]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
mm: introduce kv[mz]alloc helpers
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174         int i, cpu, me;
175         cpumask_var_t cpus;
176         bool called = true;
177         struct kvm_vcpu *vcpu;
178
179         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181         me = get_cpu();
182         kvm_for_each_vcpu(i, vcpu, kvm) {
183                 kvm_make_request(req, vcpu);
184                 cpu = vcpu->cpu;
185
186                 /* Set ->requests bit before we read ->mode. */
187                 smp_mb__after_atomic();
188
189                 if (cpus != NULL && cpu != -1 && cpu != me &&
190                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191                         cpumask_set_cpu(cpu, cpus);
192         }
193         if (unlikely(cpus == NULL))
194                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195         else if (!cpumask_empty(cpus))
196                 smp_call_function_many(cpus, ack_flush, NULL, 1);
197         else
198                 called = false;
199         put_cpu();
200         free_cpumask_var(cpus);
201         return called;
202 }
203
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207         /*
208          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209          * kvm_make_all_cpus_request.
210          */
211         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212
213         /*
214          * We want to publish modifications to the page tables before reading
215          * mode. Pairs with a memory barrier in arch-specific code.
216          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217          * and smp_mb in walk_shadow_page_lockless_begin/end.
218          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219          *
220          * There is already an smp_mb__after_atomic() before
221          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222          * barrier here.
223          */
224         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225                 ++kvm->stat.remote_tlb_flush;
226         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238         struct page *page;
239         int r;
240
241         mutex_init(&vcpu->mutex);
242         vcpu->cpu = -1;
243         vcpu->kvm = kvm;
244         vcpu->vcpu_id = id;
245         vcpu->pid = NULL;
246         init_swait_queue_head(&vcpu->wq);
247         kvm_async_pf_vcpu_init(vcpu);
248
249         vcpu->pre_pcpu = -1;
250         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251
252         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253         if (!page) {
254                 r = -ENOMEM;
255                 goto fail;
256         }
257         vcpu->run = page_address(page);
258
259         kvm_vcpu_set_in_spin_loop(vcpu, false);
260         kvm_vcpu_set_dy_eligible(vcpu, false);
261         vcpu->preempted = false;
262
263         r = kvm_arch_vcpu_init(vcpu);
264         if (r < 0)
265                 goto fail_free_run;
266         return 0;
267
268 fail_free_run:
269         free_page((unsigned long)vcpu->run);
270 fail:
271         return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277         put_pid(vcpu->pid);
278         kvm_arch_vcpu_uninit(vcpu);
279         free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286         return container_of(mn, struct kvm, mmu_notifier);
287 }
288
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290                                              struct mm_struct *mm,
291                                              unsigned long address)
292 {
293         struct kvm *kvm = mmu_notifier_to_kvm(mn);
294         int need_tlb_flush, idx;
295
296         /*
297          * When ->invalidate_page runs, the linux pte has been zapped
298          * already but the page is still allocated until
299          * ->invalidate_page returns. So if we increase the sequence
300          * here the kvm page fault will notice if the spte can't be
301          * established because the page is going to be freed. If
302          * instead the kvm page fault establishes the spte before
303          * ->invalidate_page runs, kvm_unmap_hva will release it
304          * before returning.
305          *
306          * The sequence increase only need to be seen at spin_unlock
307          * time, and not at spin_lock time.
308          *
309          * Increasing the sequence after the spin_unlock would be
310          * unsafe because the kvm page fault could then establish the
311          * pte after kvm_unmap_hva returned, without noticing the page
312          * is going to be freed.
313          */
314         idx = srcu_read_lock(&kvm->srcu);
315         spin_lock(&kvm->mmu_lock);
316
317         kvm->mmu_notifier_seq++;
318         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319         /* we've to flush the tlb before the pages can be freed */
320         if (need_tlb_flush)
321                 kvm_flush_remote_tlbs(kvm);
322
323         spin_unlock(&kvm->mmu_lock);
324
325         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326
327         srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331                                         struct mm_struct *mm,
332                                         unsigned long address,
333                                         pte_t pte)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         kvm->mmu_notifier_seq++;
341         kvm_set_spte_hva(kvm, address, pte);
342         spin_unlock(&kvm->mmu_lock);
343         srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347                                                     struct mm_struct *mm,
348                                                     unsigned long start,
349                                                     unsigned long end)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int need_tlb_flush = 0, idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         /*
357          * The count increase must become visible at unlock time as no
358          * spte can be established without taking the mmu_lock and
359          * count is also read inside the mmu_lock critical section.
360          */
361         kvm->mmu_notifier_count++;
362         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363         need_tlb_flush |= kvm->tlbs_dirty;
364         /* we've to flush the tlb before the pages can be freed */
365         if (need_tlb_flush)
366                 kvm_flush_remote_tlbs(kvm);
367
368         spin_unlock(&kvm->mmu_lock);
369         srcu_read_unlock(&kvm->srcu, idx);
370 }
371
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373                                                   struct mm_struct *mm,
374                                                   unsigned long start,
375                                                   unsigned long end)
376 {
377         struct kvm *kvm = mmu_notifier_to_kvm(mn);
378
379         spin_lock(&kvm->mmu_lock);
380         /*
381          * This sequence increase will notify the kvm page fault that
382          * the page that is going to be mapped in the spte could have
383          * been freed.
384          */
385         kvm->mmu_notifier_seq++;
386         smp_wmb();
387         /*
388          * The above sequence increase must be visible before the
389          * below count decrease, which is ensured by the smp_wmb above
390          * in conjunction with the smp_rmb in mmu_notifier_retry().
391          */
392         kvm->mmu_notifier_count--;
393         spin_unlock(&kvm->mmu_lock);
394
395         BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399                                               struct mm_struct *mm,
400                                               unsigned long start,
401                                               unsigned long end)
402 {
403         struct kvm *kvm = mmu_notifier_to_kvm(mn);
404         int young, idx;
405
406         idx = srcu_read_lock(&kvm->srcu);
407         spin_lock(&kvm->mmu_lock);
408
409         young = kvm_age_hva(kvm, start, end);
410         if (young)
411                 kvm_flush_remote_tlbs(kvm);
412
413         spin_unlock(&kvm->mmu_lock);
414         srcu_read_unlock(&kvm->srcu, idx);
415
416         return young;
417 }
418
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420                                         struct mm_struct *mm,
421                                         unsigned long start,
422                                         unsigned long end)
423 {
424         struct kvm *kvm = mmu_notifier_to_kvm(mn);
425         int young, idx;
426
427         idx = srcu_read_lock(&kvm->srcu);
428         spin_lock(&kvm->mmu_lock);
429         /*
430          * Even though we do not flush TLB, this will still adversely
431          * affect performance on pre-Haswell Intel EPT, where there is
432          * no EPT Access Bit to clear so that we have to tear down EPT
433          * tables instead. If we find this unacceptable, we can always
434          * add a parameter to kvm_age_hva so that it effectively doesn't
435          * do anything on clear_young.
