)))
3002                         goto out;
3003                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3004                 break;
3005         }
3006 #endif
3007         case KVM_IRQFD: {
3008                 struct kvm_irqfd data;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&data, argp, sizeof(data)))
3012                         goto out;
3013                 r = kvm_irqfd(kvm, &data);
3014                 break;
3015         }
3016         case KVM_IOEVENTFD: {
3017                 struct kvm_ioeventfd data;
3018
3019                 r = -EFAULT;
3020                 if (copy_from_user(&data, argp, sizeof(data)))
3021                         goto out;
3022                 r = kvm_ioeventfd(kvm, &data);
3023                 break;
3024         }
3025 #ifdef CONFIG_HAVE_KVM_MSI
3026         case KVM_SIGNAL_MSI: {
3027                 struct kvm_msi msi;
3028
3029                 r = -EFAULT;
3030                 if (copy_from_user(&msi, argp, sizeof(msi)))
3031                         goto out;
3032                 r = kvm_send_userspace_msi(kvm, &msi);
3033                 break;
3034         }
3035 #endif
3036 #ifdef __KVM_HAVE_IRQ_LINE
3037         case KVM_IRQ_LINE_STATUS:
3038         case KVM_IRQ_LINE: {
3039                 struct kvm_irq_level irq_event;
3040
3041                 r = -EFAULT;
3042                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3043                         goto out;
3044
3045                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3046                                         ioctl == KVM_IRQ_LINE_STATUS);
3047                 if (r)
3048                         goto out;
3049
3050                 r = -EFAULT;
3051                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3052                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3053                                 goto out;
3054                 }
3055
3056                 r = 0;
3057                 break;
3058         }
3059 #endif
3060 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3061         case KVM_SET_GSI_ROUTING: {
3062                 struct kvm_irq_routing routing;
3063                 struct kvm_irq_routing __user *urouting;
3064                 struct kvm_irq_routing_entry *entries = NULL;
3065
3066                 r = -EFAULT;
3067                 if (copy_from_user(&routing, argp, sizeof(routing)))
3068                         goto out;
3069                 r = -EINVAL;
3070                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3071                         goto out;
3072                 if (routing.flags)
3073                         goto out;
3074                 if (routing.nr) {
3075                         r = -ENOMEM;
3076                         entries = vmalloc(routing.nr * sizeof(*entries));
3077                         if (!entries)
3078                                 goto out;
3079                         r = -EFAULT;
3080                         urouting = argp;
3081                         if (copy_from_user(entries, urouting->entries,
3082                                            routing.nr * sizeof(*entries)))
3083                                 goto out_free_irq_routing;
3084                 }
3085                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3086                                         routing.flags);
3087 out_free_irq_routing:
3088                 vfree(entries);
3089                 break;
3090         }
3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3092         case KVM_CREATE_DEVICE: {
3093                 struct kvm_create_device cd;
3094
3095                 r = -EFAULT;
3096                 if (copy_from_user(&cd, argp, sizeof(cd)))
3097                         goto out;
3098
3099                 r = kvm_ioctl_create_device(kvm, &cd);
3100                 if (r)
3101                         goto out;
3102
3103                 r = -EFAULT;
3104                 if (copy_to_user(argp, &cd, sizeof(cd)))
3105                         goto out;
3106
3107                 r = 0;
3108                 break;
3109         }
3110         case KVM_CHECK_EXTENSION:
3111                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3112                 break;
3113         default:
3114                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3115         }
