]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
9831cdf35436c4dc67252df6b937d818d729b339
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88  * Ordering of locks:
89  *
90  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113                            unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116                                   unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133         if (pfn_valid(pfn))
134                 return PageReserved(pfn_to_page(pfn));
135
136         return true;
137 }
138
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144         int cpu;
145
146         if (mutex_lock_killable(&vcpu->mutex))
147                 return -EINTR;
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158         preempt_disable();
159         kvm_arch_vcpu_put(vcpu);
160         preempt_notifier_unregister(&vcpu->preempt_notifier);
161         preempt_enable();
162         mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172         int i, cpu, me;
173         cpumask_var_t cpus;
174         bool called = true;
175         struct kvm_vcpu *vcpu;
176
177         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179         me = get_cpu();
180         kvm_for_each_vcpu(i, vcpu, kvm) {
181                 kvm_make_request(req, vcpu);
182                 cpu = vcpu->cpu;
183
184                 /* Set ->requests bit before we read ->mode. */
185                 smp_mb__after_atomic();
186
187                 if (cpus != NULL && cpu != -1 && cpu != me &&
188                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189                         cpumask_set_cpu(cpu, cpus);
190         }
191         if (unlikely(cpus == NULL))
192                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193         else if (!cpumask_empty(cpus))
194                 smp_call_function_many(cpus, ack_flush, NULL, 1);
195         else
196                 called = false;
197         put_cpu();
198         free_cpumask_var(cpus);
199         return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205         /*
206          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207          * kvm_make_all_cpus_request.
208          */
209         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211         /*
212          * We want to publish modifications to the page tables before reading
213          * mode. Pairs with a memory barrier in arch-specific code.
214          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215          * and smp_mb in walk_shadow_page_lockless_begin/end.
216          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217          *
218          * There is already an smp_mb__after_atomic() before
219          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220          * barrier here.
221          */
222         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223                 ++kvm->stat.remote_tlb_flush;
224         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236         struct page *page;
237         int r;
238
239         mutex_init(&vcpu->mutex);
240         vcpu->cpu = -1;
241         vcpu->kvm = kvm;
242         vcpu->vcpu_id = id;
243         vcpu->pid = NULL;
244         init_swait_queue_head(&vcpu->wq);
245         kvm_async_pf_vcpu_init(vcpu);
246
247         vcpu->pre_pcpu = -1;
248         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251         if (!page) {
252                 r = -ENOMEM;
253                 goto fail;
254         }
255         vcpu->run = page_address(page);
256
257         kvm_vcpu_set_in_spin_loop(vcpu, false);
258         kvm_vcpu_set_dy_eligible(vcpu, false);
259         vcpu->preempted = false;
260
261         r = kvm_arch_vcpu_init(vcpu);
262         if (r < 0)
263                 goto fail_free_run;
264         return 0;
265
266 fail_free_run:
267         free_page((unsigned long)vcpu->run);
268 fail:
269         return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275         put_pid(vcpu->pid);
276         kvm_arch_vcpu_uninit(vcpu);
277         free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284         return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288                                              struct mm_struct *mm,
289                                              unsigned long address)
290 {
291         struct kvm *kvm = mmu_notifier_to_kvm(mn);
292         int need_tlb_flush, idx;
293
294         /*
295          * When ->invalidate_page runs, the linux pte has been zapped
296          * already but the page is still allocated until
297          * ->invalidate_page returns. So if we increase the sequence
298          * here the kvm page fault will notice if the spte can't be
299          * established because the page is going to be freed. If
300          * instead the kvm page fault establishes the spte before
301          * ->invalidate_page runs, kvm_unmap_hva will release it
302          * before returning.
303          *
304          * The sequence increase only need to be seen at spin_unlock
305          * time, and not at spin_lock time.
306          *
307          * Increasing the sequence after the spin_unlock would be
308          * unsafe because the kvm page fault could then establish the
309          * pte after kvm_unmap_hva returned, without noticing the page
310          * is going to be freed.
311          */
312         idx = srcu_read_lock(&kvm->srcu);
313         spin_lock(&kvm->mmu_lock);
314
315         kvm->mmu_notifier_seq++;
316         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317         /* we've to flush the tlb before the pages can be freed */
318         if (need_tlb_flush)
319                 kvm_flush_remote_tlbs(kvm);
320
321         spin_unlock(&kvm->mmu_lock);
322
323         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325         srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329                                         struct mm_struct *mm,
330                                         unsigned long address,
331                                         pte_t pte)
332 {
333         struct kvm *kvm = mmu_notifier_to_kvm(mn);
334         int idx;
335
336         idx = srcu_read_lock(&kvm->srcu);
337         spin_lock(&kvm->mmu_lock);
338         kvm->mmu_notifier_seq++;
339         kvm_set_spte_hva(kvm, address, pte);
340         spin_unlock(&kvm->mmu_lock);
341         srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345                                                     struct mm_struct *mm,
346                                                     unsigned long start,
347                                                     unsigned long end)
348 {
349         struct kvm *kvm = mmu_notifier_to_kvm(mn);
350         int need_tlb_flush = 0, idx;
351
352         idx = srcu_read_lock(&kvm->srcu);
353         spin_lock(&kvm->mmu_lock);
354         /*
355          * The count increase must become visible at unlock time as no
356          * spte can be established without taking the mmu_lock and
357          * count is also read inside the mmu_lock critical section.
358          */
359         kvm->mmu_notifier_count++;
360         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361         need_tlb_flush |= kvm->tlbs_dirty;
362         /* we've to flush the tlb before the pages can be freed */
363         if (need_tlb_flush)
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371                                                   struct mm_struct *mm,
372                                                   unsigned long start,
373                                                   unsigned long end)
374 {
375         struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * This sequence increase will notify the kvm page fault that
380          * the page that is going to be mapped in the spte could have
381          * been freed.
382          */
383         kvm->mmu_notifier_seq++;
384         smp_wmb();
385         /*
386          * The above sequence increase must be visible before the
387          * below count decrease, which is ensured by the smp_wmb above
388          * in conjunction with the smp_rmb in mmu_notifier_retry().
389          */
390         kvm->mmu_notifier_count--;
391         spin_unlock(&kvm->mmu_lock);
392
393         BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397                                               struct mm_struct *mm,
398                                               unsigned long start,
399                                               unsigned long end)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int young, idx;
403
404         idx = srcu_read_lock(&kvm->srcu);
405         spin_lock(&kvm->mmu_lock);
406
407         young = kvm_age_hva(kvm, start, end);
408         if (young)
409                 kvm_flush_remote_tlbs(kvm);
410
411         spin_unlock(&kvm->mmu_lock);
412         srcu_read_unlock(&kvm->srcu, idx);
413
414         return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418                                         struct mm_struct *mm,
419                                         unsigned long start,
420                                         unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427         /*
428          * Even though we do not flush TLB, this will still adversely
429          * affect performance on pre-Haswell Intel EPT, where there is
430          * no EPT Access Bit to clear so that we have to tear down EPT
431          * tables instead. If we find this unacceptable, we can always
432          * add a parameter to kvm_age_hva so that it effectively doesn't
433          * do anything on clear_young.
434          *
435          * Also note that currently we never issue secondary TLB flushes
436          * from clear_young, leaving this job up to the regular system
437          * cadence. If we find this inaccurate, we might come up with a
438          * more sophisticated heuristic later.
439          */
440         young = kvm_age_hva(kvm, start, end);
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448                                        struct mm_struct *mm,
449                                        unsigned long address)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         young = kvm_test_age_hva(kvm, address);
457         spin_unlock(&kvm->mmu_lock);
458         srcu_read_unlock(&kvm->srcu, idx);
459
460         return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464                                      struct mm_struct *mm)
465 {
466         struct kvm *kvm = mmu_notifier_to_kvm(mn);
467         int idx;
468
469         idx = srcu_read_lock(&kvm->srcu);
470         kvm_arch_flush_shadow_all(kvm);
471         srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
476         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
478         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
479         .clear_young            = kvm_mmu_notifier_clear_young,
480         .test_young             = kvm_mmu_notifier_test_young,
481         .change_pte             = kvm_mmu_notifier_change_pte,
482         .release                = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495         return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502         int i;
503         struct kvm_memslots *slots;
504
505         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506         if (!slots)
507                 return NULL;
508
509         /*
510          * Init kvm generation close to the maximum to easily test the
511          * code of handling generation number wrap-around.
512          */
513         slots->generation = -150;
514         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515                 slots->id_to_index[i] = slots->memslots[i].id = i;
516
517         return slots;
518 }
519
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522         if (!memslot->dirty_bitmap)
523                 return;
524
525         kvfree(memslot->dirty_bitmap);
526         memslot->dirty_bitmap = NULL;
527 }
528
529 /*
530  * Free any memory in @free but not in @dont.
531  */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533                               struct kvm_memory_slot *dont)
534 {
535         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536                 kvm_destroy_dirty_bitmap(free);
537
538         kvm_arch_free_memslot(kvm, free, dont);
539
540         free->npages = 0;
541 }
542
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545         struct kvm_memory_slot *memslot;
546
547         if (!slots)
548                 return;
549
550         kvm_for_each_memslot(memslot, slots)
551                 kvm_free_memslot(kvm, memslot, NULL);
552
553         kvfree(slots);
554 }
555
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558         int i;
559
560         if (!kvm->debugfs_dentry)
561                 return;
562
563         debugfs_remove_recursive(kvm->debugfs_dentry);
564
565         if (kvm->debugfs_stat_data) {
566                 for (i = 0; i < kvm_debugfs_num_entries; i++)
567                         kfree(kvm->debugfs_stat_data[i]);
568                 kfree(kvm->debugfs_stat_data);
569         }
570 }
571
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574         char dir_name[ITOA_MAX_LEN * 2];
575         struct kvm_stat_data *stat_data;
576         struct kvm_stats_debugfs_item *p;
577
578         if (!debugfs_initialized())
579                 return 0;
580
581         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583                                                  kvm_debugfs_dir);
584         if (!kvm->debugfs_dentry)
585                 return -ENOMEM;
586
587         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588                                          sizeof(*kvm->debugfs_stat_data),
589                                          GFP_KERNEL);
590         if (!kvm->debugfs_stat_data)
591                 return -ENOMEM;
592
593         for (p = debugfs_entries; p->name; p++) {
594                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595                 if (!stat_data)
596                         return -ENOMEM;
597
598                 stat_data->kvm = kvm;
599                 stat_data->offset = p->offset;
600                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601                 if (!debugfs_create_file(p->name, 0644,
602                                          kvm->debugfs_dentry,
603                                          stat_data,
604                                          stat_fops_per_vm[p->kind]))
605                         return -ENOMEM;
606         }
607         return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612         int r, i;
613         struct kvm *kvm = kvm_arch_alloc_vm();
614
615         if (!kvm)
616                 return ERR_PTR(-ENOMEM);
617
618         spin_lock_init(&kvm->mmu_lock);
619         atomic_inc(&current->mm->mm_count);
620         kvm->mm = current->mm;
621         kvm_eventfd_init(kvm);
622         mutex_init(&kvm->lock);
623         mutex_init(&kvm->irq_lock);
624         mutex_init(&kvm->slots_lock);
625         atomic_set(&kvm->users_count, 1);
626         INIT_LIST_HEAD(&kvm->devices);
627
628         r = kvm_arch_init_vm(kvm, type);
629         if (r)
630                 goto out_err_no_disable;
631
632         r = hardware_enable_all();
633         if (r)
634                 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642         r = -ENOMEM;
643         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644                 kvm->memslots[i] = kvm_alloc_memslots();
645                 if (!kvm->memslots[i])
646                         goto out_err_no_srcu;
647         }
648
649         if (init_srcu_struct(&kvm->srcu))
650                 goto out_err_no_srcu;
651         if (init_srcu_struct(&kvm->irq_srcu))
652                 goto out_err_no_irq_srcu;
653         for (i = 0; i < KVM_NR_BUSES; i++) {
654                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655                                         GFP_KERNEL);
656                 if (!kvm->buses[i])
657                         goto out_err;
658         }
659
660         r = kvm_init_mmu_notifier(kvm);
661         if (r)
662                 goto out_err;
663
664         spin_lock(&kvm_lock);
665         list_add(&kvm->vm_list, &vm_list);
666         spin_unlock(&kvm_lock);
667
668         preempt_notifier_inc();
669
670         return kvm;
671
672 out_err:
673         cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675         cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677         hardware_disable_all();
678 out_err_no_disable:
679         for (i = 0; i < KVM_NR_BUSES; i++)
680                 kfree(kvm->buses[i]);
681         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682                 kvm_free_memslots(kvm, kvm->memslots[i]);
683         kvm_arch_free_vm(kvm);
684         mmdrop(current->mm);
685         return ERR_PTR(r);
686 }
687
688 /*
689  * Avoid using vmalloc for a small buffer.