436          *
437          * Also note that currently we never issue secondary TLB flushes
438          * from clear_young, leaving this job up to the regular system
439          * cadence. If we find this inaccurate, we might come up with a
440          * more sophisticated heuristic later.
441          */
442         young = kvm_age_hva(kvm, start, end);
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450                                        struct mm_struct *mm,
451                                        unsigned long address)
452 {
453         struct kvm *kvm = mmu_notifier_to_kvm(mn);
454         int young, idx;
455
456         idx = srcu_read_lock(&kvm->srcu);
457         spin_lock(&kvm->mmu_lock);
458         young = kvm_test_age_hva(kvm, address);
459         spin_unlock(&kvm->mmu_lock);
460         srcu_read_unlock(&kvm->srcu, idx);
461
462         return young;
463 }
464
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466                                      struct mm_struct *mm)
467 {
468         struct kvm *kvm = mmu_notifier_to_kvm(mn);
469         int idx;
470
471         idx = srcu_read_lock(&kvm->srcu);
472         kvm_arch_flush_shadow_all(kvm);
473         srcu_read_unlock(&kvm->srcu, idx);
474 }
475
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
478         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
479         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
480         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
481         .clear_young            = kvm_mmu_notifier_clear_young,
482         .test_young             = kvm_mmu_notifier_test_young,
483         .change_pte             = kvm_mmu_notifier_change_pte,
484         .release                = kvm_mmu_notifier_release,
485 };
486
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492
493 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497         return 0;
498 }
499
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504         int i;
505         struct kvm_memslots *slots;
506
507         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
508         if (!slots)
509                 return NULL;
510
511         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512                 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514         return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519         if (!memslot->dirty_bitmap)
520                 return;
521
522         kvfree(memslot->dirty_bitmap);
523         memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530                               struct kvm_memory_slot *dont)
531 {
532         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533                 kvm_destroy_dirty_bitmap(free);
534
535         kvm_arch_free_memslot(kvm, free, dont);
536
537         free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542         struct kvm_memory_slot *memslot;
543
544         if (!slots)
545                 return;
546
547         kvm_for_each_memslot(memslot, slots)
548                 kvm_free_memslot(kvm, memslot, NULL);
549
550         kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555         int i;
556
557         if (!kvm->debugfs_dentry)
558                 return;
559
560         debugfs_remove_recursive(kvm->debugfs_dentry);
561
562         if (kvm->debugfs_stat_data) {
563                 for (i = 0; i < kvm_debugfs_num_entries; i++)
564                         kfree(kvm->debugfs_stat_data[i]);
565                 kfree(kvm->debugfs_stat_data);
566         }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571         char dir_name[ITOA_MAX_LEN * 2];
572         struct kvm_stat_data *stat_data;
573         struct kvm_stats_debugfs_item *p;
574
575         if (!debugfs_initialized())
576                 return 0;
577
578         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580                                                  kvm_debugfs_dir);
581         if (!kvm->debugfs_dentry)
582                 return -ENOMEM;
583
584         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585                                          sizeof(*kvm->debugfs_stat_data),
586                                          GFP_KERNEL);
587         if (!kvm->debugfs_stat_data)
588                 return -ENOMEM;
589
590         for (p = debugfs_entries; p->name; p++) {
591                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592                 if (!stat_data)
593                         return -ENOMEM;
594
595                 stat_data->kvm = kvm;
596                 stat_data->offset = p->offset;
597                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598                 if (!debugfs_create_file(p->name, 0644,
599                                          kvm->debugfs_dentry,
600                                          stat_data,
601                                          stat_fops_per_vm[p->kind]))
602                         return -ENOMEM;
603         }
604         return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609         int r, i;
610         struct kvm *kvm = kvm_arch_alloc_vm();
611
612         if (!kvm)
613                 return ERR_PTR(-ENOMEM);
614
615         spin_lock_init(&kvm->mmu_lock);
616         mmgrab(current->mm);
617         kvm->mm = current->mm;
618         kvm_eventfd_init(kvm);
619         mutex_init(&kvm->lock);
620         mutex_init(&kvm->irq_lock);
621         mutex_init(&kvm->slots_lock);
622         refcount_set(&kvm->users_count, 1);
623         INIT_LIST_HEAD(&kvm->devices);
624
625         r = kvm_arch_init_vm(kvm, type);
626         if (r)
627                 goto out_err_no_disable;
628
629         r = hardware_enable_all();
630         if (r)
631                 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639         r = -ENOMEM;
640         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641                 struct kvm_memslots *slots = kvm_alloc_memslots();
642                 if (!slots)
643                         goto out_err_no_srcu;
644                 /*
645                  * Generations must be different for each address space.
646                  * Init kvm generation close to the maximum to easily test the
647                  * code of handling generation number wrap-around.
648                  */
649                 slots->generation = i * 2 - 150;
650                 rcu_assign_pointer(kvm->memslots[i], slots);
651         }
652
653         if (init_srcu_struct(&kvm->srcu))
654                 goto out_err_no_srcu;
655         if (init_srcu_struct(&kvm->irq_srcu))
656                 goto out_err_no_irq_srcu;
657         for (i = 0; i < KVM_NR_BUSES; i++) {
658                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659                                         GFP_KERNEL);
660                 if (!kvm->buses[i])
661                         goto out_err;
662         }
663
664         r = kvm_init_mmu_notifier(kvm);
665         if (r)
666                 goto out_err;
667
668         spin_lock(&kvm_lock);
669         list_add(&kvm->vm_list, &vm_list);
670         spin_unlock(&kvm_lock);
671
672         preempt_notifier_inc();
673
674         return kvm;
675
676 out_err:
677         cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679         cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681         hardware_disable_all();
682 out_err_no_disable:
683         for (i = 0; i < KVM_NR_BUSES; i++)
684                 kfree(kvm->buses[i]);
685         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686                 kvm_free_memslots(kvm, kvm->memslots[i]);
687         kvm_arch_free_vm(kvm);
688         mmdrop(current->mm);
689         return ERR_PTR(r);
690 }
691
692 static void kvm_destroy_devices(struct kvm *kvm)
693 {
694         struct kvm_device *dev, *tmp;
695
696         /*
697          * We do not need to take the kvm->lock here, because nobody else
698          * has a reference to the struct kvm at this point and therefore
699          * cannot access the devices list anyhow.