3116 out:
3117         return r;
3118 }
3119
3120 #ifdef CONFIG_KVM_COMPAT
3121 struct compat_kvm_dirty_log {
3122         __u32 slot;
3123         __u32 padding1;
3124         union {
3125                 compat_uptr_t dirty_bitmap; /* one bit per page */
3126                 __u64 padding2;
3127         };
3128 };
3129
3130 static long kvm_vm_compat_ioctl(struct file *filp,
3131                            unsigned int ioctl, unsigned long arg)
3132 {
3133         struct kvm *kvm = filp->private_data;
3134         int r;
3135
3136         if (kvm->mm != current->mm)
3137                 return -EIO;
3138         switch (ioctl) {
3139         case KVM_GET_DIRTY_LOG: {
3140                 struct compat_kvm_dirty_log compat_log;
3141                 struct kvm_dirty_log log;
3142
3143                 if (copy_from_user(&compat_log, (void __user *)arg,
3144                                    sizeof(compat_log)))
3145                         return -EFAULT;
3146                 log.slot         = compat_log.slot;
3147                 log.padding1     = compat_log.padding1;
3148                 log.padding2     = compat_log.padding2;
3149                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3150
3151                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3152                 break;
3153         }
3154         default:
3155                 r = kvm_vm_ioctl(filp, ioctl, arg);
3156         }
3157         return r;
3158 }
3159 #endif
3160
3161 static struct file_operations kvm_vm_fops = {
3162         .release        = kvm_vm_release,
3163         .unlocked_ioctl = kvm_vm_ioctl,
3164 #ifdef CONFIG_KVM_COMPAT
3165         .compat_ioctl   = kvm_vm_compat_ioctl,
3166 #endif
3167         .llseek         = noop_llseek,
3168 };
3169
3170 static int kvm_dev_ioctl_create_vm(unsigned long type)
3171 {
3172         int r;
3173         struct kvm *kvm;
3174         struct file *file;
3175
3176         kvm = kvm_create_vm(type);
3177         if (IS_ERR(kvm))
3178                 return PTR_ERR(kvm);
3179 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3180         r = kvm_coalesced_mmio_init(kvm);
3181         if (r < 0) {
3182                 kvm_put_kvm(kvm);
3183                 return r;
3184         }
3185 #endif
3186         r = get_unused_fd_flags(O_CLOEXEC);
3187         if (r < 0) {
3188                 kvm_put_kvm(kvm);
3189                 return r;
3190         }
3191         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3192         if (IS_ERR(file)) {
3193                 put_unused_fd(r);
3194                 kvm_put_kvm(kvm);
3195                 return PTR_ERR(file);
3196         }
3197
3198         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3199                 put_unused_fd(r);
3200                 fput(file);
3201                 return -ENOMEM;
3202         }
3203
3204         fd_install(r, file);
3205         return r;
3206 }
3207
3208 static long kvm_dev_ioctl(struct file *filp,
3209                           unsigned int ioctl, unsigned long arg)
3210 {
3211         long r = -EINVAL;
3212
3213         switch (ioctl) {
3214         case KVM_GET_API_VERSION:
3215                 if (arg)
3216                         goto out;
3217                 r = KVM_API_VERSION;
3218                 break;
3219         case KVM_CREATE_VM:
3220                 r = kvm_dev_ioctl_create_vm(arg);
3221                 break;
3222         case KVM_CHECK_EXTENSION:
3223                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3224                 break;
3225         case KVM_GET_VCPU_MMAP_SIZE:
3226                 if (arg)
3227                         goto out;
3228                 r = PAGE_SIZE;     /* struct kvm_run */
3229 #ifdef CONFIG_X86
3230                 r += PAGE_SIZE;    /* pio data page */
3231 #endif
3232 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3233                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3234 #endif
3235                 break;
3236         case KVM_TRACE_ENABLE:
3237         case KVM_TRACE_PAUSE:
3238         case KVM_TRACE_DISABLE:
3239                 r = -EOPNOTSUPP;
3240                 break;
3241         default:
3242                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3243         }
3244 out:
3245         return r;
3246 }
3247
3248 static struct file_operations kvm_chardev_ops = {