690  * Should not be used when the size is statically known.
691  */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694         if (size > PAGE_SIZE)
695                 return vzalloc(size);
696         else
697                 return kzalloc(size, GFP_KERNEL);
698 }
699
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702         struct kvm_device *dev, *tmp;
703
704         /*
705          * We do not need to take the kvm->lock here, because nobody else
706          * has a reference to the struct kvm at this point and therefore
707          * cannot access the devices list anyhow.
708          */
709         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710                 list_del(&dev->vm_node);
711                 dev->ops->destroy(dev);
712         }
713 }
714
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717         int i;
718         struct mm_struct *mm = kvm->mm;
719
720         kvm_destroy_vm_debugfs(kvm);
721         kvm_arch_sync_events(kvm);
722         spin_lock(&kvm_lock);
723         list_del(&kvm->vm_list);
724         spin_unlock(&kvm_lock);
725         kvm_free_irq_routing(kvm);
726         for (i = 0; i < KVM_NR_BUSES; i++)
727                 kvm_io_bus_destroy(kvm->buses[i]);
728         kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732         kvm_arch_flush_shadow_all(kvm);
733 #endif
734         kvm_arch_destroy_vm(kvm);
735         kvm_destroy_devices(kvm);
736         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737                 kvm_free_memslots(kvm, kvm->memslots[i]);
738         cleanup_srcu_struct(&kvm->irq_srcu);
739         cleanup_srcu_struct(&kvm->srcu);
740         kvm_arch_free_vm(kvm);
741         preempt_notifier_dec();
742         hardware_disable_all();
743         mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748         atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754         if (atomic_dec_and_test(&kvm->users_count))
755                 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762         struct kvm *kvm = filp->private_data;
763
764         kvm_irqfd_release(kvm);
765
766         kvm_put_kvm(kvm);
767         return 0;
768 }
769
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779         if (!memslot->dirty_bitmap)
780                 return -ENOMEM;
781
782         return 0;
783 }
784
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792                             struct kvm_memory_slot *new)
793 {
794         int id = new->id;
795         int i = slots->id_to_index[id];
796         struct kvm_memory_slot *mslots = slots->memslots;
797
798         WARN_ON(mslots[i].id != id);
799         if (!new->npages) {
800                 WARN_ON(!mslots[i].npages);
801                 if (mslots[i].npages)
802                         slots->used_slots--;
803         } else {
804                 if (!mslots[i].npages)
805                         slots->used_slots++;
806         }
807
808         while (i < KVM_MEM_SLOTS_NUM - 1 &&
809                new->base_gfn <= mslots[i + 1].base_gfn) {
810                 if (!mslots[i + 1].npages)
811                         break;
812                 mslots[i] = mslots[i + 1];
813                 slots->id_to_index[mslots[i].id] = i;
814                 i++;
815         }
816
817         /*
818          * The ">=" is needed when creating a slot with base_gfn == 0,
819          * so that it moves before all those with base_gfn == npages == 0.
820          *
821          * On the other hand, if new->npages is zero, the above loop has
822          * already left i pointing to the beginning of the empty part of
823          * mslots, and the ">=" would move the hole backwards in this
824          * case---which is wrong.  So skip the loop when deleting a slot.
825          */
826         if (new->npages) {
827                 while (i > 0 &&
828                        new->base_gfn >= mslots[i - 1].base_gfn) {
829                         mslots[i] = mslots[i - 1];
830                         slots->id_to_index[mslots[i].id] = i;
831                         i--;
832                 }
833         } else
834                 WARN_ON_ONCE(i != slots->used_slots);
835
836         mslots[i] = *new;
837         slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845         valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848         if (mem->flags & ~valid_flags)
849                 return -EINVAL;
850
851         return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855                 int as_id, struct kvm_memslots *slots)
856 {
857         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859         /*
860          * Set the low bit in the generation, which disables SPTE caching
861          * until the end of synchronize_srcu_expedited.
862          */
863         WARN_ON(old_memslots->generation & 1);
864         slots->generation = old_memslots->generation + 1;
865
866         rcu_assign_pointer(kvm->memslots[as_id], slots);
867         synchronize_srcu_expedited(&kvm->srcu);
868
869         /*
870          * Increment the new memslot generation a second time. This prevents
871          * vm exits that race with memslot updates from caching a memslot
872          * generation that will (potentially) be valid forever.
873          */
874         slots->generation++;
875
876         kvm_arch_memslots_updated(kvm, slots);
877
878         return old_memslots;
879 }
880
881 /*
882  * Allocate some memory and give it an address in the guest physical address
883  * space.
884  *
885  * Discontiguous memory is allowed, mostly for framebuffers.
886  *
887  * Must be called holding kvm->slots_lock for write.
888  */
889 int __kvm_set_memory_region(struct kvm *kvm,
890                             const struct kvm_userspace_memory_region *mem)
891 {
892         int r;
893         gfn_t base_gfn;
894         unsigned long npages;
895         struct kvm_memory_slot *slot;
896         struct kvm_memory_slot old, new;
897         struct kvm_memslots *slots = NULL, *old_memslots;
898         int as_id, id;
899         enum kvm_mr_change change;
900
901         r = check_memory_region_flags(mem);
902         if (r)
903                 goto out;
904
905         r = -EINVAL;
906         as_id = mem->slot >> 16;
907         id = (u16)mem->slot;
908
909         /* General sanity checks */
910         if (mem->memory_size & (PAGE_SIZE - 1))
911                 goto out;
912         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913                 goto out;
914         /* We can read the guest memory with __xxx_user() later on. */
915         if ((id < KVM_USER_MEM_SLOTS) &&
916             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917              !access_ok(VERIFY_WRITE,
918                         (void __user *)(unsigned long)mem->userspace_addr,
919                         mem->memory_size)))
920                 goto out;
921         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922                 goto out;
923         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924                 goto out;
925
926         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928         npages = mem->memory_size >> PAGE_SHIFT;
929
930         if (npages > KVM_MEM_MAX_NR_PAGES)
931                 goto out;
932
933         new = old = *slot;
934
935         new.id = id;
936         new.base_gfn = base_gfn;
937         new.npages = npages;
938         new.flags = mem->flags;
939
940         if (npages) {
941                 if (!old.npages)
942                         change = KVM_MR_CREATE;
943                 else { /* Modify an existing slot. */
944                         if ((mem->userspace_addr != old.userspace_addr) ||
945                             (npages != old.npages) ||
946                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947                                 goto out;
948
949                         if (base_gfn != old.base_gfn)
950                                 change = KVM_MR_MOVE;
951                         else if (new.flags != old.flags)
952                                 change = KVM_MR_FLAGS_ONLY;
953                         else { /* Nothing to change. */
954                                 r = 0;
955                                 goto out;
956                         }
957                 }
958         } else {
959                 if (!old.npages)
960                         goto out;
961
962                 change = KVM_MR_DELETE;
963                 new.base_gfn = 0;
964                 new.flags = 0;
965         }
966
967         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968                 /* Check for overlaps */
969                 r = -EEXIST;
970                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972                             (slot->id == id))
973                                 continue;
974                         if (!((base_gfn + npages <= slot->base_gfn) ||
975                               (base_gfn >= slot->base_gfn + slot->npages)))
976                                 goto out;
977                 }
978         }
979
980         /* Free page dirty bitmap if unneeded */
981         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982                 new.dirty_bitmap = NULL;
983
984         r = -ENOMEM;
985         if (change == KVM_MR_CREATE) {
986                 new.userspace_addr = mem->userspace_addr;
987
988                 if (kvm_arch_create_memslot(kvm, &new, npages))
989                         goto out_free;
990         }
991
992         /* Allocate page dirty bitmap if needed */
993         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994                 if (kvm_create_dirty_bitmap(&new) < 0)
995                         goto out_free;
996         }
997
998         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999         if (!slots)
1000                 goto out_free;
1001         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004                 slot = id_to_memslot(slots, id);
1005                 slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007                 old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009                 /* slot was deleted or moved, clear iommu mapping */
1010                 kvm_iommu_unmap_pages(kvm, &old);
1011                 /* From this point no new shadow pages pointing to a deleted,
1012                  * or moved, memslot will be created.
1013                  *
1014                  * validation of sp->gfn happens in:
1015                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016                  *      - kvm_is_visible_gfn (mmu_check_roots)
1017                  */
1018                 kvm_arch_flush_shadow_memslot(kvm, slot);
1019
1020                 /*
1021                  * We can re-use the old_memslots from above, the only difference
1022                  * from the currently installed memslots is the invalid flag.  This
1023                  * will get overwritten by update_memslots anyway.
1024                  */
1025                 slots = old_memslots;
1026         }
1027
1028         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029         if (r)
1030                 goto out_slots;
1031
1032         /* actual memory is freed via old in kvm_free_memslot below */
1033         if (change == KVM_MR_DELETE) {
1034                 new.dirty_bitmap = NULL;
1035                 memset(&new.arch, 0, sizeof(new.arch));
1036         }
1037
1038         update_memslots(slots, &new);
1039         old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042
1043         kvm_free_memslot(kvm, &old, &new);
1044         kvfree(old_memslots);
1045
1046         /*
1047          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1048          * un-mapped and re-mapped if their base changes.  Since base change
1049          * unmapping is handled above with slot deletion, mapping alone is
1050          * needed here.  Anything else the iommu might care about for existing
1051          * slots (size changes, userspace addr changes and read-only flag
1052          * changes) is disallowed above, so any other attribute changes getting
1053          * here can be skipped.
1054          */
1055         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056                 r = kvm_iommu_map_pages(kvm, &new);
1057                 return r;
1058         }
1059
1060         return 0;
1061
1062 out_slots:
1063         kvfree(slots);
1064 out_free:
1065         kvm_free_memslot(kvm, &new, &old);
1066 out:
1067         return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070
1071 int kvm_set_memory_region(struct kvm *kvm,
1072                           const struct kvm_userspace_memory_region *mem)
1073 {
1074         int r;
1075
1076         mutex_lock(&kvm->slots_lock);
1077         r = __kvm_set_memory_region(kvm, mem);
1078         mutex_unlock(&kvm->slots_lock);
1079         return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084                                           struct kvm_userspace_memory_region *mem)
1085 {
1086         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087                 return -EINVAL;
1088
1089         return kvm_set_memory_region(kvm, mem);
1090 }
1091
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093                         struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095         struct kvm_memslots *slots;
1096         struct kvm_memory_slot *memslot;
1097         int r, i, as_id, id;
1098         unsigned long n;
1099         unsigned long any = 0;
1100
1101         r = -EINVAL;
1102         as_id = log->slot >> 16;
1103         id = (u16)log->slot;
1104         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105                 goto out;
1106
1107         slots = __kvm_memslots(kvm, as_id);
1108         memslot = id_to_memslot(slots, id);
1109         r = -ENOENT;
1110         if (!memslot->dirty_bitmap)
1111                 goto out;
1112
1113         n = kvm_dirty_bitmap_bytes(memslot);
1114
1115         for (i = 0; !any && i < n/sizeof(long); ++i)
1116                 any = memslot->dirty_bitmap[i];
1117
1118         r = -EFAULT;
1119         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120                 goto out;
1121
1122         if (any)
1123                 *is_dirty = 1;
1124
1125         r = 0;
1126 out:
1127         return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *      are dirty write protect them for next write.