700          */
701         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
702                 list_del(&dev->vm_node);
703                 dev->ops->destroy(dev);
704         }
705 }
706
707 static void kvm_destroy_vm(struct kvm *kvm)
708 {
709         int i;
710         struct mm_struct *mm = kvm->mm;
711
712         kvm_destroy_vm_debugfs(kvm);
713         kvm_arch_sync_events(kvm);
714         spin_lock(&kvm_lock);
715         list_del(&kvm->vm_list);
716         spin_unlock(&kvm_lock);
717         kvm_free_irq_routing(kvm);
718         for (i = 0; i < KVM_NR_BUSES; i++) {
719                 if (kvm->buses[i])
720                         kvm_io_bus_destroy(kvm->buses[i]);
721                 kvm->buses[i] = NULL;
722         }
723         kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727         kvm_arch_flush_shadow_all(kvm);
728 #endif
729         kvm_arch_destroy_vm(kvm);
730         kvm_destroy_devices(kvm);
731         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732                 kvm_free_memslots(kvm, kvm->memslots[i]);
733         cleanup_srcu_struct(&kvm->irq_srcu);
734         cleanup_srcu_struct(&kvm->srcu);
735         kvm_arch_free_vm(kvm);
736         preempt_notifier_dec();
737         hardware_disable_all();
738         mmdrop(mm);
739 }
740
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743         refcount_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749         if (refcount_dec_and_test(&kvm->users_count))
750                 kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753
754
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757         struct kvm *kvm = filp->private_data;
758
759         kvm_irqfd_release(kvm);
760
761         kvm_put_kvm(kvm);
762         return 0;
763 }
764
765 /*
766  * Allocation size is twice as large as the actual dirty bitmap size.
767  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
768  */
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
770 {
771         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
772
773         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
774         if (!memslot->dirty_bitmap)
775                 return -ENOMEM;
776
777         return 0;
778 }
779
780 /*
781  * Insert memslot and re-sort memslots based on their GFN,
782  * so binary search could be used to lookup GFN.
783  * Sorting algorithm takes advantage of having initially
784  * sorted array and known changed memslot position.
785  */
786 static void update_memslots(struct kvm_memslots *slots,
787                             struct kvm_memory_slot *new)
788 {
789         int id = new->id;
790         int i = slots->id_to_index[id];
791         struct kvm_memory_slot *mslots = slots->memslots;
792
793         WARN_ON(mslots[i].id != id);
794         if (!new->npages) {
795                 WARN_ON(!mslots[i].npages);
796                 if (mslots[i].npages)
797                         slots->used_slots--;
798         } else {
799                 if (!mslots[i].npages)
800                         slots->used_slots++;
801         }
802
803         while (i < KVM_MEM_SLOTS_NUM - 1 &&
804                new->base_gfn <= mslots[i + 1].base_gfn) {
805                 if (!mslots[i + 1].npages)
806                         break;
807                 mslots[i] = mslots[i + 1];
808                 slots->id_to_index[mslots[i].id] = i;
809                 i++;
810         }
811
812         /*
813          * The ">=" is needed when creating a slot with base_gfn == 0,
814          * so that it moves before all those with base_gfn == npages == 0.
815          *
816          * On the other hand, if new->npages is zero, the above loop has
817          * already left i pointing to the beginning of the empty part of
818          * mslots, and the ">=" would move the hole backwards in this
819          * case---which is wrong.  So skip the loop when deleting a slot.
820          */
821         if (new->npages) {
822                 while (i > 0 &&
823                        new->base_gfn >= mslots[i - 1].base_gfn) {
824                         mslots[i] = mslots[i - 1];
825                         slots->id_to_index[mslots[i].id] = i;
826                         i--;
827                 }
828         } else
829                 WARN_ON_ONCE(i != slots->used_slots);
830
831         mslots[i] = *new;
832         slots->id_to_index[mslots[i].id] = i;
833 }
834
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
836 {
837         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
838
839 #ifdef __KVM_HAVE_READONLY_MEM
840         valid_flags |= KVM_MEM_READONLY;
841 #endif
842
843         if (mem->flags & ~valid_flags)
844                 return -EINVAL;
845
846         return 0;
847 }
848
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850                 int as_id, struct kvm_memslots *slots)
851 {
852         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853
854         /*
855          * Set the low bit in the generation, which disables SPTE caching
856          * until the end of synchronize_srcu_expedited.
857          */
858         WARN_ON(old_memslots->generation & 1);
859         slots->generation = old_memslots->generation + 1;
860
861         rcu_assign_pointer(kvm->memslots[as_id], slots);
862         synchronize_srcu_expedited(&kvm->srcu);
863
864         /*
865          * Increment the new memslot generation a second time. This prevents
866          * vm exits that race with memslot updates from caching a memslot
867          * generation that will (potentially) be valid forever.
868          *
869          * Generations must be unique even across address spaces.  We do not need
870          * a global counter for that, instead the generation space is evenly split
871          * across address spaces.  For example, with two address spaces, address
872          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873          * use generations 2, 6, 10, 14, ...
874          */
875         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
876
877         kvm_arch_memslots_updated(kvm, slots);
878
879         return old_memslots;
880 }
881
882 /*
883  * Allocate some memory and give it an address in the guest physical address
884  * space.
885  *
886  * Discontiguous memory is allowed, mostly for framebuffers.
887  *
888  * Must be called holding kvm->slots_lock for write.