3249         .unlocked_ioctl = kvm_dev_ioctl,
3250         .compat_ioctl   = kvm_dev_ioctl,
3251         .llseek         = noop_llseek,
3252 };
3253
3254 static struct miscdevice kvm_dev = {
3255         KVM_MINOR,
3256         "kvm",
3257         &kvm_chardev_ops,
3258 };
3259
3260 static void hardware_enable_nolock(void *junk)
3261 {
3262         int cpu = raw_smp_processor_id();
3263         int r;
3264
3265         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3266                 return;
3267
3268         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3269
3270         r = kvm_arch_hardware_enable();
3271
3272         if (r) {
3273                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3274                 atomic_inc(&hardware_enable_failed);
3275                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3276         }
3277 }
3278
3279 static int kvm_starting_cpu(unsigned int cpu)
3280 {
3281         raw_spin_lock(&kvm_count_lock);
3282         if (kvm_usage_count)
3283                 hardware_enable_nolock(NULL);
3284         raw_spin_unlock(&kvm_count_lock);
3285         return 0;
3286 }
3287
3288 static void hardware_disable_nolock(void *junk)
3289 {
3290         int cpu = raw_smp_processor_id();
3291
3292         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3293                 return;
3294         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3295         kvm_arch_hardware_disable();
3296 }
3297
3298 static int kvm_dying_cpu(unsigned int cpu)
3299 {
3300         raw_spin_lock(&kvm_count_lock);
3301         if (kvm_usage_count)
3302                 hardware_disable_nolock(NULL);
3303         raw_spin_unlock(&kvm_count_lock);
3304         return 0;
3305 }
3306
3307 static void hardware_disable_all_nolock(void)
3308 {
3309         BUG_ON(!kvm_usage_count);
3310
3311         kvm_usage_count--;
3312         if (!kvm_usage_count)
3313                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3314 }
3315
3316 static void hardware_disable_all(void)
3317 {
3318         raw_spin_lock(&kvm_count_lock);
3319         hardware_disable_all_nolock();
3320         raw_spin_unlock(&kvm_count_lock);
3321 }
3322
3323 static int hardware_enable_all(void)
3324 {
3325         int r = 0;
3326
3327         raw_spin_lock(&kvm_count_lock);
3328
3329         kvm_usage_count++;
3330         if (kvm_usage_count == 1) {
3331                 atomic_set(&hardware_enable_failed, 0);
3332                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3333
3334                 if (atomic_read(&hardware_enable_failed)) {
3335                         hardware_disable_all_nolock();
3336                         r = -EBUSY;
3337                 }
3338         }
3339
3340         raw_spin_unlock(&kvm_count_lock);
3341
3342         return r;
3343 }
3344
3345 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3346                       void *v)
3347 {
3348         /*
3349          * Some (well, at least mine) BIOSes hang on reboot if
3350          * in vmx root mode.
3351          *
3352          * And Intel TXT required VMX off for all cpu when system shutdown.
3353          */
3354         pr_info("kvm: exiting hardware virtualization\n");
3355         kvm_rebooting = true;
3356         on_each_cpu(hardware_disable_nolock, NULL, 1);
3357         return NOTIFY_OK;
3358 }
3359
3360 static struct notifier_block kvm_reboot_notifier = {
3361         .notifier_call = kvm_reboot,
3362         .priority = 0,
3363 };
3364
3365 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3366 {
3367         int i;
3368
3369         for (i = 0; i < bus->dev_count; i++) {
3370                 struct kvm_io_device *pos = bus->range[i].dev;
3371
3372                 kvm_iodevice_destructor(pos);
3373         }
3374         kfree(bus);
3375 }
3376
3377 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3378                                  const struct kvm_io_range *r2)
3379 {
3380         gpa_t addr1 = r1->addr;
3381         gpa_t addr2 = r2->addr;
3382
3383         if (addr1 < addr2)
3384                 return -1;
3385
3386         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3387          * accept any overlapping write.  Any order is acceptable for
3388          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3389          * we process all of them.