1135  * @kvm:        pointer to kvm instance
1136  * @log:        slot id and address to which we copy the log
1137  * @is_dirty:   flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155                         struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157         struct kvm_memslots *slots;
1158         struct kvm_memory_slot *memslot;
1159         int r, i, as_id, id;
1160         unsigned long n;
1161         unsigned long *dirty_bitmap;
1162         unsigned long *dirty_bitmap_buffer;
1163
1164         r = -EINVAL;
1165         as_id = log->slot >> 16;
1166         id = (u16)log->slot;
1167         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168                 goto out;
1169
1170         slots = __kvm_memslots(kvm, as_id);
1171         memslot = id_to_memslot(slots, id);
1172
1173         dirty_bitmap = memslot->dirty_bitmap;
1174         r = -ENOENT;
1175         if (!dirty_bitmap)
1176                 goto out;
1177
1178         n = kvm_dirty_bitmap_bytes(memslot);
1179
1180         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181         memset(dirty_bitmap_buffer, 0, n);
1182
1183         spin_lock(&kvm->mmu_lock);
1184         *is_dirty = false;
1185         for (i = 0; i < n / sizeof(long); i++) {
1186                 unsigned long mask;
1187                 gfn_t offset;
1188
1189                 if (!dirty_bitmap[i])
1190                         continue;
1191
1192                 *is_dirty = true;
1193
1194                 mask = xchg(&dirty_bitmap[i], 0);
1195                 dirty_bitmap_buffer[i] = mask;
1196
1197                 if (mask) {
1198                         offset = i * BITS_PER_LONG;
1199                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200                                                                 offset, mask);
1201                 }
1202         }
1203
1204         spin_unlock(&kvm->mmu_lock);
1205
1206         r = -EFAULT;
1207         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208                 goto out;
1209
1210         r = 0;
1211 out:
1212         return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216
1217 bool kvm_largepages_enabled(void)
1218 {
1219         return largepages_enabled;
1220 }
1221
1222 void kvm_disable_largepages(void)
1223 {
1224         largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242
1243         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244               memslot->flags & KVM_MEMSLOT_INVALID)
1245                 return false;
1246
1247         return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253         struct vm_area_struct *vma;
1254         unsigned long addr, size;
1255
1256         size = PAGE_SIZE;
1257
1258         addr = gfn_to_hva(kvm, gfn);
1259         if (kvm_is_error_hva(addr))
1260                 return PAGE_SIZE;
1261
1262         down_read(&current->mm->mmap_sem);
1263         vma = find_vma(current->mm, addr);
1264         if (!vma)
1265                 goto out;
1266
1267         size = vma_kernel_pagesize(vma);
1268
1269 out:
1270         up_read(&current->mm->mmap_sem);
1271
1272         return size;
1273 }
1274
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277         return slot->flags & KVM_MEM_READONLY;
1278 }
1279
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281                                        gfn_t *nr_pages, bool write)
1282 {
1283         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284                 return KVM_HVA_ERR_BAD;
1285
1286         if (memslot_is_readonly(slot) && write)
1287                 return KVM_HVA_ERR_RO_BAD;
1288
1289         if (nr_pages)
1290                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1291
1292         return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296                                      gfn_t *nr_pages)
1297 {
1298         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302                                         gfn_t gfn)
1303 {
1304         return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325                                       gfn_t gfn, bool *writable)
1326 {
1327         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328
1329         if (!kvm_is_error_hva(hva) && writable)
1330                 *writable = !memslot_is_readonly(slot);
1331
1332         return hva;
1333 }
1334
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338
1339         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345
1346         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
1349 static int get_user_page_nowait(unsigned long start, int write,
1350                 struct page **page)
1351 {
1352         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353
1354         if (write)
1355                 flags |= FOLL_WRITE;
1356
1357         return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363
1364         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365         return rc == -EHWPOISON;
1366 }
1367
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375         struct page *page[1];
1376         int npages;
1377
1378         if (!(async || atomic))
1379                 return false;
1380
1381         /*
1382          * Fast pin a writable pfn only if it is a write fault request
1383          * or the caller allows to map a writable pfn for a read fault
1384          * request.
1385          */
1386         if (!(write_fault || writable))
1387                 return false;
1388
1389         npages = __get_user_pages_fast(addr, 1, 1, page);
1390         if (npages == 1) {
1391                 *pfn = page_to_pfn(page[0]);
1392
1393                 if (writable)
1394                         *writable = true;
1395                 return true;
1396         }
1397
1398         return false;
1399 }
1400
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406                            bool *writable, kvm_pfn_t *pfn)
1407 {
1408         struct page *page[1];
1409         int npages = 0;
1410
1411         might_sleep();
1412
1413         if (writable)
1414                 *writable = write_fault;
1415
1416         if (async) {
1417                 down_read(&current->mm->mmap_sem);
1418                 npages = get_user_page_nowait(addr, write_fault, page);
1419                 up_read(&current->mm->mmap_sem);
1420         } else {
1421                 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1422
1423                 if (write_fault)
1424                         flags |= FOLL_WRITE;
1425
1426                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1427                                                    page, flags);
1428         }
1429         if (npages != 1)
1430                 return npages;
1431
1432         /* map read fault as writable if possible */
1433         if (unlikely(!write_fault) && writable) {
1434                 struct page *wpage[1];
1435
1436                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1437                 if (npages == 1) {
1438                         *writable = true;
1439                         put_page(page[0]);
1440                         page[0] = wpage[0];
1441                 }
1442
1443                 npages = 1;
1444         }
1445         *pfn = page_to_pfn(page[0]);
1446         return npages;
1447 }
1448
1449 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1450 {
1451         if (unlikely(!(vma->vm_flags & VM_READ)))
1452                 return false;
1453
1454         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1455                 return false;
1456
1457         return true;
1458 }
1459
1460 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1461                                unsigned long addr, bool *async,
1462                                bool write_fault, kvm_pfn_t *p_pfn)
1463 {
1464         unsigned long pfn;
1465         int r;
1466
1467         r = follow_pfn(vma, addr, &pfn);
1468         if (r) {
1469                 /*
1470                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1471                  * not call the fault handler, so do it here.
1472                  */
1473                 bool unlocked = false;
1474                 r = fixup_user_fault(current, current->mm, addr,
1475                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1476                                      &unlocked);
1477                 if (unlocked)
1478                         return -EAGAIN;
1479                 if (r)
1480                         return r;
1481
1482                 r = follow_pfn(vma, addr, &pfn);
1483                 if (r)
1484                         return r;
1485
1486         }
1487
1488
1489         /*
1490          * Get a reference here because callers of *hva_to_pfn* and
1491          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1492          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1493          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1494          * simply do nothing for reserved pfns.
1495          *
1496          * Whoever called remap_pfn_range is also going to call e.g.
1497          * unmap_mapping_range before the underlying pages are freed,
1498          * causing a call to our MMU notifier.
1499          */ 
1500         kvm_get_pfn(pfn);
1501
1502         *p_pfn = pfn;
1503         return 0;
1504 }
1505
1506 /*
1507  * Pin guest page in memory and return its pfn.
1508  * @addr: host virtual address which maps memory to the guest
1509  * @atomic: whether this function can sleep
1510  * @async: whether this function need to wait IO complete if the
1511  *         host page is not in the memory
1512  * @write_fault: whether we should get a writable host page
1513  * @writable: whether it allows to map a writable host page for !@write_fault
1514  *
1515  * The function will map a writable host page for these two cases:
1516  * 1): @write_fault = true
1517  * 2): @write_fault = false && @writable, @writable will tell the caller
1518  *     whether the mapping is writable.
1519  */
1520 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1521                         bool write_fault, bool *writable)
1522 {
1523         struct vm_area_struct *vma;
1524         kvm_pfn_t pfn = 0;
1525         int npages, r;
1526
1527         /* we can do it either atomically or asynchronously, not both */
1528         BUG_ON(atomic && async);
1529
1530         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1531                 return pfn;
1532
1533         if (atomic)
1534                 return KVM_PFN_ERR_FAULT;
1535
1536         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1537         if (npages == 1)
1538                 return pfn;
1539
1540         down_read(&current->mm->mmap_sem);
1541         if (npages == -EHWPOISON ||
1542               (!async && check_user_page_hwpoison(addr))) {
1543                 pfn = KVM_PFN_ERR_HWPOISON;
1544                 goto exit;
1545         }
1546
1547 retry:
1548         vma = find_vma_intersection(current->mm, addr, addr + 1);
1549
1550         if (vma == NULL)
1551                 pfn = KVM_PFN_ERR_FAULT;
1552         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1553                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1554                 if (r == -EAGAIN)
1555                         goto retry;
1556                 if (r < 0)
1557                         pfn = KVM_PFN_ERR_FAULT;
1558         } else {
1559                 if (async && vma_is_valid(vma, write_fault))
1560                         *async = true;
1561                 pfn = KVM_PFN_ERR_FAULT;
1562         }
1563 exit:
1564         up_read(&current->mm->mmap_sem);
1565         return pfn;
1566 }
1567
1568 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1569                                bool atomic, bool *async, bool write_fault,
1570                                bool *writable)
1571 {
1572         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1573
1574         if (addr == KVM_HVA_ERR_RO_BAD) {
1575                 if (writable)
1576                         *writable = false;
1577                 return KVM_PFN_ERR_RO_FAULT;
1578         }
1579
1580         if (kvm_is_error_hva(addr)) {
1581                 if (writable)
1582                         *writable = false;
1583                 return KVM_PFN_NOSLOT;
1584         }
1585
1586         /* Do not map writable pfn in the readonly memslot. */
1587         if (writable && memslot_is_readonly(slot)) {
1588                 *writable = false;
1589                 writable = NULL;
1590         }
1591
1592         return hva_to_pfn(addr, atomic, async, write_fault,
1593                           writable);
1594 }
1595 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1596
1597 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1598                       bool *writable)
1599 {
1600         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1601                                     write_fault, writable);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1604
1605 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1610
1611 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1612 {
1613         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1616
1617 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1618 {
1619         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1622
1623 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 {
1625         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1628
1629 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1630 {
1631         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1634
1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1640
1641 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1642                             struct page **pages, int nr_pages)
1643 {
1644         unsigned long addr;
1645         gfn_t entry;
1646
1647         addr = gfn_to_hva_many(slot, gfn, &entry);
1648         if (kvm_is_error_hva(addr))
1649                 return -1;
1650
1651         if (entry < nr_pages)
1652                 return 0;
1653
1654         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1655 }
1656 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1657
1658 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1659 {
1660         if (is_error_noslot_pfn(pfn))
1661                 return KVM_ERR_PTR_BAD_PAGE;
1662
1663         if (kvm_is_reserved_pfn(pfn)) {
1664                 WARN_ON(1);
1665                 return KVM_ERR_PTR_BAD_PAGE;
1666         }
1667
1668         return pfn_to_page(pfn);
1669 }
1670
1671 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1672 {
1673         kvm_pfn_t pfn;
1674
1675         pfn = gfn_to_pfn(kvm, gfn);
1676
1677         return kvm_pfn_to_page(pfn);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_page);
1680
1681 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683         kvm_pfn_t pfn;
1684
1685         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1686
1687         return kvm_pfn_to_page(pfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1690
1691 void kvm_release_page_clean(struct page *page)
1692 {
1693         WARN_ON(is_error_page(page));
1694
1695         kvm_release_pfn_clean(page_to_pfn(page));
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1698
1699 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1700 {
1701         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1702                 put_page(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1705
1706 void kvm_release_page_dirty(struct page *page)
1707 {
1708         WARN_ON(is_error_page(page));
1709
1710         kvm_release_pfn_dirty(page_to_pfn(page));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1713
1714 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716         kvm_set_pfn_dirty(pfn);
1717         kvm_release_pfn_clean(pfn);
1718 }
1719
1720 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1721 {
1722         if (!kvm_is_reserved_pfn(pfn)) {
1723                 struct page *page = pfn_to_page(pfn);
1724
1725                 if (!PageReserved(page))
1726                         SetPageDirty(page);
1727         }
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1730
1731 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1732 {
1733         if (!kvm_is_reserved_pfn(pfn))
1734                 mark_page_accessed(pfn_to_page(pfn));
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1737
1738 void kvm_get_pfn(kvm_pfn_t pfn)
1739 {
1740         if (!kvm_is_reserved_pfn(pfn))
1741                 get_page(pfn_to_page(pfn));
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1744
1745 static int next_segment(unsigned long len, int offset)
1746 {
1747         if (len > PAGE_SIZE - offset)
1748                 return PAGE_SIZE - offset;
1749         else
1750                 return len;
1751 }
1752
1753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1754                                  void *data, int offset, int len)
1755 {
1756         int r;
1757         unsigned long addr;
1758