889  */
890 int __kvm_set_memory_region(struct kvm *kvm,
891                             const struct kvm_userspace_memory_region *mem)
892 {
893         int r;
894         gfn_t base_gfn;
895         unsigned long npages;
896         struct kvm_memory_slot *slot;
897         struct kvm_memory_slot old, new;
898         struct kvm_memslots *slots = NULL, *old_memslots;
899         int as_id, id;
900         enum kvm_mr_change change;
901
902         r = check_memory_region_flags(mem);
903         if (r)
904                 goto out;
905
906         r = -EINVAL;
907         as_id = mem->slot >> 16;
908         id = (u16)mem->slot;
909
910         /* General sanity checks */
911         if (mem->memory_size & (PAGE_SIZE - 1))
912                 goto out;
913         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
914                 goto out;
915         /* We can read the guest memory with __xxx_user() later on. */
916         if ((id < KVM_USER_MEM_SLOTS) &&
917             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
918              !access_ok(VERIFY_WRITE,
919                         (void __user *)(unsigned long)mem->userspace_addr,
920                         mem->memory_size)))
921                 goto out;
922         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
923                 goto out;
924         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925                 goto out;
926
927         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
928         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
929         npages = mem->memory_size >> PAGE_SHIFT;
930
931         if (npages > KVM_MEM_MAX_NR_PAGES)
932                 goto out;
933
934         new = old = *slot;
935
936         new.id = id;
937         new.base_gfn = base_gfn;
938         new.npages = npages;
939         new.flags = mem->flags;
940
941         if (npages) {
942                 if (!old.npages)
943                         change = KVM_MR_CREATE;
944                 else { /* Modify an existing slot. */
945                         if ((mem->userspace_addr != old.userspace_addr) ||
946                             (npages != old.npages) ||
947                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948                                 goto out;
949
950                         if (base_gfn != old.base_gfn)
951                                 change = KVM_MR_MOVE;
952                         else if (new.flags != old.flags)
953                                 change = KVM_MR_FLAGS_ONLY;
954                         else { /* Nothing to change. */
955                                 r = 0;
956                                 goto out;
957                         }
958                 }
959         } else {
960                 if (!old.npages)
961                         goto out;
962
963                 change = KVM_MR_DELETE;
964                 new.base_gfn = 0;
965                 new.flags = 0;
966         }
967
968         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
969                 /* Check for overlaps */
970                 r = -EEXIST;
971                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
972                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
973                             (slot->id == id))
974                                 continue;
975                         if (!((base_gfn + npages <= slot->base_gfn) ||
976                               (base_gfn >= slot->base_gfn + slot->npages)))
977                                 goto out;
978                 }
979         }
980
981         /* Free page dirty bitmap if unneeded */
982         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
983                 new.dirty_bitmap = NULL;
984
985         r = -ENOMEM;
986         if (change == KVM_MR_CREATE) {
987                 new.userspace_addr = mem->userspace_addr;
988
989                 if (kvm_arch_create_memslot(kvm, &new, npages))
990                         goto out_free;
991         }
992
993         /* Allocate page dirty bitmap if needed */
994         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
995                 if (kvm_create_dirty_bitmap(&new) < 0)
996                         goto out_free;
997         }
998
999         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1000         if (!slots)
1001                 goto out_free;
1002         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1003
1004         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1005                 slot = id_to_memslot(slots, id);
1006                 slot->flags |= KVM_MEMSLOT_INVALID;
1007
1008                 old_memslots = install_new_memslots(kvm, as_id, slots);
1009
1010                 /* slot was deleted or moved, clear iommu mapping */
1011                 kvm_iommu_unmap_pages(kvm, &old);
1012                 /* From this point no new shadow pages pointing to a deleted,
1013                  * or moved, memslot will be created.
1014                  *
1015                  * validation of sp->gfn happens in:
1016                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1017                  *      - kvm_is_visible_gfn (mmu_check_roots)
1018                  */
1019                 kvm_arch_flush_shadow_memslot(kvm, slot);
1020
1021                 /*
1022                  * We can re-use the old_memslots from above, the only difference
1023                  * from the currently installed memslots is the invalid flag.  This
1024                  * will get overwritten by update_memslots anyway.
1025                  */
1026                 slots = old_memslots;
1027         }
1028
1029         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1030         if (r)
1031                 goto out_slots;
1032
1033         /* actual memory is freed via old in kvm_free_memslot below */
1034         if (change == KVM_MR_DELETE) {
1035                 new.dirty_bitmap = NULL;
1036                 memset(&new.arch, 0, sizeof(new.arch));
1037         }
1038
1039         update_memslots(slots, &new);
1040         old_memslots = install_new_memslots(kvm, as_id, slots);
1041
1042         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1043
1044         kvm_free_memslot(kvm, &old, &new);
1045         kvfree(old_memslots);
1046
1047         /*
1048          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1049          * un-mapped and re-mapped if their base changes.  Since base change
1050          * unmapping is handled above with slot deletion, mapping alone is
1051          * needed here.  Anything else the iommu might care about for existing
1052          * slots (size changes, userspace addr changes and read-only flag
1053          * changes) is disallowed above, so any other attribute changes getting
1054          * here can be skipped.
1055          */
1056         if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
1057                 r = kvm_iommu_map_pages(kvm, &new);
1058                 return r;
1059         }
1060
1061         return 0;
1062
1063 out_slots:
1064         kvfree(slots);
1065 out_free:
1066         kvm_free_memslot(kvm, &new, &old);
1067 out:
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1071
1072 int kvm_set_memory_region(struct kvm *kvm,
1073                           const struct kvm_userspace_memory_region *mem)
1074 {
1075         int r;
1076
1077         mutex_lock(&kvm->slots_lock);
1078         r = __kvm_set_memory_region(kvm, mem);
1079         mutex_unlock(&kvm->slots_lock);
1080         return r;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1083
1084 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1085                                           struct kvm_userspace_memory_region *mem)
1086 {
1087         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1088                 return -EINVAL;
1089
1090         return kvm_set_memory_region(kvm, mem);
1091 }
1092
1093 int kvm_get_dirty_log(struct kvm *kvm,
1094                         struct kvm_dirty_log *log, int *is_dirty)
1095 {
1096         struct kvm_memslots *slots;
1097         struct kvm_memory_slot *memslot;
1098         int i, as_id, id;
1099         unsigned long n;
1100         unsigned long any = 0;
1101
1102         as_id = log->slot >> 16;
1103         id = (u16)log->slot;
1104         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105                 return -EINVAL;
1106
1107         slots = __kvm_memslots(kvm, as_id);
1108         memslot = id_to_memslot(slots, id);
1109         if (!memslot->dirty_bitmap)
1110                 return -ENOENT;
1111
1112         n = kvm_dirty_bitmap_bytes(memslot);
1113
1114         for (i = 0; !any && i < n/sizeof(long); ++i)
1115                 any = memslot->dirty_bitmap[i];
1116
1117         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1118                 return -EFAULT;
1119
1120         if (any)
1121                 *is_dirty = 1;
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125
1126 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 /**
1128  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1129  *      are dirty write protect them for next write.
1130  * @kvm:        pointer to kvm instance
1131  * @log:        slot id and address to which we copy the log
1132  * @is_dirty:   flag set if any page is dirty
1133  *
1134  * We need to keep it in mind that VCPU threads can write to the bitmap
1135  * concurrently. So, to avoid losing track of dirty pages we keep the
1136  * following order:
1137  *
1138  *    1. Take a snapshot of the bit and clear it if needed.
1139  *    2. Write protect the corresponding page.
1140  *    3. Copy the snapshot to the userspace.
1141  *    4. Upon return caller flushes TLB's if needed.