3390          */
3391         if (r2->len) {
3392                 addr1 += r1->len;
3393                 addr2 += r2->len;
3394         }
3395
3396         if (addr1 > addr2)
3397                 return 1;
3398
3399         return 0;
3400 }
3401
3402 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3403 {
3404         return kvm_io_bus_cmp(p1, p2);
3405 }
3406
3407 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3408                           gpa_t addr, int len)
3409 {
3410         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3411                 .addr = addr,
3412                 .len = len,
3413                 .dev = dev,
3414         };
3415
3416         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3417                 kvm_io_bus_sort_cmp, NULL);
3418
3419         return 0;
3420 }
3421
3422 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3423                              gpa_t addr, int len)
3424 {
3425         struct kvm_io_range *range, key;
3426         int off;
3427
3428         key = (struct kvm_io_range) {
3429                 .addr = addr,
3430                 .len = len,
3431         };
3432
3433         range = bsearch(&key, bus->range, bus->dev_count,
3434                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3435         if (range == NULL)
3436                 return -ENOENT;
3437
3438         off = range - bus->range;
3439
3440         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3441                 off--;
3442
3443         return off;
3444 }
3445
3446 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3447                               struct kvm_io_range *range, const void *val)
3448 {
3449         int idx;
3450
3451         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3452         if (idx < 0)
3453                 return -EOPNOTSUPP;
3454
3455         while (idx < bus->dev_count &&
3456                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3457                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3458                                         range->len, val))
3459                         return idx;
3460                 idx++;
3461         }
3462
3463         return -EOPNOTSUPP;
3464 }
3465
3466 /* kvm_io_bus_write - called under kvm->slots_lock */
3467 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3468                      int len, const void *val)
3469 {
3470         struct kvm_io_bus *bus;
3471         struct kvm_io_range range;
3472         int r;
3473
3474         range = (struct kvm_io_range) {
3475                 .addr = addr,
3476                 .len = len,
3477         };
3478
3479         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3480         if (!bus)
3481                 return -ENOMEM;
3482         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3483         return r < 0 ? r : 0;
3484 }
3485
3486 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3487 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3488                             gpa_t addr, int len, const void *val, long cookie)
3489 {
3490         struct kvm_io_bus *bus;
3491         struct kvm_io_range range;
3492
3493         range = (struct kvm_io_range) {
3494                 .addr = addr,
3495                 .len = len,
3496         };
3497
3498         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3499         if (!bus)
3500                 return -ENOMEM;
3501
3502         /* First try the device referenced by cookie. */
3503         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3504             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3505                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3506                                         val))
3507                         return cookie;
3508
3509         /*
3510          * cookie contained garbage; fall back to search and return the
3511          * correct cookie value.
3512          */
3513         return __kvm_io_bus_write(vcpu, bus, &range, val);
3514 }
3515
3516 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3517                              struct kvm_io_range *range, void *val)
3518 {
3519         int idx;
3520
3521         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3522         if (idx < 0)
3523                 return -EOPNOTSUPP;
3524
3525         while (idx < bus->dev_count &&
3526                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3527                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3528                                        range->len, val))
3529                         return idx;
3530                 idx++;
3531         }
3532
3533         return -EOPNOTSUPP;
3534 }
3535 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3536
3537 /* kvm_io_bus_read - called under kvm->slots_lock */
3538 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3539                     int len, void *val)
3540 {
3541         struct kvm_io_bus *bus;
3542         struct kvm_io_range range;
3543         int r;
3544
3545         range = (struct kvm_io_range) {
3546                 .addr = addr,
3547                 .len = len,
3548         };
3549
3550         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3551         if (!bus)
3552                 return -ENOMEM;
3553         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3554         return r < 0 ? r : 0;
3555 }
3556
3557
3558 /* Caller must hold slots_lock. */
3559 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3560                             int len, struct kvm_io_device *dev)
3561 {
3562         struct kvm_io_bus *new_bus, *bus;
3563
3564         bus = kvm->buses[bus_idx];
3565         if (!bus)
3566                 return -ENOMEM;
3567
3568         /* exclude ioeventfd which is limited by maximum fd */
3569         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3570                 return -ENOSPC;
3571