1759         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1760         if (kvm_is_error_hva(addr))
1761                 return -EFAULT;
1762         r = __copy_from_user(data, (void __user *)addr + offset, len);
1763         if (r)
1764                 return -EFAULT;
1765         return 0;
1766 }
1767
1768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1769                         int len)
1770 {
1771         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1772
1773         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1776
1777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1778                              int offset, int len)
1779 {
1780         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1781
1782         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1785
1786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1787 {
1788         gfn_t gfn = gpa >> PAGE_SHIFT;
1789         int seg;
1790         int offset = offset_in_page(gpa);
1791         int ret;
1792
1793         while ((seg = next_segment(len, offset)) != 0) {
1794                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1795                 if (ret < 0)
1796                         return ret;
1797                 offset = 0;
1798                 len -= seg;
1799                 data += seg;
1800                 ++gfn;
1801         }
1802         return 0;
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_read_guest);
1805
1806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1807 {
1808         gfn_t gfn = gpa >> PAGE_SHIFT;
1809         int seg;
1810         int offset = offset_in_page(gpa);
1811         int ret;
1812
1813         while ((seg = next_segment(len, offset)) != 0) {
1814                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1815                 if (ret < 0)
1816                         return ret;
1817                 offset = 0;
1818                 len -= seg;
1819                 data += seg;
1820                 ++gfn;
1821         }
1822         return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1825
1826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1827                                    void *data, int offset, unsigned long len)
1828 {
1829         int r;
1830         unsigned long addr;
1831
1832         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1833         if (kvm_is_error_hva(addr))
1834                 return -EFAULT;
1835         pagefault_disable();
1836         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1837         pagefault_enable();
1838         if (r)
1839                 return -EFAULT;
1840         return 0;
1841 }
1842
1843 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1844                           unsigned long len)
1845 {
1846         gfn_t gfn = gpa >> PAGE_SHIFT;
1847         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1848         int offset = offset_in_page(gpa);
1849
1850         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1853
1854 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1855                                void *data, unsigned long len)
1856 {
1857         gfn_t gfn = gpa >> PAGE_SHIFT;
1858         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1859         int offset = offset_in_page(gpa);
1860
1861         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1864
1865 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1866                                   const void *data, int offset, int len)
1867 {
1868         int r;
1869         unsigned long addr;
1870
1871         addr = gfn_to_hva_memslot(memslot, gfn);
1872         if (kvm_is_error_hva(addr))
1873                 return -EFAULT;
1874         r = __copy_to_user((void __user *)addr + offset, data, len);
1875         if (r)
1876                 return -EFAULT;
1877         mark_page_dirty_in_slot(memslot, gfn);
1878         return 0;
1879 }
1880
1881 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1882                          const void *data, int offset, int len)
1883 {
1884         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1885
1886         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1889
1890 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1891                               const void *data, int offset, int len)
1892 {
1893         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1894
1895         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1898
1899 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1900                     unsigned long len)
1901 {
1902         gfn_t gfn = gpa >> PAGE_SHIFT;
1903         int seg;
1904         int offset = offset_in_page(gpa);
1905         int ret;
1906
1907         while ((seg = next_segment(len, offset)) != 0) {
1908                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1909                 if (ret < 0)
1910                         return ret;
1911                 offset = 0;
1912                 len -= seg;
1913                 data += seg;
1914                 ++gfn;
1915         }
1916         return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_write_guest);
1919
1920 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1921                          unsigned long len)
1922 {
1923         gfn_t gfn = gpa >> PAGE_SHIFT;
1924         int seg;
1925         int offset = offset_in_page(gpa);
1926         int ret;
1927
1928         while ((seg = next_segment(len, offset)) != 0) {
1929                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1930                 if (ret < 0)
1931                         return ret;
1932                 offset = 0;
1933                 len -= seg;
1934                 data += seg;
1935                 ++gfn;
1936         }
1937         return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1940
1941 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1942                               gpa_t gpa, unsigned long len)
1943 {
1944         struct kvm_memslots *slots = kvm_memslots(kvm);
1945         int offset = offset_in_page(gpa);
1946         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1947         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1948         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1949         gfn_t nr_pages_avail;
1950
1951         ghc->gpa = gpa;
1952         ghc->generation = slots->generation;
1953         ghc->len = len;
1954         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1955         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1956         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1957                 ghc->hva += offset;
1958         } else {
1959                 /*
1960                  * If the requested region crosses two memslots, we still
1961                  * verify that the entire region is valid here.
1962                  */
1963                 while (start_gfn <= end_gfn) {
1964                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1965                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1966                                                    &nr_pages_avail);
1967                         if (kvm_is_error_hva(ghc->hva))
1968                                 return -EFAULT;
1969                         start_gfn += nr_pages_avail;
1970                 }
1971                 /* Use the slow path for cross page reads and writes. */
1972                 ghc->memslot = NULL;
1973         }
1974         return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1977
1978 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979                            void *data, unsigned long len)
1980 {
1981         struct kvm_memslots *slots = kvm_memslots(kvm);
1982         int r;
1983
1984         BUG_ON(len > ghc->len);
1985
1986         if (slots->generation != ghc->generation)
1987                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1988
1989         if (unlikely(!ghc->memslot))
1990                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1991
1992         if (kvm_is_error_hva(ghc->hva))
1993                 return -EFAULT;
1994
1995         r = __copy_to_user((void __user *)ghc->hva, data, len);
1996         if (r)
1997                 return -EFAULT;
1998         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1999
2000         return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2003
2004 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2005                            void *data, unsigned long len)
2006 {
2007         struct kvm_memslots *slots = kvm_memslots(kvm);
2008         int r;
2009
2010         BUG_ON(len > ghc->len);
2011
2012         if (slots->generation != ghc->generation)
2013                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2014
2015         if (unlikely(!ghc->memslot))
2016                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2017
2018         if (kvm_is_error_hva(ghc->hva))
2019                 return -EFAULT;
2020
2021         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2022         if (r)
2023                 return -EFAULT;
2024
2025         return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2028
2029 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2030 {
2031         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2032
2033         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2036
2037 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2038 {
2039         gfn_t gfn = gpa >> PAGE_SHIFT;
2040         int seg;
2041         int offset = offset_in_page(gpa);
2042         int ret;
2043
2044         while ((seg = next_segment(len, offset)) != 0) {
2045                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2046                 if (ret < 0)
2047                         return ret;
2048                 offset = 0;
2049                 len -= seg;
2050                 ++gfn;
2051         }
2052         return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2055
2056 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2057                                     gfn_t gfn)
2058 {
2059         if (memslot && memslot->dirty_bitmap) {
2060                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2061
2062                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2063         }
2064 }
2065
2066 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2067 {
2068         struct kvm_memory_slot *memslot;
2069
2070         memslot = gfn_to_memslot(kvm, gfn);
2071         mark_page_dirty_in_slot(memslot, gfn);
2072 }
2073 EXPORT_SYMBOL_GPL(mark_page_dirty);
2074
2075 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2076 {
2077         struct kvm_memory_slot *memslot;
2078
2079         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2080         mark_page_dirty_in_slot(memslot, gfn);
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2083
2084 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2085 {
2086         unsigned int old, val, grow;
2087
2088         old = val = vcpu->halt_poll_ns;
2089         grow = READ_ONCE(halt_poll_ns_grow);
2090         /* 10us base */
2091         if (val == 0 && grow)
2092                 val = 10000;
2093         else
2094                 val *= grow;
2095
2096         if (val > halt_poll_ns)
2097                 val = halt_poll_ns;
2098
2099         vcpu->halt_poll_ns = val;
2100         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2101 }
2102
2103 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2104 {
2105         unsigned int old, val, shrink;
2106
2107         old = val = vcpu->halt_poll_ns;
2108         shrink = READ_ONCE(halt_poll_ns_shrink);
2109         if (shrink == 0)
2110                 val = 0;
2111         else
2112                 val /= shrink;
2113
2114         vcpu->halt_poll_ns = val;
2115         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2116 }
2117
2118 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2119 {
2120         if (kvm_arch_vcpu_runnable(vcpu)) {
2121                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2122                 return -EINTR;
2123         }
2124         if (kvm_cpu_has_pending_timer(vcpu))
2125                 return -EINTR;
2126         if (signal_pending(current))
2127                 return -EINTR;
2128
2129         return 0;
2130 }
2131
2132 /*
2133  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2134  */
2135 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2136 {
2137         ktime_t start, cur;
2138         DECLARE_SWAITQUEUE(wait);
2139         bool waited = false;
2140         u64 block_ns;
2141
2142         start = cur = ktime_get();
2143         if (vcpu->halt_poll_ns) {
2144                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2145
2146                 ++vcpu->stat.halt_attempted_poll;
2147                 do {
2148                         /*
2149                          * This sets KVM_REQ_UNHALT if an interrupt
2150                          * arrives.
2151                          */
2152                         if (kvm_vcpu_check_block(vcpu) < 0) {
2153                                 ++vcpu->stat.halt_successful_poll;
2154                                 if (!vcpu_valid_wakeup(vcpu))
2155                                         ++vcpu->stat.halt_poll_invalid;
2156                                 goto out;
2157                         }
2158                         cur = ktime_get();
2159                 } while (single_task_running() && ktime_before(cur, stop));
2160         }
2161
2162         kvm_arch_vcpu_blocking(vcpu);
2163
2164         for (;;) {
2165                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2166
2167                 if (kvm_vcpu_check_block(vcpu) < 0)
2168                         break;
2169
2170                 waited = true;
2171                 schedule();
2172         }
2173
2174         finish_swait(&vcpu->wq, &wait);
2175         cur = ktime_get();
2176
2177         kvm_arch_vcpu_unblocking(vcpu);
2178 out:
2179         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2180
2181         if (!vcpu_valid_wakeup(vcpu))
2182                 shrink_halt_poll_ns(vcpu);
2183         else if (halt_poll_ns) {
2184                 if (block_ns <= vcpu->halt_poll_ns)
2185                         ;
2186                 /* we had a long block, shrink polling */
2187                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2188                         shrink_halt_poll_ns(vcpu);
2189                 /* we had a short halt and our poll time is too small */
2190                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2191                         block_ns < halt_poll_ns)
2192                         grow_halt_poll_ns(vcpu);
2193         } else
2194                 vcpu->halt_poll_ns = 0;
2195
2196         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2197         kvm_arch_vcpu_block_finish(vcpu);
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2200
2201 #ifndef CONFIG_S390
2202 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2203 {
2204         struct swait_queue_head *wqp;
2205
2206         wqp = kvm_arch_vcpu_wq(vcpu);
2207         if (swait_active(wqp)) {
2208                 swake_up(wqp);
2209                 ++vcpu->stat.halt_wakeup;
2210         }
2211
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2214
2215 /*
2216  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2217  */
2218 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2219 {
2220         int me;
2221         int cpu = vcpu->cpu;
2222
2223         kvm_vcpu_wake_up(vcpu);
2224         me = get_cpu();
2225         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2226                 if (kvm_arch_vcpu_should_kick(vcpu))
2227                         smp_send_reschedule(cpu);
2228         put_cpu();
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2231 #endif /* !CONFIG_S390 */
2232
2233 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2234 {
2235         struct pid *pid;
2236         struct task_struct *task = NULL;
2237         int ret = 0;
2238
2239         rcu_read_lock();
2240         pid = rcu_dereference(target->pid);
2241         if (pid)
2242                 task = get_pid_task(pid, PIDTYPE_PID);
2243         rcu_read_unlock();
2244         if (!task)
2245                 return ret;
2246         ret = yield_to(task, 1);
2247         put_task_struct(task);
2248
2249         return ret;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2252
2253 /*
2254  * Helper that checks whether a VCPU is eligible for directed yield.
2255  * Most eligible candidate to yield is decided by following heuristics:
2256  *
2257  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2258  *  (preempted lock holder), indicated by @in_spin_loop.
2259  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2260  *
2261  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2262  *  chance last time (mostly it has become eligible now since we have probably
2263  *  yielded to lockholder in last iteration. This is done by toggling
2264  *  @dy_eligible each time a VCPU checked for eligibility.)