1142  *
1143  * Between 2 and 4, the guest may write to the page using the remaining TLB
1144  * entry.  This is not a problem because the page is reported dirty using
1145  * the snapshot taken before and step 4 ensures that writes done after
1146  * exiting to userspace will be logged for the next call.
1147  *
1148  */
1149 int kvm_get_dirty_log_protect(struct kvm *kvm,
1150                         struct kvm_dirty_log *log, bool *is_dirty)
1151 {
1152         struct kvm_memslots *slots;
1153         struct kvm_memory_slot *memslot;
1154         int i, as_id, id;
1155         unsigned long n;
1156         unsigned long *dirty_bitmap;
1157         unsigned long *dirty_bitmap_buffer;
1158
1159         as_id = log->slot >> 16;
1160         id = (u16)log->slot;
1161         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1162                 return -EINVAL;
1163
1164         slots = __kvm_memslots(kvm, as_id);
1165         memslot = id_to_memslot(slots, id);
1166
1167         dirty_bitmap = memslot->dirty_bitmap;
1168         if (!dirty_bitmap)
1169                 return -ENOENT;
1170
1171         n = kvm_dirty_bitmap_bytes(memslot);
1172
1173         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1174         memset(dirty_bitmap_buffer, 0, n);
1175
1176         spin_lock(&kvm->mmu_lock);
1177         *is_dirty = false;
1178         for (i = 0; i < n / sizeof(long); i++) {
1179                 unsigned long mask;
1180                 gfn_t offset;
1181
1182                 if (!dirty_bitmap[i])
1183                         continue;
1184
1185                 *is_dirty = true;
1186
1187                 mask = xchg(&dirty_bitmap[i], 0);
1188                 dirty_bitmap_buffer[i] = mask;
1189
1190                 if (mask) {
1191                         offset = i * BITS_PER_LONG;
1192                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1193                                                                 offset, mask);
1194                 }
1195         }
1196
1197         spin_unlock(&kvm->mmu_lock);
1198         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1199                 return -EFAULT;
1200         return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1203 #endif
1204
1205 bool kvm_largepages_enabled(void)
1206 {
1207         return largepages_enabled;
1208 }
1209
1210 void kvm_disable_largepages(void)
1211 {
1212         largepages_enabled = false;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1215
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1217 {
1218         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1221
1222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1223 {
1224         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1225 }
1226
1227 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1230
1231         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1232               memslot->flags & KVM_MEMSLOT_INVALID)
1233                 return false;
1234
1235         return true;
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1238
1239 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1240 {
1241         struct vm_area_struct *vma;
1242         unsigned long addr, size;
1243
1244         size = PAGE_SIZE;
1245
1246         addr = gfn_to_hva(kvm, gfn);
1247         if (kvm_is_error_hva(addr))
1248                 return PAGE_SIZE;
1249
1250         down_read(&current->mm->mmap_sem);
1251         vma = find_vma(current->mm, addr);
1252         if (!vma)
1253                 goto out;
1254
1255         size = vma_kernel_pagesize(vma);
1256
1257 out:
1258         up_read(&current->mm->mmap_sem);
1259
1260         return size;
1261 }
1262
1263 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1264 {
1265         return slot->flags & KVM_MEM_READONLY;
1266 }
1267
1268 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1269                                        gfn_t *nr_pages, bool write)
1270 {
1271         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1272                 return KVM_HVA_ERR_BAD;
1273
1274         if (memslot_is_readonly(slot) && write)
1275                 return KVM_HVA_ERR_RO_BAD;
1276
1277         if (nr_pages)
1278                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1279
1280         return __gfn_to_hva_memslot(slot, gfn);
1281 }
1282
1283 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1284                                      gfn_t *nr_pages)
1285 {
1286         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1287 }
1288
1289 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1290                                         gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(slot, gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1295
1296 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1297 {
1298         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_hva);
1301
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1303 {
1304         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1307
1308 /*
1309  * If writable is set to false, the hva returned by this function is only
1310  * allowed to be read.
1311  */
1312 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1313                                       gfn_t gfn, bool *writable)
1314 {
1315         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1316
1317         if (!kvm_is_error_hva(hva) && writable)
1318                 *writable = !memslot_is_readonly(slot);
1319
1320         return hva;
1321 }
1322
1323 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1324 {
1325         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1326
1327         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1328 }
1329
1330 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1331 {
1332         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1333
1334         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336
1337 static int get_user_page_nowait(unsigned long start, int write,
1338                 struct page **page)
1339 {
1340         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1341
1342         if (write)
1343                 flags |= FOLL_WRITE;
1344
1345         return get_user_pages(start, 1, flags, page, NULL);
1346 }
1347
1348 static inline int check_user_page_hwpoison(unsigned long addr)
1349 {
1350         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1351
1352         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1353         return rc == -EHWPOISON;
1354 }
1355
1356 /*
1357  * The atomic path to get the writable pfn which will be stored in @pfn,
1358  * true indicates success, otherwise false is returned.
1359  */
1360 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1361                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1362 {
1363         struct page *page[1];
1364         int npages;
1365
1366         if (!(async || atomic))
1367                 return false;
1368
1369         /*
1370          * Fast pin a writable pfn only if it is a write fault request
1371          * or the caller allows to map a writable pfn for a read fault
1372          * request.
1373          */
1374         if (!(write_fault || writable))
1375                 return false;
1376
1377         npages = __get_user_pages_fast(addr, 1, 1, page);
1378         if (npages == 1) {
1379                 *pfn = page_to_pfn(page[0]);
1380
1381                 if (writable)
1382                         *writable = true;
1383                 return true;
1384         }
1385
1386         return false;
1387 }
1388
1389 /*
1390  * The slow path to get the pfn of the specified host virtual address,
1391  * 1 indicates success, -errno is returned if error is detected.
1392  */
1393 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1394                            bool *writable, kvm_pfn_t *pfn)
1395 {
1396         struct page *page[1];
1397         int npages = 0;
1398
1399         might_sleep();
1400
1401         if (writable)
1402                 *writable = write_fault;
1403
1404         if (async) {
1405                 down_read(&current->mm->mmap_sem);
1406                 npages = get_user_page_nowait(addr, write_fault, page);
1407                 up_read(&current->mm->mmap_sem);
1408         } else {
1409                 unsigned int flags = FOLL_HWPOISON;
1410
1411                 if (write_fault)
1412                         flags |= FOLL_WRITE;
1413
1414                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1415         }
1416         if (npages != 1)
1417                 return npages;
1418
1419         /* map read fault as writable if possible */
1420         if (unlikely(!write_fault) && writable) {
1421                 struct page *wpage[1];
1422
1423                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424                 if (npages == 1) {
1425                         *writable = true;
1426                         put_page(page[0]);
1427                         page[0] = wpage[0];
1428                 }
1429
1430                 npages = 1;
1431         }
1432         *pfn = page_to_pfn(page[0]);
1433         return npages;
1434 }
1435
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438         if (unlikely(!(vma->vm_flags & VM_READ)))
1439                 return false;
1440
1441         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442                 return false;
1443
1444         return true;
1445 }
1446
1447 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1448                                unsigned long addr, bool *async,
1449                                bool write_fault, kvm_pfn_t *p_pfn)
1450 {
1451         unsigned long pfn;
1452         int r;
1453
1454         r = follow_pfn(vma, addr, &pfn);
1455         if (r) {
1456                 /*
1457                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1458                  * not call the fault handler, so do it here.