3572         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3573                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3574         if (!new_bus)
3575                 return -ENOMEM;
3576         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3577                sizeof(struct kvm_io_range)));
3578         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3579         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3580         synchronize_srcu_expedited(&kvm->srcu);
3581         kfree(bus);
3582
3583         return 0;
3584 }
3585
3586 /* Caller must hold slots_lock. */
3587 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3588                                struct kvm_io_device *dev)
3589 {
3590         int i;
3591         struct kvm_io_bus *new_bus, *bus;
3592
3593         bus = kvm->buses[bus_idx];
3594         if (!bus)
3595                 return;
3596
3597         for (i = 0; i < bus->dev_count; i++)
3598                 if (bus->range[i].dev == dev) {
3599                         break;
3600                 }
3601
3602         if (i == bus->dev_count)
3603                 return;
3604
3605         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3606                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3607         if (!new_bus)  {
3608                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3609                 goto broken;
3610         }
3611
3612         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3613         new_bus->dev_count--;
3614         memcpy(new_bus->range + i, bus->range + i + 1,
3615                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3616
3617 broken:
3618         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3619         synchronize_srcu_expedited(&kvm->srcu);
3620         kfree(bus);
3621         return;
3622 }
3623
3624 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3625                                          gpa_t addr)
3626 {
3627         struct kvm_io_bus *bus;
3628         int dev_idx, srcu_idx;
3629         struct kvm_io_device *iodev = NULL;
3630
3631         srcu_idx = srcu_read_lock(&kvm->srcu);
3632
3633         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3634         if (!bus)
3635                 goto out_unlock;
3636
3637         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3638         if (dev_idx < 0)
3639                 goto out_unlock;
3640
3641         iodev = bus->range[dev_idx].dev;
3642
3643 out_unlock:
3644         srcu_read_unlock(&kvm->srcu, srcu_idx);
3645
3646         return iodev;
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3649
3650 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3651                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3652                            const char *fmt)
3653 {
3654         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3655                                           inode->i_private;
3656
3657         /* The debugfs files are a reference to the kvm struct which
3658          * is still valid when kvm_destroy_vm is called.
3659          * To avoid the race between open and the removal of the debugfs
3660          * directory we test against the users count.
3661          */
3662         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3663                 return -ENOENT;
3664
3665         if (simple_attr_open(inode, file, get, set, fmt)) {
3666                 kvm_put_kvm(stat_data->kvm);
3667                 return -ENOMEM;
3668         }
3669
3670         return 0;
3671 }
3672
3673 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3674 {
3675         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3676                                           inode->i_private;
3677
3678         simple_attr_release(inode, file);
3679         kvm_put_kvm(stat_data->kvm);
3680
3681         return 0;
3682 }
3683
3684 static int vm_stat_get_per_vm(void *data, u64 *val)
3685 {
3686         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3687
3688         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3689
3690         return 0;
3691 }
3692
3693 static int vm_stat_clear_per_vm(void *data, u64 val)
3694 {
3695         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3696
3697         if (val)
3698                 return -EINVAL;
3699
3700         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3701
3702         return 0;
3703 }
3704
3705 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3706 {
3707         __simple_attr_check_format("%llu\n", 0ull);
3708         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3709                                 vm_stat_clear_per_vm, "%llu\n");
3710 }
3711
3712 static const struct file_operations vm_stat_get_per_vm_fops = {
3713         .owner   = THIS_MODULE,
3714         .open    = vm_stat_get_per_vm_open,
3715         .release = kvm_debugfs_release,
3716         .read    = simple_attr_read,
3717         .write   = simple_attr_write,
3718         .llseek  = generic_file_llseek,
3719 };
3720
3721 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3722 {
3723         int i;
3724         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3725         struct kvm_vcpu *vcpu;
3726
3727         *val = 0;
3728
3729         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3730                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3731
3732         return 0;
3733 }
3734
3735 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3736 {
3737         int i;
3738         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3739         struct kvm_vcpu *vcpu;
3740
3741         if (val)
3742                 return -EINVAL;
3743
3744         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3745                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3746
3747         return 0;
3748 }
3749
3750 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3751 {
3752         __simple_attr_check_format("%llu\n", 0ull);