2265  *
2266  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2267  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2268  *  burning. Giving priority for a potential lock-holder increases lock
2269  *  progress.
2270  *
2271  *  Since algorithm is based on heuristics, accessing another VCPU data without
2272  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2273  *  and continue with next VCPU and so on.
2274  */
2275 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2276 {
2277 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2278         bool eligible;
2279
2280         eligible = !vcpu->spin_loop.in_spin_loop ||
2281                     vcpu->spin_loop.dy_eligible;
2282
2283         if (vcpu->spin_loop.in_spin_loop)
2284                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2285
2286         return eligible;
2287 #else
2288         return true;
2289 #endif
2290 }
2291
2292 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2293 {
2294         struct kvm *kvm = me->kvm;
2295         struct kvm_vcpu *vcpu;
2296         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2297         int yielded = 0;
2298         int try = 3;
2299         int pass;
2300         int i;
2301
2302         kvm_vcpu_set_in_spin_loop(me, true);
2303         /*
2304          * We boost the priority of a VCPU that is runnable but not
2305          * currently running, because it got preempted by something
2306          * else and called schedule in __vcpu_run.  Hopefully that
2307          * VCPU is holding the lock that we need and will release it.
2308          * We approximate round-robin by starting at the last boosted VCPU.
2309          */
2310         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2311                 kvm_for_each_vcpu(i, vcpu, kvm) {
2312                         if (!pass && i <= last_boosted_vcpu) {
2313                                 i = last_boosted_vcpu;
2314                                 continue;
2315                         } else if (pass && i > last_boosted_vcpu)
2316                                 break;
2317                         if (!ACCESS_ONCE(vcpu->preempted))
2318                                 continue;
2319                         if (vcpu == me)
2320                                 continue;
2321                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2322                                 continue;
2323                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2324                                 continue;
2325
2326                         yielded = kvm_vcpu_yield_to(vcpu);
2327                         if (yielded > 0) {
2328                                 kvm->last_boosted_vcpu = i;
2329                                 break;
2330                         } else if (yielded < 0) {
2331                                 try--;
2332                                 if (!try)
2333                                         break;
2334                         }
2335                 }
2336         }
2337         kvm_vcpu_set_in_spin_loop(me, false);
2338
2339         /* Ensure vcpu is not eligible during next spinloop */
2340         kvm_vcpu_set_dy_eligible(me, false);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2343
2344 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2345 {
2346         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2347         struct page *page;
2348
2349         if (vmf->pgoff == 0)
2350                 page = virt_to_page(vcpu->run);
2351 #ifdef CONFIG_X86
2352         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2353                 page = virt_to_page(vcpu->arch.pio_data);
2354 #endif
2355 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2356         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2357                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2358 #endif
2359         else
2360                 return kvm_arch_vcpu_fault(vcpu, vmf);
2361         get_page(page);
2362         vmf->page = page;
2363         return 0;
2364 }
2365
2366 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2367         .fault = kvm_vcpu_fault,
2368 };
2369
2370 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2371 {
2372         vma->vm_ops = &kvm_vcpu_vm_ops;
2373         return 0;
2374 }
2375
2376 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2377 {
2378         struct kvm_vcpu *vcpu = filp->private_data;
2379
2380         debugfs_remove_recursive(vcpu->debugfs_dentry);
2381         kvm_put_kvm(vcpu->kvm);
2382         return 0;
2383 }
2384
2385 static struct file_operations kvm_vcpu_fops = {
2386         .release        = kvm_vcpu_release,
2387         .unlocked_ioctl = kvm_vcpu_ioctl,
2388 #ifdef CONFIG_KVM_COMPAT
2389         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2390 #endif
2391         .mmap           = kvm_vcpu_mmap,
2392         .llseek         = noop_llseek,
2393 };
2394
2395 /*
2396  * Allocates an inode for the vcpu.
2397  */
2398 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2399 {
2400         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2401 }
2402
2403 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2404 {
2405         char dir_name[ITOA_MAX_LEN * 2];
2406         int ret;
2407
2408         if (!kvm_arch_has_vcpu_debugfs())
2409                 return 0;
2410
2411         if (!debugfs_initialized())
2412                 return 0;
2413
2414         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2415         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2416                                                                 vcpu->kvm->debugfs_dentry);
2417         if (!vcpu->debugfs_dentry)
2418                 return -ENOMEM;
2419
2420         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2421         if (ret < 0) {
2422                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2423                 return ret;
2424         }
2425
2426         return 0;
2427 }
2428
2429 /*
2430  * Creates some virtual cpus.  Good luck creating more than one.
2431  */
2432 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2433 {
2434         int r;
2435         struct kvm_vcpu *vcpu;
2436
2437         if (id >= KVM_MAX_VCPU_ID)
2438                 return -EINVAL;
2439
2440         mutex_lock(&kvm->lock);
2441         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2442                 mutex_unlock(&kvm->lock);
2443                 return -EINVAL;
2444         }
2445
2446         kvm->created_vcpus++;
2447         mutex_unlock(&kvm->lock);
2448
2449         vcpu = kvm_arch_vcpu_create(kvm, id);
2450         if (IS_ERR(vcpu)) {
2451                 r = PTR_ERR(vcpu);
2452                 goto vcpu_decrement;
2453         }
2454
2455         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2456
2457         r = kvm_arch_vcpu_setup(vcpu);
2458         if (r)
2459                 goto vcpu_destroy;
2460
2461         r = kvm_create_vcpu_debugfs(vcpu);
2462         if (r)
2463                 goto vcpu_destroy;
2464
2465         mutex_lock(&kvm->lock);
2466         if (kvm_get_vcpu_by_id(kvm, id)) {
2467                 r = -EEXIST;
2468                 goto unlock_vcpu_destroy;
2469         }
2470
2471         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2472
2473         /* Now it's all set up, let userspace reach it */
2474         kvm_get_kvm(kvm);
2475         r = create_vcpu_fd(vcpu);
2476         if (r < 0) {
2477                 kvm_put_kvm(kvm);
2478                 goto unlock_vcpu_destroy;
2479         }
2480
2481         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2482
2483         /*
2484          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2485          * before kvm->online_vcpu's incremented value.
2486          */
2487         smp_wmb();
2488         atomic_inc(&kvm->online_vcpus);
2489
2490         mutex_unlock(&kvm->lock);
2491         kvm_arch_vcpu_postcreate(vcpu);
2492         return r;
2493
2494 unlock_vcpu_destroy:
2495         mutex_unlock(&kvm->lock);
2496         debugfs_remove_recursive(vcpu->debugfs_dentry);
2497 vcpu_destroy:
2498         kvm_arch_vcpu_destroy(vcpu);
2499 vcpu_decrement:
2500         mutex_lock(&kvm->lock);
2501         kvm->created_vcpus--;
2502         mutex_unlock(&kvm->lock);
2503         return r;
2504 }
2505
2506 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2507 {
2508         if (sigset) {
2509                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2510                 vcpu->sigset_active = 1;
2511                 vcpu->sigset = *sigset;
2512         } else
2513                 vcpu->sigset_active = 0;
2514         return 0;
2515 }
2516
2517 static long kvm_vcpu_ioctl(struct file *filp,
2518                            unsigned int ioctl, unsigned long arg)
2519 {
2520         struct kvm_vcpu *vcpu = filp->private_data;
2521         void __user *argp = (void __user *)arg;
2522         int r;
2523         struct kvm_fpu *fpu = NULL;
2524         struct kvm_sregs *kvm_sregs = NULL;
2525
2526         if (vcpu->kvm->mm != current->mm)
2527                 return -EIO;
2528
2529         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2530                 return -EINVAL;
2531
2532 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2533         /*
2534          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2535          * so vcpu_load() would break it.
2536          */
2537         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2538                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2539 #endif
2540
2541
2542         r = vcpu_load(vcpu);
2543         if (r)
2544                 return r;
2545         switch (ioctl) {
2546         case KVM_RUN:
2547                 r = -EINVAL;
2548                 if (arg)
2549                         goto out;
2550                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2551                         /* The thread running this VCPU changed. */
2552                         struct pid *oldpid = vcpu->pid;
2553                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2554
2555                         rcu_assign_pointer(vcpu->pid, newpid);
2556                         if (oldpid)
2557                                 synchronize_rcu();
2558                         put_pid(oldpid);
2559                 }
2560                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2561                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2562                 break;
2563         case KVM_GET_REGS: {
2564                 struct kvm_regs *kvm_regs;
2565
2566                 r = -ENOMEM;
2567                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2568                 if (!kvm_regs)
2569                         goto out;
2570                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2571                 if (r)
2572                         goto out_free1;
2573                 r = -EFAULT;
2574                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2575                         goto out_free1;
2576                 r = 0;
2577 out_free1:
2578                 kfree(kvm_regs);
2579                 break;
2580         }
2581         case KVM_SET_REGS: {
2582                 struct kvm_regs *kvm_regs;
2583
2584                 r = -ENOMEM;
2585                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2586                 if (IS_ERR(kvm_regs)) {
2587                         r = PTR_ERR(kvm_regs);
2588                         goto out;
2589                 }
2590                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2591                 kfree(kvm_regs);
2592                 break;
2593         }
2594         case KVM_GET_SREGS: {
2595                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2596                 r = -ENOMEM;
2597                 if (!kvm_sregs)
2598                         goto out;
2599                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2600                 if (r)
2601                         goto out;
2602                 r = -EFAULT;
2603                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2604                         goto out;
2605                 r = 0;
2606                 break;
2607         }
2608         case KVM_SET_SREGS: {
2609                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2610                 if (IS_ERR(kvm_sregs)) {
2611                         r = PTR_ERR(kvm_sregs);
2612                         kvm_sregs = NULL;
2613                         goto out;
2614                 }
2615                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2616                 break;
2617         }
2618         case KVM_GET_MP_STATE: {
2619                 struct kvm_mp_state mp_state;
2620
2621                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2622                 if (r)
2623                         goto out;
2624                 r = -EFAULT;
2625                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2626                         goto out;
2627                 r = 0;
2628                 break;
2629         }
2630         case KVM_SET_MP_STATE: {
2631                 struct kvm_mp_state mp_state;
2632
2633                 r = -EFAULT;
2634                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2635                         goto out;
2636                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2637                 break;
2638         }
2639         case KVM_TRANSLATE: {
2640                 struct kvm_translation tr;
2641
2642                 r = -EFAULT;
2643                 if (copy_from_user(&tr, argp, sizeof(tr)))
2644                         goto out;
2645                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2646                 if (r)
2647                         goto out;
2648                 r = -EFAULT;
2649                 if (copy_to_user(argp, &tr, sizeof(tr)))
2650                         goto out;
2651                 r = 0;
2652                 break;
2653         }
2654         case KVM_SET_GUEST_DEBUG: {
2655                 struct kvm_guest_debug dbg;
2656
2657                 r = -EFAULT;
2658                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2659                         goto out;
2660                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2661                 break;
2662         }
2663         case KVM_SET_SIGNAL_MASK: {
2664                 struct kvm_signal_mask __user *sigmask_arg = argp;
2665                 struct kvm_signal_mask kvm_sigmask;
2666                 sigset_t sigset, *p;
2667
2668                 p = NULL;
2669                 if (argp) {
2670                         r = -EFAULT;
2671                         if (copy_from_user(&kvm_sigmask, argp,
2672                                            sizeof(kvm_sigmask)))
2673                                 goto out;
2674                         r = -EINVAL;
2675                         if (kvm_sigmask.len != sizeof(sigset))
2676                                 goto out;
2677                         r = -EFAULT;
2678                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2679                                            sizeof(sigset)))
2680                                 goto out;
2681                         p = &sigset;
2682                 }
2683                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2684                 break;
2685         }
2686         case KVM_GET_FPU: {
2687                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2688                 r = -ENOMEM;
2689                 if (!fpu)
2690                         goto out;
2691                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2692                 if (r)
2693                         goto out;
2694                 r = -EFAULT;