1459                  */
1460                 bool unlocked = false;
1461                 r = fixup_user_fault(current, current->mm, addr,
1462                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1463                                      &unlocked);
1464                 if (unlocked)
1465                         return -EAGAIN;
1466                 if (r)
1467                         return r;
1468
1469                 r = follow_pfn(vma, addr, &pfn);
1470                 if (r)
1471                         return r;
1472
1473         }
1474
1475
1476         /*
1477          * Get a reference here because callers of *hva_to_pfn* and
1478          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1479          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1480          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1481          * simply do nothing for reserved pfns.
1482          *
1483          * Whoever called remap_pfn_range is also going to call e.g.
1484          * unmap_mapping_range before the underlying pages are freed,
1485          * causing a call to our MMU notifier.
1486          */ 
1487         kvm_get_pfn(pfn);
1488
1489         *p_pfn = pfn;
1490         return 0;
1491 }
1492
1493 /*
1494  * Pin guest page in memory and return its pfn.
1495  * @addr: host virtual address which maps memory to the guest
1496  * @atomic: whether this function can sleep
1497  * @async: whether this function need to wait IO complete if the
1498  *         host page is not in the memory
1499  * @write_fault: whether we should get a writable host page
1500  * @writable: whether it allows to map a writable host page for !@write_fault
1501  *
1502  * The function will map a writable host page for these two cases:
1503  * 1): @write_fault = true
1504  * 2): @write_fault = false && @writable, @writable will tell the caller
1505  *     whether the mapping is writable.
1506  */
1507 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1508                         bool write_fault, bool *writable)
1509 {
1510         struct vm_area_struct *vma;
1511         kvm_pfn_t pfn = 0;
1512         int npages, r;
1513
1514         /* we can do it either atomically or asynchronously, not both */
1515         BUG_ON(atomic && async);
1516
1517         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1518                 return pfn;
1519
1520         if (atomic)
1521                 return KVM_PFN_ERR_FAULT;
1522
1523         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1524         if (npages == 1)
1525                 return pfn;
1526
1527         down_read(&current->mm->mmap_sem);
1528         if (npages == -EHWPOISON ||
1529               (!async && check_user_page_hwpoison(addr))) {
1530                 pfn = KVM_PFN_ERR_HWPOISON;
1531                 goto exit;
1532         }
1533
1534 retry:
1535         vma = find_vma_intersection(current->mm, addr, addr + 1);
1536
1537         if (vma == NULL)
1538                 pfn = KVM_PFN_ERR_FAULT;
1539         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1540                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1541                 if (r == -EAGAIN)
1542                         goto retry;
1543                 if (r < 0)
1544                         pfn = KVM_PFN_ERR_FAULT;
1545         } else {
1546                 if (async && vma_is_valid(vma, write_fault))
1547                         *async = true;
1548                 pfn = KVM_PFN_ERR_FAULT;
1549         }
1550 exit:
1551         up_read(&current->mm->mmap_sem);
1552         return pfn;
1553 }
1554
1555 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1556                                bool atomic, bool *async, bool write_fault,
1557                                bool *writable)
1558 {
1559         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1560
1561         if (addr == KVM_HVA_ERR_RO_BAD) {
1562                 if (writable)
1563                         *writable = false;
1564                 return KVM_PFN_ERR_RO_FAULT;
1565         }
1566
1567         if (kvm_is_error_hva(addr)) {
1568                 if (writable)
1569                         *writable = false;
1570                 return KVM_PFN_NOSLOT;
1571         }
1572
1573         /* Do not map writable pfn in the readonly memslot. */
1574         if (writable && memslot_is_readonly(slot)) {
1575                 *writable = false;
1576                 writable = NULL;
1577         }
1578
1579         return hva_to_pfn(addr, atomic, async, write_fault,
1580                           writable);
1581 }
1582 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1583
1584 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1585                       bool *writable)
1586 {
1587         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1588                                     write_fault, writable);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1591
1592 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1593 {
1594         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1597
1598 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1599 {
1600         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1603
1604 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1609
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1627
1628 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1629                             struct page **pages, int nr_pages)
1630 {
1631         unsigned long addr;
1632         gfn_t entry;
1633
1634         addr = gfn_to_hva_many(slot, gfn, &entry);
1635         if (kvm_is_error_hva(addr))
1636                 return -1;
1637
1638         if (entry < nr_pages)
1639                 return 0;
1640
1641         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1642 }
1643 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1644
1645 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1646 {
1647         if (is_error_noslot_pfn(pfn))
1648                 return KVM_ERR_PTR_BAD_PAGE;
1649
1650         if (kvm_is_reserved_pfn(pfn)) {
1651                 WARN_ON(1);
1652                 return KVM_ERR_PTR_BAD_PAGE;
1653         }
1654
1655         return pfn_to_page(pfn);
1656 }
1657
1658 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1659 {
1660         kvm_pfn_t pfn;
1661
1662         pfn = gfn_to_pfn(kvm, gfn);
1663
1664         return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_page);
1667
1668 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1669 {
1670         kvm_pfn_t pfn;
1671
1672         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1673
1674         return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1677
1678 void kvm_release_page_clean(struct page *page)
1679 {
1680         WARN_ON(is_error_page(page));
1681
1682         kvm_release_pfn_clean(page_to_pfn(page));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1685
1686 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1687 {
1688         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1689                 put_page(pfn_to_page(pfn));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1692
1693 void kvm_release_page_dirty(struct page *page)
1694 {
1695         WARN_ON(is_error_page(page));
1696
1697         kvm_release_pfn_dirty(page_to_pfn(page));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1700
1701 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703         kvm_set_pfn_dirty(pfn);
1704         kvm_release_pfn_clean(pfn);
1705 }
1706
1707 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1708 {
1709         if (!kvm_is_reserved_pfn(pfn)) {
1710                 struct page *page = pfn_to_page(pfn);
1711
1712                 if (!PageReserved(page))
1713                         SetPageDirty(page);