3753         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3754                                  vcpu_stat_clear_per_vm, "%llu\n");
3755 }
3756
3757 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3758         .owner   = THIS_MODULE,
3759         .open    = vcpu_stat_get_per_vm_open,
3760         .release = kvm_debugfs_release,
3761         .read    = simple_attr_read,
3762         .write   = simple_attr_write,
3763         .llseek  = generic_file_llseek,
3764 };
3765
3766 static const struct file_operations *stat_fops_per_vm[] = {
3767         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3768         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3769 };
3770
3771 static int vm_stat_get(void *_offset, u64 *val)
3772 {
3773         unsigned offset = (long)_offset;
3774         struct kvm *kvm;
3775         struct kvm_stat_data stat_tmp = {.offset = offset};
3776         u64 tmp_val;
3777
3778         *val = 0;
3779         spin_lock(&kvm_lock);
3780         list_for_each_entry(kvm, &vm_list, vm_list) {
3781                 stat_tmp.kvm = kvm;
3782                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3783                 *val += tmp_val;
3784         }
3785         spin_unlock(&kvm_lock);
3786         return 0;
3787 }
3788
3789 static int vm_stat_clear(void *_offset, u64 val)
3790 {
3791         unsigned offset = (long)_offset;
3792         struct kvm *kvm;
3793         struct kvm_stat_data stat_tmp = {.offset = offset};
3794
3795         if (val)
3796                 return -EINVAL;
3797
3798         spin_lock(&kvm_lock);
3799         list_for_each_entry(kvm, &vm_list, vm_list) {
3800                 stat_tmp.kvm = kvm;
3801                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3802         }
3803         spin_unlock(&kvm_lock);
3804
3805         return 0;
3806 }
3807
3808 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3809
3810 static int vcpu_stat_get(void *_offset, u64 *val)
3811 {
3812         unsigned offset = (long)_offset;
3813         struct kvm *kvm;
3814         struct kvm_stat_data stat_tmp = {.offset = offset};
3815         u64 tmp_val;
3816
3817         *val = 0;
3818         spin_lock(&kvm_lock);
3819         list_for_each_entry(kvm, &vm_list, vm_list) {
3820                 stat_tmp.kvm = kvm;
3821                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3822                 *val += tmp_val;
3823         }
3824         spin_unlock(&kvm_lock);
3825         return 0;
3826 }
3827
3828 static int vcpu_stat_clear(void *_offset, u64 val)
3829 {
3830         unsigned offset = (long)_offset;
3831         struct kvm *kvm;
3832         struct kvm_stat_data stat_tmp = {.offset = offset};
3833
3834         if (val)
3835                 return -EINVAL;
3836
3837         spin_lock(&kvm_lock);
3838         list_for_each_entry(kvm, &vm_list, vm_list) {
3839                 stat_tmp.kvm = kvm;
3840                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3841         }
3842         spin_unlock(&kvm_lock);
3843
3844         return 0;
3845 }
3846
3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3848                         "%llu\n");
3849
3850 static const struct file_operations *stat_fops[] = {
3851         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3852         [KVM_STAT_VM]   = &vm_stat_fops,
3853 };
3854
3855 static int kvm_init_debug(void)
3856 {
3857         int r = -EEXIST;
3858         struct kvm_stats_debugfs_item *p;
3859
3860         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3861         if (kvm_debugfs_dir == NULL)
3862                 goto out;
3863
3864         kvm_debugfs_num_entries = 0;
3865         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3866                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3867                                          (void *)(long)p->offset,
3868                                          stat_fops[p->kind]))
3869                         goto out_dir;
3870         }
3871
3872         return 0;
3873
3874 out_dir:
3875         debugfs_remove_recursive(kvm_debugfs_dir);
3876 out:
3877         return r;
3878 }
3879
3880 static int kvm_suspend(void)
3881 {
3882         if (kvm_usage_count)
3883                 hardware_disable_nolock(NULL);
3884         return 0;
3885 }
3886
3887 static void kvm_resume(void)
3888 {
3889         if (kvm_usage_count) {
3890                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3891                 hardware_enable_nolock(NULL);
3892         }
3893 }
3894
3895 static struct syscore_ops kvm_syscore_ops = {
3896         .suspend = kvm_suspend,
3897         .resume = kvm_resume,
3898 };
3899
3900 static inline
3901 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3902 {
3903         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3904 }
3905
3906 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3907 {
3908         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3909
3910         if (vcpu->preempted)
3911                 vcpu->preempted = false;
3912
3913         kvm_arch_sched_in(vcpu, cpu);
3914
3915         kvm_arch_vcpu_load(vcpu, cpu);
3916 }
3917
3918 static void kvm_sched_out(struct preempt_notifier *pn,
3919                           struct task_struct *next)
3920 {
3921         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3922
3923         if (current->state == TASK_RUNNING)
3924                 vcpu->preempted = true;
3925         kvm_arch_vcpu_put(vcpu);
3926 }
3927
3928 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3929                   struct module *module)
3930 {
3931         int r;
3932         int cpu;
3933
3934         r = kvm_arch_init(opaque);
3935         if (r)
3936                 goto out_fail;
3937
3938         /*
3939          * kvm_arch_init makes sure there's at most one caller
3940          * for architectures that support multiple implementations,
3941          * like intel and amd on x86.