2695                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2696                         goto out;
2697                 r = 0;
2698                 break;
2699         }
2700         case KVM_SET_FPU: {
2701                 fpu = memdup_user(argp, sizeof(*fpu));
2702                 if (IS_ERR(fpu)) {
2703                         r = PTR_ERR(fpu);
2704                         fpu = NULL;
2705                         goto out;
2706                 }
2707                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2708                 break;
2709         }
2710         default:
2711                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2712         }
2713 out:
2714         vcpu_put(vcpu);
2715         kfree(fpu);
2716         kfree(kvm_sregs);
2717         return r;
2718 }
2719
2720 #ifdef CONFIG_KVM_COMPAT
2721 static long kvm_vcpu_compat_ioctl(struct file *filp,
2722                                   unsigned int ioctl, unsigned long arg)
2723 {
2724         struct kvm_vcpu *vcpu = filp->private_data;
2725         void __user *argp = compat_ptr(arg);
2726         int r;
2727
2728         if (vcpu->kvm->mm != current->mm)
2729                 return -EIO;
2730
2731         switch (ioctl) {
2732         case KVM_SET_SIGNAL_MASK: {
2733                 struct kvm_signal_mask __user *sigmask_arg = argp;
2734                 struct kvm_signal_mask kvm_sigmask;
2735                 compat_sigset_t csigset;
2736                 sigset_t sigset;
2737
2738                 if (argp) {
2739                         r = -EFAULT;
2740                         if (copy_from_user(&kvm_sigmask, argp,
2741                                            sizeof(kvm_sigmask)))
2742                                 goto out;
2743                         r = -EINVAL;
2744                         if (kvm_sigmask.len != sizeof(csigset))
2745                                 goto out;
2746                         r = -EFAULT;
2747                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2748                                            sizeof(csigset)))
2749                                 goto out;
2750                         sigset_from_compat(&sigset, &csigset);
2751                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2752                 } else
2753                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2754                 break;
2755         }
2756         default:
2757                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2758         }
2759
2760 out:
2761         return r;
2762 }
2763 #endif
2764
2765 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2766                                  int (*accessor)(struct kvm_device *dev,
2767                                                  struct kvm_device_attr *attr),
2768                                  unsigned long arg)
2769 {
2770         struct kvm_device_attr attr;
2771
2772         if (!accessor)
2773                 return -EPERM;
2774
2775         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2776                 return -EFAULT;
2777
2778         return accessor(dev, &attr);
2779 }
2780
2781 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2782                              unsigned long arg)
2783 {
2784         struct kvm_device *dev = filp->private_data;
2785
2786         switch (ioctl) {
2787         case KVM_SET_DEVICE_ATTR:
2788                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2789         case KVM_GET_DEVICE_ATTR:
2790                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2791         case KVM_HAS_DEVICE_ATTR:
2792                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2793         default:
2794                 if (dev->ops->ioctl)
2795                         return dev->ops->ioctl(dev, ioctl, arg);
2796
2797                 return -ENOTTY;
2798         }
2799 }
2800
2801 static int kvm_device_release(struct inode *inode, struct file *filp)
2802 {
2803         struct kvm_device *dev = filp->private_data;
2804         struct kvm *kvm = dev->kvm;
2805
2806         kvm_put_kvm(kvm);
2807         return 0;
2808 }
2809
2810 static const struct file_operations kvm_device_fops = {
2811         .unlocked_ioctl = kvm_device_ioctl,
2812 #ifdef CONFIG_KVM_COMPAT
2813         .compat_ioctl = kvm_device_ioctl,
2814 #endif
2815         .release = kvm_device_release,
2816 };
2817
2818 struct kvm_device *kvm_device_from_filp(struct file *filp)
2819 {
2820         if (filp->f_op != &kvm_device_fops)
2821                 return NULL;
2822
2823         return filp->private_data;
2824 }
2825
2826 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2827 #ifdef CONFIG_KVM_MPIC
2828         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2829         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2830 #endif
2831
2832 #ifdef CONFIG_KVM_XICS
2833         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2834 #endif
2835 };
2836
2837 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2838 {
2839         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2840                 return -ENOSPC;
2841
2842         if (kvm_device_ops_table[type] != NULL)
2843                 return -EEXIST;
2844
2845         kvm_device_ops_table[type] = ops;
2846         return 0;
2847 }
2848
2849 void kvm_unregister_device_ops(u32 type)
2850 {
2851         if (kvm_device_ops_table[type] != NULL)
2852                 kvm_device_ops_table[type] = NULL;
2853 }
2854
2855 static int kvm_ioctl_create_device(struct kvm *kvm,
2856                                    struct kvm_create_device *cd)
2857 {
2858         struct kvm_device_ops *ops = NULL;
2859         struct kvm_device *dev;
2860         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2861         int ret;
2862
2863         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2864                 return -ENODEV;
2865
2866         ops = kvm_device_ops_table[cd->type];
2867         if (ops == NULL)
2868                 return -ENODEV;
2869
2870         if (test)
2871                 return 0;
2872
2873         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2874         if (!dev)
2875                 return -ENOMEM;
2876
2877         dev->ops = ops;
2878         dev->kvm = kvm;
2879
2880         mutex_lock(&kvm->lock);
2881         ret = ops->create(dev, cd->type);
2882         if (ret < 0) {
2883                 mutex_unlock(&kvm->lock);
2884                 kfree(dev);
2885                 return ret;
2886         }
2887         list_add(&dev->vm_node, &kvm->devices);
2888         mutex_unlock(&kvm->lock);
2889
2890         if (ops->init)
2891                 ops->init(dev);
2892
2893         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2894         if (ret < 0) {
2895                 ops->destroy(dev);
2896                 mutex_lock(&kvm->lock);
2897                 list_del(&dev->vm_node);
2898                 mutex_unlock(&kvm->lock);
2899                 return ret;
2900         }
2901
2902         kvm_get_kvm(kvm);
2903         cd->fd = ret;
2904         return 0;
2905 }
2906
2907 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2908 {
2909         switch (arg) {
2910         case KVM_CAP_USER_MEMORY:
2911         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2912         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2913         case KVM_CAP_INTERNAL_ERROR_DATA:
2914 #ifdef CONFIG_HAVE_KVM_MSI
2915         case KVM_CAP_SIGNAL_MSI:
2916 #endif
2917 #ifdef CONFIG_HAVE_KVM_IRQFD
2918         case KVM_CAP_IRQFD:
2919         case KVM_CAP_IRQFD_RESAMPLE:
2920 #endif
2921         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2922         case KVM_CAP_CHECK_EXTENSION_VM:
2923                 return 1;
2924 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2925         case KVM_CAP_IRQ_ROUTING:
2926                 return KVM_MAX_IRQ_ROUTES;
2927 #endif
2928 #if KVM_ADDRESS_SPACE_NUM > 1
2929         case KVM_CAP_MULTI_ADDRESS_SPACE:
2930                 return KVM_ADDRESS_SPACE_NUM;
2931 #endif
2932         case KVM_CAP_MAX_VCPU_ID:
2933                 return KVM_MAX_VCPU_ID;
2934         default:
2935                 break;
2936         }
2937         return kvm_vm_ioctl_check_extension(kvm, arg);
2938 }
2939
2940 static long kvm_vm_ioctl(struct file *filp,
2941                            unsigned int ioctl, unsigned long arg)
2942 {
2943         struct kvm *kvm = filp->private_data;
2944         void __user *argp = (void __user *)arg;
2945         int r;
2946
2947         if (kvm->mm != current->mm)
2948                 return -EIO;
2949         switch (ioctl) {
2950         case KVM_CREATE_VCPU:
2951                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2952                 break;
2953         case KVM_SET_USER_MEMORY_REGION: {
2954                 struct kvm_userspace_memory_region kvm_userspace_mem;
2955
2956                 r = -EFAULT;
2957                 if (copy_from_user(&kvm_userspace_mem, argp,
2958                                                 sizeof(kvm_userspace_mem)))
2959                         goto out;
2960
2961                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2962                 break;
2963         }
2964         case KVM_GET_DIRTY_LOG: {
2965                 struct kvm_dirty_log log;
2966
2967                 r = -EFAULT;
2968                 if (copy_from_user(&log, argp, sizeof(log)))
2969                         goto out;
2970                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2971                 break;
2972         }
2973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2974         case KVM_REGISTER_COALESCED_MMIO: {
2975                 struct kvm_coalesced_mmio_zone zone;
2976
2977                 r = -EFAULT;
2978                 if (copy_from_user(&zone, argp, sizeof(zone)))
2979                         goto out;
2980                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2981                 break;
2982         }
2983         case KVM_UNREGISTER_COALESCED_MMIO: {
2984                 struct kvm_coalesced_mmio_zone zone;
2985
2986                 r = -EFAULT;
2987                 if (copy_from_user(&zone, argp, sizeof(zone)))
2988                         goto out;
2989                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2990                 break;
2991         }
2992 #endif
2993         case KVM_IRQFD: {
2994                 struct kvm_irqfd data;
2995
2996                 r = -EFAULT;
2997                 if (copy_from_user(&data, argp, sizeof(data)))
2998                         goto out;
2999                 r = kvm_irqfd(kvm, &data);
3000                 break;
3001         }
3002         case KVM_IOEVENTFD: {
3003                 struct kvm_ioeventfd data;
3004
3005                 r = -EFAULT;
3006                 if (copy_from_user(&data, argp, sizeof(data)))
3007                         goto out;
3008                 r = kvm_ioeventfd(kvm, &data);
3009                 break;
3010         }
3011 #ifdef CONFIG_HAVE_KVM_MSI
3012         case KVM_SIGNAL_MSI: {
3013                 struct kvm_msi msi;
3014
3015                 r = -EFAULT;
3016                 if (copy_from_user(&msi, argp, sizeof(msi)))
3017                         goto out;
3018                 r = kvm_send_userspace_msi(kvm, &msi);
3019                 break;
3020         }
3021 #endif
3022 #ifdef __KVM_HAVE_IRQ_LINE
3023         case KVM_IRQ_LINE_STATUS:
3024         case KVM_IRQ_LINE: {
3025                 struct kvm_irq_level irq_event;
3026
3027                 r = -EFAULT;
3028                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3029                         goto out;
3030
3031                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3032                                         ioctl == KVM_IRQ_LINE_STATUS);
3033                 if (r)
3034                         goto out;
3035
3036                 r = -EFAULT;
3037                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3038                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3039                                 goto out;
3040                 }
3041
3042                 r = 0;
3043                 break;
3044         }
3045 #endif
3046 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3047         case KVM_SET_GSI_ROUTING: {
3048                 struct kvm_irq_routing routing;
3049                 struct kvm_irq_routing __user *urouting;
3050                 struct kvm_irq_routing_entry *entries = NULL;
3051
3052                 r = -EFAULT;
3053                 if (copy_from_user(&routing, argp, sizeof(routing)))
3054                         goto out;
3055                 r = -EINVAL;
3056                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3057                         goto out;
3058                 if (routing.flags)
3059                         goto out;
3060                 if (routing.nr) {
3061                         r = -ENOMEM;
3062                         entries = vmalloc(routing.nr * sizeof(*entries));
3063                         if (!entries)
3064                                 goto out;
3065                         r = -EFAULT;
3066                         urouting = argp;
3067                         if (copy_from_user(entries, urouting->entries,
3068                                            routing.nr * sizeof(*entries)))
3069                                 goto out_free_irq_routing;
3070                 }
3071                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3072                                         routing.flags);
3073 out_free_irq_routing:
3074                 vfree(entries);
3075                 break;
3076         }
3077 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3078         case KVM_CREATE_DEVICE: {
3079                 struct kvm_create_device cd;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&cd, argp, sizeof(cd)))
3083                         goto out;
3084
3085                 r = kvm_ioctl_create_device(kvm, &cd);
3086                 if (r)
3087                         goto out;
3088
3089                 r = -EFAULT;
3090                 if (copy_to_user(argp, &cd, sizeof(cd)))
3091                         goto out;
3092
3093                 r = 0;
3094                 break;
3095         }
3096         case KVM_CHECK_EXTENSION:
3097                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3098                 break;
3099         default:
3100                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3101         }
3102 out:
3103         return r;
3104 }
3105
3106 #ifdef CONFIG_KVM_COMPAT
3107 struct compat_kvm_dirty_log {
3108         __u32 slot;
3109         __u32 padding1;
3110         union {
3111                 compat_uptr_t dirty_bitmap; /* one bit per page */
3112                 __u64 padding2;
3113         };
3114 };
3115
3116 static long kvm_vm_compat_ioctl(struct file *filp,
3117                            unsigned int ioctl, unsigned long arg)
3118 {
3119         struct kvm *kvm = filp->private_data;
3120         int r;
3121
3122         if (kvm->mm != current->mm)
3123                 return -EIO;
3124         switch (ioctl) {
3125         case KVM_GET_DIRTY_LOG: {
3126                 struct compat_kvm_dirty_log compat_log;
3127                 struct kvm_dirty_log log;
3128
3129                 r = -EFAULT;
3130                 if (copy_from_user(&compat_log, (void __user *)arg,
3131                                    sizeof(compat_log)))
3132                         goto out;
3133                 log.slot         = compat_log.slot;
3134                 log.padding1     = compat_log.padding1;
3135                 log.padding2     = compat_log.padding2;
3136                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3137
3138                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3139                 break;
3140         }