1714         }
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1717
1718 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1719 {
1720         if (!kvm_is_reserved_pfn(pfn))
1721                 mark_page_accessed(pfn_to_page(pfn));
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1724
1725 void kvm_get_pfn(kvm_pfn_t pfn)
1726 {
1727         if (!kvm_is_reserved_pfn(pfn))
1728                 get_page(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1731
1732 static int next_segment(unsigned long len, int offset)
1733 {
1734         if (len > PAGE_SIZE - offset)
1735                 return PAGE_SIZE - offset;
1736         else
1737                 return len;
1738 }
1739
1740 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1741                                  void *data, int offset, int len)
1742 {
1743         int r;
1744         unsigned long addr;
1745
1746         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1747         if (kvm_is_error_hva(addr))
1748                 return -EFAULT;
1749         r = __copy_from_user(data, (void __user *)addr + offset, len);
1750         if (r)
1751                 return -EFAULT;
1752         return 0;
1753 }
1754
1755 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1756                         int len)
1757 {
1758         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1759
1760         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1763
1764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1765                              int offset, int len)
1766 {
1767         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1768
1769         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1772
1773 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1774 {
1775         gfn_t gfn = gpa >> PAGE_SHIFT;
1776         int seg;
1777         int offset = offset_in_page(gpa);
1778         int ret;
1779
1780         while ((seg = next_segment(len, offset)) != 0) {
1781                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1782                 if (ret < 0)
1783                         return ret;
1784                 offset = 0;
1785                 len -= seg;
1786                 data += seg;
1787                 ++gfn;
1788         }
1789         return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_read_guest);
1792
1793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1794 {
1795         gfn_t gfn = gpa >> PAGE_SHIFT;
1796         int seg;
1797         int offset = offset_in_page(gpa);
1798         int ret;
1799
1800         while ((seg = next_segment(len, offset)) != 0) {
1801                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1802                 if (ret < 0)
1803                         return ret;
1804                 offset = 0;
1805                 len -= seg;
1806                 data += seg;
1807                 ++gfn;
1808         }
1809         return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1812
1813 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1814                                    void *data, int offset, unsigned long len)
1815 {
1816         int r;
1817         unsigned long addr;
1818
1819         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1820         if (kvm_is_error_hva(addr))
1821                 return -EFAULT;
1822         pagefault_disable();
1823         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1824         pagefault_enable();
1825         if (r)
1826                 return -EFAULT;
1827         return 0;
1828 }
1829
1830 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1831                           unsigned long len)
1832 {
1833         gfn_t gfn = gpa >> PAGE_SHIFT;
1834         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835         int offset = offset_in_page(gpa);
1836
1837         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1840
1841 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1842                                void *data, unsigned long len)
1843 {
1844         gfn_t gfn = gpa >> PAGE_SHIFT;
1845         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846         int offset = offset_in_page(gpa);
1847
1848         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1851
1852 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1853                                   const void *data, int offset, int len)
1854 {
1855         int r;
1856         unsigned long addr;
1857
1858         addr = gfn_to_hva_memslot(memslot, gfn);
1859         if (kvm_is_error_hva(addr))
1860                 return -EFAULT;
1861         r = __copy_to_user((void __user *)addr + offset, data, len);
1862         if (r)
1863                 return -EFAULT;
1864         mark_page_dirty_in_slot(memslot, gfn);
1865         return 0;
1866 }
1867
1868 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1869                          const void *data, int offset, int len)
1870 {
1871         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1872
1873         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1876
1877 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1878                               const void *data, int offset, int len)
1879 {
1880         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1881
1882         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1885
1886 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1887                     unsigned long len)
1888 {
1889         gfn_t gfn = gpa >> PAGE_SHIFT;
1890         int seg;
1891         int offset = offset_in_page(gpa);
1892         int ret;
1893
1894         while ((seg = next_segment(len, offset)) != 0) {
1895                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1896                 if (ret < 0)
1897                         return ret;
1898                 offset = 0;
1899                 len -= seg;
1900                 data += seg;
1901                 ++gfn;
1902         }
1903         return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_write_guest);
1906
1907 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1908                          unsigned long len)
1909 {
1910         gfn_t gfn = gpa >> PAGE_SHIFT;
1911         int seg;
1912         int offset = offset_in_page(gpa);
1913         int ret;
1914
1915         while ((seg = next_segment(len, offset)) != 0) {
1916                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1917                 if (ret < 0)
1918                         return ret;
1919                 offset = 0;
1920                 len -= seg;
1921                 data += seg;
1922                 ++gfn;
1923         }
1924         return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1927
1928 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1929                                        struct gfn_to_hva_cache *ghc,
1930                                        gpa_t gpa, unsigned long len)
1931 {
1932         int offset = offset_in_page(gpa);
1933         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1934         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1935         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1936         gfn_t nr_pages_avail;
1937
1938         ghc->gpa = gpa;
1939         ghc->generation = slots->generation;
1940         ghc->len = len;
1941         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1942         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1943         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1944                 ghc->hva += offset;
1945         } else {
1946                 /*
1947                  * If the requested region crosses two memslots, we still
1948                  * verify that the entire region is valid here.