3942          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3943          * conflicts in case kvm is already setup for another implementation.
3944          */
3945         r = kvm_irqfd_init();
3946         if (r)
3947                 goto out_irqfd;
3948
3949         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3950                 r = -ENOMEM;
3951                 goto out_free_0;
3952         }
3953
3954         r = kvm_arch_hardware_setup();
3955         if (r < 0)
3956                 goto out_free_0a;
3957
3958         for_each_online_cpu(cpu) {
3959                 smp_call_function_single(cpu,
3960                                 kvm_arch_check_processor_compat,
3961                                 &r, 1);
3962                 if (r < 0)
3963                         goto out_free_1;
3964         }
3965
3966         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3967                                       kvm_starting_cpu, kvm_dying_cpu);
3968         if (r)
3969                 goto out_free_2;
3970         register_reboot_notifier(&kvm_reboot_notifier);
3971
3972         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3973         if (!vcpu_align)
3974                 vcpu_align = __alignof__(struct kvm_vcpu);
3975         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3976                                            0, NULL);
3977         if (!kvm_vcpu_cache) {
3978                 r = -ENOMEM;
3979                 goto out_free_3;
3980         }
3981
3982         r = kvm_async_pf_init();
3983         if (r)
3984                 goto out_free;
3985
3986         kvm_chardev_ops.owner = module;
3987         kvm_vm_fops.owner = module;
3988         kvm_vcpu_fops.owner = module;
3989
3990         r = misc_register(&kvm_dev);
3991         if (r) {
3992                 pr_err("kvm: misc device register failed\n");
3993                 goto out_unreg;
3994         }
3995
3996         register_syscore_ops(&kvm_syscore_ops);
3997
3998         kvm_preempt_ops.sched_in = kvm_sched_in;
3999         kvm_preempt_ops.sched_out = kvm_sched_out;
4000
4001         r = kvm_init_debug();
4002         if (r) {
4003                 pr_err("kvm: create debugfs files failed\n");
4004                 goto out_undebugfs;
4005         }
4006
4007         r = kvm_vfio_ops_init();
4008         WARN_ON(r);
4009
4010         return 0;
4011
4012 out_undebugfs:
4013         unregister_syscore_ops(&kvm_syscore_ops);
4014         misc_deregister(&kvm_dev);
4015 out_unreg:
4016         kvm_async_pf_deinit();
4017 out_free:
4018         kmem_cache_destroy(kvm_vcpu_cache);
4019 out_free_3:
4020         unregister_reboot_notifier(&kvm_reboot_notifier);
4021         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4022 out_free_2:
4023 out_free_1:
4024         kvm_arch_hardware_unsetup();
4025 out_free_0a:
4026         free_cpumask_var(cpus_hardware_enabled);
4027 out_free_0:
4028         kvm_irqfd_exit();
4029 out_irqfd:
4030         kvm_arch_exit();
4031 out_fail:
4032         return r;
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_init);
4035
4036 void kvm_exit(void)
4037 {
4038         debugfs_remove_recursive(kvm_debugfs_dir);
4039         misc_deregister(&kvm_dev);
4040         kmem_cache_destroy(kvm_vcpu_cache);
4041         kvm_async_pf_deinit();
4042         unregister_syscore_ops(&kvm_syscore_ops);
4043         unregister_reboot_notifier(&kvm_reboot_notifier);
4044         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4045         on_each_cpu(hardware_disable_nolock, NULL, 1);
4046         kvm_arch_hardware_unsetup();
4047         kvm_arch_exit();
4048         kvm_irqfd_exit();
4049         free_cpumask_var(cpus_hardware_enabled);
4050         kvm_vfio_ops_exit();
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_exit);