3141         default:
3142                 r = kvm_vm_ioctl(filp, ioctl, arg);
3143         }
3144
3145 out:
3146         return r;
3147 }
3148 #endif
3149
3150 static struct file_operations kvm_vm_fops = {
3151         .release        = kvm_vm_release,
3152         .unlocked_ioctl = kvm_vm_ioctl,
3153 #ifdef CONFIG_KVM_COMPAT
3154         .compat_ioctl   = kvm_vm_compat_ioctl,
3155 #endif
3156         .llseek         = noop_llseek,
3157 };
3158
3159 static int kvm_dev_ioctl_create_vm(unsigned long type)
3160 {
3161         int r;
3162         struct kvm *kvm;
3163         struct file *file;
3164
3165         kvm = kvm_create_vm(type);
3166         if (IS_ERR(kvm))
3167                 return PTR_ERR(kvm);
3168 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3169         r = kvm_coalesced_mmio_init(kvm);
3170         if (r < 0) {
3171                 kvm_put_kvm(kvm);
3172                 return r;
3173         }
3174 #endif
3175         r = get_unused_fd_flags(O_CLOEXEC);
3176         if (r < 0) {
3177                 kvm_put_kvm(kvm);
3178                 return r;
3179         }
3180         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3181         if (IS_ERR(file)) {
3182                 put_unused_fd(r);
3183                 kvm_put_kvm(kvm);
3184                 return PTR_ERR(file);
3185         }
3186
3187         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3188                 put_unused_fd(r);
3189                 fput(file);
3190                 return -ENOMEM;
3191         }
3192
3193         fd_install(r, file);
3194         return r;
3195 }
3196
3197 static long kvm_dev_ioctl(struct file *filp,
3198                           unsigned int ioctl, unsigned long arg)
3199 {
3200         long r = -EINVAL;
3201
3202         switch (ioctl) {
3203         case KVM_GET_API_VERSION:
3204                 if (arg)
3205                         goto out;
3206                 r = KVM_API_VERSION;
3207                 break;
3208         case KVM_CREATE_VM:
3209                 r = kvm_dev_ioctl_create_vm(arg);
3210                 break;
3211         case KVM_CHECK_EXTENSION:
3212                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3213                 break;
3214         case KVM_GET_VCPU_MMAP_SIZE:
3215                 if (arg)
3216                         goto out;
3217                 r = PAGE_SIZE;     /* struct kvm_run */
3218 #ifdef CONFIG_X86
3219                 r += PAGE_SIZE;    /* pio data page */
3220 #endif
3221 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3222                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3223 #endif
3224                 break;
3225         case KVM_TRACE_ENABLE:
3226         case KVM_TRACE_PAUSE:
3227         case KVM_TRACE_DISABLE:
3228                 r = -EOPNOTSUPP;
3229                 break;
3230         default:
3231                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3232         }
3233 out:
3234         return r;
3235 }
3236
3237 static struct file_operations kvm_chardev_ops = {
3238         .unlocked_ioctl = kvm_dev_ioctl,
3239         .compat_ioctl   = kvm_dev_ioctl,
3240         .llseek         = noop_llseek,
3241 };
3242
3243 static struct miscdevice kvm_dev = {
3244         KVM_MINOR,
3245         "kvm",
3246         &kvm_chardev_ops,
3247 };
3248
3249 static void hardware_enable_nolock(void *junk)
3250 {
3251         int cpu = raw_smp_processor_id();
3252         int r;
3253
3254         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3255                 return;
3256
3257         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3258
3259         r = kvm_arch_hardware_enable();
3260
3261         if (r) {
3262                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3263                 atomic_inc(&hardware_enable_failed);
3264                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3265         }
3266 }
3267
3268 static int kvm_starting_cpu(unsigned int cpu)
3269 {
3270         raw_spin_lock(&kvm_count_lock);
3271         if (kvm_usage_count)
3272                 hardware_enable_nolock(NULL);
3273         raw_spin_unlock(&kvm_count_lock);
3274         return 0;
3275 }
3276
3277 static void hardware_disable_nolock(void *junk)
3278 {
3279         int cpu = raw_smp_processor_id();
3280
3281         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3282                 return;
3283         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3284         kvm_arch_hardware_disable();
3285 }
3286
3287 static int kvm_dying_cpu(unsigned int cpu)
3288 {
3289         raw_spin_lock(&kvm_count_lock);
3290         if (kvm_usage_count)
3291                 hardware_disable_nolock(NULL);
3292         raw_spin_unlock(&kvm_count_lock);
3293         return 0;
3294 }
3295
3296 static void hardware_disable_all_nolock(void)
3297 {
3298         BUG_ON(!kvm_usage_count);
3299
3300         kvm_usage_count--;
3301         if (!kvm_usage_count)
3302                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3303 }
3304
3305 static void hardware_disable_all(void)
3306 {
3307         raw_spin_lock(&kvm_count_lock);
3308         hardware_disable_all_nolock();
3309         raw_spin_unlock(&kvm_count_lock);
3310 }
3311
3312 static int hardware_enable_all(void)
3313 {
3314         int r = 0;
3315
3316         raw_spin_lock(&kvm_count_lock);
3317
3318         kvm_usage_count++;
3319         if (kvm_usage_count == 1) {
3320                 atomic_set(&hardware_enable_failed, 0);
3321                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3322
3323                 if (atomic_read(&hardware_enable_failed)) {
3324                         hardware_disable_all_nolock();
3325                         r = -EBUSY;
3326                 }
3327         }
3328
3329         raw_spin_unlock(&kvm_count_lock);
3330
3331         return r;
3332 }
3333
3334 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3335                       void *v)
3336 {
3337         /*
3338          * Some (well, at least mine) BIOSes hang on reboot if
3339          * in vmx root mode.
3340          *
3341          * And Intel TXT required VMX off for all cpu when system shutdown.
3342          */
3343         pr_info("kvm: exiting hardware virtualization\n");
3344         kvm_rebooting = true;
3345         on_each_cpu(hardware_disable_nolock, NULL, 1);
3346         return NOTIFY_OK;
3347 }
3348
3349 static struct notifier_block kvm_reboot_notifier = {
3350         .notifier_call = kvm_reboot,
3351         .priority = 0,
3352 };
3353
3354 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3355 {
3356         int i;
3357
3358         for (i = 0; i < bus->dev_count; i++) {
3359                 struct kvm_io_device *pos = bus->range[i].dev;
3360
3361                 kvm_iodevice_destructor(pos);
3362         }
3363         kfree(bus);
3364 }
3365
3366 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3367                                  const struct kvm_io_range *r2)
3368 {
3369         gpa_t addr1 = r1->addr;
3370         gpa_t addr2 = r2->addr;
3371
3372         if (addr1 < addr2)
3373                 return -1;
3374
3375         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3376          * accept any overlapping write.  Any order is acceptable for
3377          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3378          * we process all of them.
3379          */
3380         if (r2->len) {
3381                 addr1 += r1->len;
3382                 addr2 += r2->len;
3383         }
3384
3385         if (addr1 > addr2)
3386                 return 1;
3387
3388         return 0;
3389 }
3390
3391 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3392 {
3393         return kvm_io_bus_cmp(p1, p2);
3394 }
3395
3396 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3397                           gpa_t addr, int len)
3398 {
3399         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3400                 .addr = addr,
3401                 .len = len,
3402                 .dev = dev,
3403         };
3404
3405         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3406                 kvm_io_bus_sort_cmp, NULL);
3407
3408         return 0;
3409 }
3410
3411 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3412                              gpa_t addr, int len)
3413 {
3414         struct kvm_io_range *range, key;
3415         int off;
3416
3417         key = (struct kvm_io_range) {
3418                 .addr = addr,
3419                 .len = len,
3420         };
3421
3422         range = bsearch(&key, bus->range, bus->dev_count,
3423                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3424         if (range == NULL)
3425                 return -ENOENT;
3426
3427         off = range - bus->range;
3428
3429         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3430                 off--;
3431
3432         return off;
3433 }
3434
3435 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3436                               struct kvm_io_range *range, const void *val)
3437 {
3438         int idx;
3439
3440         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3441         if (idx < 0)
3442                 return -EOPNOTSUPP;
3443
3444         while (idx < bus->dev_count &&
3445                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3446                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3447                                         range->len, val))
3448                         return idx;
3449                 idx++;
3450         }
3451
3452         return -EOPNOTSUPP;
3453 }
3454
3455 /* kvm_io_bus_write - called under kvm->slots_lock */
3456 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3457                      int len, const void *val)
3458 {
3459         struct kvm_io_bus *bus;
3460         struct kvm_io_range range;
3461         int r;
3462
3463         range = (struct kvm_io_range) {
3464                 .addr = addr,
3465                 .len = len,
3466         };
3467
3468         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3469         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470         return r < 0 ? r : 0;
3471 }
3472
3473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475                             gpa_t addr, int len, const void *val, long cookie)
3476 {
3477         struct kvm_io_bus *bus;
3478         struct kvm_io_range range;
3479
3480         range = (struct kvm_io_range) {
3481                 .addr = addr,
3482                 .len = len,
3483         };
3484
3485         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486
3487         /* First try the device referenced by cookie. */
3488         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3489             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3490                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3491                                         val))
3492                         return cookie;
3493
3494         /*
3495          * cookie contained garbage; fall back to search and return the
3496          * correct cookie value.
3497          */
3498         return __kvm_io_bus_write(vcpu, bus, &range, val);
3499 }
3500
3501 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3502                              struct kvm_io_range *range, void *val)
3503 {
3504         int idx;
3505
3506         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3507         if (idx < 0)
3508                 return -EOPNOTSUPP;
3509
3510         while (idx < bus->dev_count &&
3511                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3512                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3513                                        range->len, val))
3514                         return idx;
3515                 idx++;
3516         }
3517
3518         return -EOPNOTSUPP;
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3521
3522 /* kvm_io_bus_read - called under kvm->slots_lock */
3523 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3524                     int len, void *val)
3525 {
3526         struct kvm_io_bus *bus;
3527         struct kvm_io_range range;
3528         int r;
3529
3530         range = (struct kvm_io_range) {
3531                 .addr = addr,
3532                 .len = len,
3533         };
3534
3535         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3536         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3537         return r < 0 ? r : 0;
3538 }
3539
3540
3541 /* Caller must hold slots_lock. */
3542 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3543                             int len, struct kvm_io_device *dev)
3544 {
3545         struct kvm_io_bus *new_bus, *bus;
3546
3547         bus = kvm->buses[bus_idx];
3548         /* exclude ioeventfd which is limited by maximum fd */
3549         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3550                 return -ENOSPC;
3551
3552         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3553                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3554         if (!new_bus)
3555                 return -ENOMEM;
3556         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3557                sizeof(struct kvm_io_range)));
3558         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3559         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3560         synchronize_srcu_expedited(&kvm->srcu);
3561         kfree(bus);
3562
3563         return 0;
3564 }
3565
3566 /* Caller must hold slots_lock. */
3567 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3568                               struct kvm_io_device *dev)
3569 {
3570         int i, r;
3571         struct kvm_io_bus *new_bus, *bus;
3572
3573         bus = kvm->buses[bus_idx];
3574         r = -ENOENT;
3575         for (i = 0; i < bus->dev_count; i++)
3576                 if (bus->range[i].dev == dev) {
3577                         r = 0;
3578                         break;
3579                 }
3580
3581         if (r)
3582                 return r;
3583
3584         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3585                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3586         if (!new_bus)
3587                 return -ENOMEM;
3588
3589         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3590         new_bus->dev_count--;
3591         memcpy(new_bus->range + i, bus->range + i + 1,
3592                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3593
3594         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3595         synchronize_srcu_expedited(&kvm->srcu);
3596         kfree(bus);
3597         return r;
3598 }
3599
3600 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3601                                          gpa_t addr)
3602 {
3603         struct kvm_io_bus *bus;
3604         int dev_idx, srcu_idx;
3605         struct kvm_io_device *iodev = NULL;
3606
3607         srcu_idx = srcu_read_lock(&kvm->srcu);
3608
3609         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3610
3611         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3612         if (dev_idx < 0)
3613                 goto out_unlock;
3614
3615         iodev = bus->range[dev_idx].dev;
3616
3617 out_unlock:
3618         srcu_read_unlock(&kvm->srcu, srcu_idx);
3619
3620         return iodev;
3621 }
3622 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3623
3624 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3625                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3626                            const char *fmt)
3627 {
3628         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3629                                           inode->i_private;
3630
3631         /* The debugfs files are a reference to the kvm struct which
3632          * is still valid when kvm_destroy_vm is called.
3633          * To avoid the race between open and the removal of the debugfs
3634          * directory we test against the users count.
3635          */
3636         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3637                 return -ENOENT;
3638
3639         if (simple_attr_open(inode, file, get, set, fmt)) {
3640                 kvm_put_kvm(stat_data->kvm);
3641                 return -ENOMEM;
3642         }
3643
3644         return 0;
3645 }
3646
3647 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3648 {
3649         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3650                                           inode->i_private;
3651
3652         simple_attr_release(inode, file);
3653         kvm_put_kvm(stat_data->kvm);
3654
3655         return 0;
3656 }
3657
3658 static int vm_stat_get_per_vm(void *data, u64 *val)
3659 {
3660         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3661
3662         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3663
3664         return 0;
3665 }
3666
3667 static int vm_stat_clear_per_vm(void *data, u64 val)
3668 {
3669         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3670
3671         if (val)
3672                 return -EINVAL;
3673
3674         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3675
3676         return 0;
3677 }
3678
3679 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3680 {
3681         __simple_attr_check_format("%llu\n", 0ull);
3682         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3683                                 vm_stat_clear_per_vm, "%llu\n");
3684 }
3685
3686 static const struct file_operations vm_stat_get_per_vm_fops = {
3687         .owner   = THIS_MODULE,
3688         .open    = vm_stat_get_per_vm_open,
3689         .release = kvm_debugfs_release,
3690         .read    = simple_attr_read,
3691         .write   = simple_attr_write,
3692         .llseek  = generic_file_llseek,
3693 };
3694
3695 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3696 {
3697         int i;
3698         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3699         struct kvm_vcpu *vcpu;
3700
3701         *val = 0;
3702
3703         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3704                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3705
3706         return 0;
3707 }
3708
3709 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3710 {
3711         int i;
3712         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3713         struct kvm_vcpu *vcpu;
3714
3715         if (val)
3716                 return -EINVAL;
3717
3718         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3719                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3720
3721         return 0;
3722 }
3723
3724 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3725 {
3726         __simple_attr_check_format("%llu\n", 0ull);
3727         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3728                                  vcpu_stat_clear_per_vm, "%llu\n");
3729 }
3730
3731 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3732         .owner   = THIS_MODULE,
3733         .open    = vcpu_stat_get_per_vm_open,
3734         .release = kvm_debugfs_release,
3735         .read    = simple_attr_read,
3736         .write   = simple_attr_write,
3737         .llseek  = generic_file_llseek,
3738 };
3739
3740 static const struct file_operations *stat_fops_per_vm[] = {
3741         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3742         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3743 };
3744
3745 static int vm_stat_get(void *_offset, u64 *val)
3746 {
3747         unsigned offset = (long)_offset;
3748         struct kvm *kvm;
3749         struct kvm_stat_data stat_tmp = {.offset = offset};
3750         u64 tmp_val;
3751
3752         *val = 0;
3753         spin_lock(&kvm_lock);
3754         list_for_each_entry(kvm, &vm_list, vm_list) {
3755                 stat_tmp.kvm = kvm;
3756                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3757                 *val += tmp_val;
3758         }
3759         spin_unlock(&kvm_lock);
3760         return 0;
3761 }
3762
3763 static int vm_stat_clear(void *_offset, u64 val)
3764 {
3765         unsigned offset = (long)_offset;
3766         struct kvm *kvm;
3767         struct kvm_stat_data stat_tmp = {.offset = offset};
3768
3769         if (val)
3770                 return -EINVAL;
3771
3772         spin_lock(&kvm_lock);
3773         list_for_each_entry(kvm, &vm_list, vm_list) {
3774                 stat_tmp.kvm = kvm;
3775                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3776         }
3777         spin_unlock(&kvm_lock);
3778
3779         return 0;
3780 }
3781
3782 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3783
3784 static int vcpu_stat_get(void *_offset, u64 *val)
3785 {
3786         unsigned offset = (long)_offset;
3787         struct kvm *kvm;
3788         struct kvm_stat_data stat_tmp = {.offset = offset};
3789         u64 tmp_val;
3790
3791         *val = 0;
3792         spin_lock(&kvm_lock);
3793         list_for_each_entry(kvm, &vm_list, vm_list) {
3794                 stat_tmp.kvm = kvm;
3795                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3796                 *val += tmp_val;
3797         }
3798         spin_unlock(&kvm_lock);
3799         return 0;
3800 }
3801
3802 static int vcpu_stat_clear(void *_offset, u64 val)
3803 {
3804         unsigned offset = (long)_offset;
3805         struct kvm *kvm;
3806         struct kvm_stat_data stat_tmp = {.offset = offset};
3807
3808         if (val)
3809                 return -EINVAL;
3810
3811         spin_lock(&kvm_lock);
3812         list_for_each_entry(kvm, &vm_list, vm_list) {
3813                 stat_tmp.kvm = kvm;
3814                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3815         }
3816         spin_unlock(&kvm_lock);
3817
3818         return 0;
3819 }
3820
3821 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3822                         "%llu\n");
3823
3824 static const struct file_operations *stat_fops[] = {
3825         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3826         [KVM_STAT_VM]   = &vm_stat_fops,
3827 };
3828
3829 static int kvm_init_debug(void)
3830 {
3831         int r = -EEXIST;
3832         struct kvm_stats_debugfs_item *p;
3833
3834         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3835         if (kvm_debugfs_dir == NULL)
3836                 goto out;
3837
3838         kvm_debugfs_num_entries = 0;
3839         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3840                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3841                                          (void *)(long)p->offset,
3842                                          stat_fops[p->kind]))
3843                         goto out_dir;
3844         }
3845
3846         return 0;
3847
3848 out_dir:
3849         debugfs_remove_recursive(kvm_debugfs_dir);
3850 out:
3851         return r;
3852 }
3853
3854 static int kvm_suspend(void)
3855 {
3856         if (kvm_usage_count)
3857                 hardware_disable_nolock(NULL);
3858         return 0;
3859 }
3860
3861 static void kvm_resume(void)
3862 {
3863         if (kvm_usage_count) {
3864                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3865                 hardware_enable_nolock(NULL);
3866         }
3867 }
3868
3869 static struct syscore_ops kvm_syscore_ops = {
3870         .suspend = kvm_suspend,
3871         .resume = kvm_resume,
3872 };
3873
3874 static inline
3875 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3876 {
3877         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3878 }
3879
3880 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3881 {
3882         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3883
3884         if (vcpu->preempted)
3885                 vcpu->preempted = false;
3886
3887         kvm_arch_sched_in(vcpu, cpu);
3888
3889         kvm_arch_vcpu_load(vcpu, cpu);
3890 }
3891
3892 static void kvm_sched_out(struct preempt_notifier *pn,
3893                           struct task_struct *next)
3894 {
3895         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3896
3897         if (current->state == TASK_RUNNING)
3898                 vcpu->preempted = true;
3899         kvm_arch_vcpu_put(vcpu);
3900 }
3901
3902 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3903                   struct module *module)
3904 {
3905         int r;
3906         int cpu;
3907
3908         r = kvm_arch_init(opaque);
3909         if (r)
3910                 goto out_fail;
3911
3912         /*
3913          * kvm_arch_init makes sure there's at most one caller
3914          * for architectures that support multiple implementations,
3915          * like intel and amd on x86.
3916          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3917          * conflicts in case kvm is already setup for another implementation.
3918          */
3919         r = kvm_irqfd_init();
3920         if (r)
3921                 goto out_irqfd;
3922
3923         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3924                 r = -ENOMEM;
3925                 goto out_free_0;
3926         }
3927
3928         r = kvm_arch_hardware_setup();
3929         if (r < 0)
3930                 goto out_free_0a;
3931
3932         for_each_online_cpu(cpu) {
3933                 smp_call_function_single(cpu,
3934                                 kvm_arch_check_processor_compat,
3935                                 &r, 1);
3936                 if (r < 0)
3937                         goto out_free_1;
3938         }
3939
3940         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3941                                       kvm_starting_cpu, kvm_dying_cpu);
3942         if (r)
3943                 goto out_free_2;
3944         register_reboot_notifier(&kvm_reboot_notifier);
3945
3946         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3947         if (!vcpu_align)
3948                 vcpu_align = __alignof__(struct kvm_vcpu);
3949         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3950                                            0, NULL);
3951         if (!kvm_vcpu_cache) {
3952                 r = -ENOMEM;
3953                 goto out_free_3;
3954         }
3955
3956         r = kvm_async_pf_init();
3957         if (r)
3958                 goto out_free;
3959
3960         kvm_chardev_ops.owner = module;
3961         kvm_vm_fops.owner = module;
3962         kvm_vcpu_fops.owner = module;
3963
3964         r = misc_register(&kvm_dev);
3965         if (r) {
3966                 pr_err("kvm: misc device register failed\n");
3967                 goto out_unreg;
3968         }
3969
3970         register_syscore_ops(&kvm_syscore_ops);
3971
3972         kvm_preempt_ops.sched_in = kvm_sched_in;
3973         kvm_preempt_ops.sched_out = kvm_sched_out;
3974
3975         r = kvm_init_debug();
3976         if (r) {
3977                 pr_err("kvm: create debugfs files failed\n");
3978                 goto out_undebugfs;
3979         }
3980
3981         r = kvm_vfio_ops_init();
3982         WARN_ON(r);
3983
3984         return 0;
3985
3986 out_undebugfs:
3987         unregister_syscore_ops(&kvm_syscore_ops);
3988         misc_deregister(&kvm_dev);
3989 out_unreg:
3990         kvm_async_pf_deinit();
3991 out_free:
3992         kmem_cache_destroy(kvm_vcpu_cache);
3993 out_free_3:
3994         unregister_reboot_notifier(&kvm_reboot_notifier);
3995         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3996 out_free_2:
3997 out_free_1:
3998         kvm_arch_hardware_unsetup();
3999 out_free_0a:
4000         free_cpumask_var(cpus_hardware_enabled);
4001 out_free_0:
4002         kvm_irqfd_exit();
4003 out_irqfd:
4004         kvm_arch_exit();
4005 out_fail:
4006         return r;
4007 }
4008 EXPORT_SYMBOL_GPL(kvm_init);
4009
4010 void kvm_exit(void)
4011 {
4012         debugfs_remove_recursive(kvm_debugfs_dir);
4013         misc_deregister(&kvm_dev);
4014         kmem_cache_destroy(kvm_vcpu_cache);
4015         kvm_async_pf_deinit();
4016         unregister_syscore_ops(&kvm_syscore_ops);
4017         unregister_reboot_notifier(&kvm_reboot_notifier);
4018         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4019         on_each_cpu(hardware_disable_nolock, NULL, 1);
4020         kvm_arch_hardware_unsetup();
4021         kvm_arch_exit();
4022         kvm_irqfd_exit();
4023         free_cpumask_var(cpus_hardware_enabled);
4024         kvm_vfio_ops_exit();
4025 }
4026 EXPORT_SYMBOL_GPL(kvm_exit);