1949                  */
1950                 while (start_gfn <= end_gfn) {
1951                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1952                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1953                                                    &nr_pages_avail);
1954                         if (kvm_is_error_hva(ghc->hva))
1955                                 return -EFAULT;
1956                         start_gfn += nr_pages_avail;
1957                 }
1958                 /* Use the slow path for cross page reads and writes. */
1959                 ghc->memslot = NULL;
1960         }
1961         return 0;
1962 }
1963
1964 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1965                               gpa_t gpa, unsigned long len)
1966 {
1967         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1968         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1971
1972 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1973                                        void *data, int offset, unsigned long len)
1974 {
1975         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1976         int r;
1977         gpa_t gpa = ghc->gpa + offset;
1978
1979         BUG_ON(len + offset > ghc->len);
1980
1981         if (slots->generation != ghc->generation)
1982                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1983
1984         if (unlikely(!ghc->memslot))
1985                 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1986
1987         if (kvm_is_error_hva(ghc->hva))
1988                 return -EFAULT;
1989
1990         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1991         if (r)
1992                 return -EFAULT;
1993         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1994
1995         return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
1998
1999 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2000                                void *data, unsigned long len)
2001 {
2002         return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2005
2006 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2007                                void *data, unsigned long len)
2008 {
2009         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2010         int r;
2011
2012         BUG_ON(len > ghc->len);
2013
2014         if (slots->generation != ghc->generation)
2015                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2016
2017         if (unlikely(!ghc->memslot))
2018                 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2019
2020         if (kvm_is_error_hva(ghc->hva))
2021                 return -EFAULT;
2022
2023         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2024         if (r)
2025                 return -EFAULT;
2026
2027         return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2030
2031 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2032 {
2033         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2034
2035         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2038
2039 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2040 {
2041         gfn_t gfn = gpa >> PAGE_SHIFT;
2042         int seg;
2043         int offset = offset_in_page(gpa);
2044         int ret;
2045
2046         while ((seg = next_segment(len, offset)) != 0) {
2047                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2048                 if (ret < 0)
2049                         return ret;
2050                 offset = 0;
2051                 len -= seg;
2052                 ++gfn;
2053         }
2054         return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2057
2058 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2059                                     gfn_t gfn)
2060 {
2061         if (memslot && memslot->dirty_bitmap) {
2062                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2063
2064                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2065         }
2066 }
2067
2068 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2069 {
2070         struct kvm_memory_slot *memslot;
2071
2072         memslot = gfn_to_memslot(kvm, gfn);
2073         mark_page_dirty_in_slot(memslot, gfn);
2074 }
2075 EXPORT_SYMBOL_GPL(mark_page_dirty);
2076
2077 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2078 {
2079         struct kvm_memory_slot *memslot;
2080
2081         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2082         mark_page_dirty_in_slot(memslot, gfn);
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2085
2086 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2087 {
2088         unsigned int old, val, grow;
2089
2090         old = val = vcpu->halt_poll_ns;
2091         grow = READ_ONCE(halt_poll_ns_grow);
2092         /* 10us base */
2093         if (val == 0 && grow)
2094                 val = 10000;
2095         else
2096                 val *= grow;
2097
2098         if (val > halt_poll_ns)
2099                 val = halt_poll_ns;
2100
2101         vcpu->halt_poll_ns = val;
2102         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2103 }
2104
2105 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2106 {
2107         unsigned int old, val, shrink;
2108
2109         old = val = vcpu->halt_poll_ns;
2110         shrink = READ_ONCE(halt_poll_ns_shrink);
2111         if (shrink == 0)
2112                 val = 0;
2113         else
2114                 val /= shrink;
2115
2116         vcpu->halt_poll_ns = val;
2117         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2118 }
2119
2120 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2121 {
2122         if (kvm_arch_vcpu_runnable(vcpu)) {
2123                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2124                 return -EINTR;
2125         }
2126         if (kvm_cpu_has_pending_timer(vcpu))
2127                 return -EINTR;
2128         if (signal_pending(current))
2129                 return -EINTR;
2130
2131         return 0;
2132 }
2133
2134 /*
2135  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2136  */
2137 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2138 {
2139         ktime_t start, cur;
2140         DECLARE_SWAITQUEUE(wait);
2141         bool waited = false;
2142         u64 block_ns;
2143
2144         start = cur = ktime_get();
2145         if (vcpu->halt_poll_ns) {
2146                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2147
2148                 ++vcpu->stat.halt_attempted_poll;
2149                 do {
2150                         /*
2151                          * This sets KVM_REQ_UNHALT if an interrupt
2152                          * arrives.
2153                          */
2154                         if (kvm_vcpu_check_block(vcpu) < 0) {
2155                                 ++vcpu->stat.halt_successful_poll;
2156                                 if (!vcpu_valid_wakeup(vcpu))
2157                                         ++vcpu->stat.halt_poll_invalid;
2158                                 goto out;
2159                         }
2160                         cur = ktime_get();
2161                 } while (single_task_running() && ktime_before(cur, stop));
2162         }
2163
2164         kvm_arch_vcpu_blocking(vcpu);
2165
2166         for (;;) {
2167                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2168
2169                 if (kvm_vcpu_check_block(vcpu) < 0)
2170                         break;
2171
2172                 waited = true;
2173                 schedule();
2174         }
2175
2176         finish_swait(&vcpu->wq, &wait);
2177         cur = ktime_get();
2178
2179         kvm_arch_vcpu_unblocking(vcpu);
2180 out:
2181         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2182
2183         if (!vcpu_valid_wakeup(vcpu))
2184                 shrink_halt_poll_ns(vcpu);
2185         else if (halt_poll_ns) {
2186                 if (block_ns <= vcpu->halt_poll_ns)
2187                         ;
2188                 /* we had a long block, shrink polling */
2189                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2190                         shrink_halt_poll_ns(vcpu);
2191                 /* we had a short halt and our poll time is too small */
2192                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2193                         block_ns < halt_poll_ns)
2194                         grow_halt_poll_ns(vcpu);
2195         } else
2196                 vcpu->halt_poll_ns = 0;
2197
2198         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2199         kvm_arch_vcpu_block_finish(vcpu);
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2202
2203 #ifndef CONFIG_S390
2204 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2205 {
2206         struct swait_queue_head *wqp;
2207
2208         wqp = kvm_arch_vcpu_wq(vcpu);
2209         if (swait_active(wqp)) {
2210                 swake_up(wqp);
2211                 ++vcpu->stat.halt_wakeup;
2212         }
2213
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2216
2217 /*
2218  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2219  */
2220 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2221 {
2222         int me;
2223         int cpu = vcpu->cpu;
2224
2225         kvm_vcpu_wake_up(vcpu);
2226         me = get_cpu();
2227         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2228                 if (kvm_arch_vcpu_should_kick(vcpu))
2229                         smp_send_reschedule(cpu);
2230         put_cpu();
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2233 #endif /* !CONFIG_S390 */
2234
2235 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2236 {
2237         struct pid *pid;
2238         struct task_struct *task = NULL;
2239         int ret = 0;
2240
2241         rcu_read_lock();
2242         pid = rcu_dereference(target->pid);
2243         if (pid)
2244                 task = get_pid_task(pid, PIDTYPE_PID);
2245         rcu_read_unlock();
2246         if (!task)
2247                 return ret;
2248         ret = yield_to(task, 1);
2249         put_task_struct(task);
2250
2251         return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2254
2255 /*
2256  * Helper that checks whether a VCPU is eligible for directed yield.
2257  * Most eligible candidate to yield is decided by following heuristics:
2258  *
2259  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2260  *  (preempted lock holder), indicated by @in_spin_loop.
2261  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2262  *
2263  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2264  *  chance last time (mostly it has become eligible now since we have probably
2265  *  yielded to lockholder in last iteration. This is done by toggling
2266  *  @dy_eligible each time a VCPU checked for eligibility.)
2267  *
2268  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2269  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2270  *  burning. Giving priority for a potential lock-holder increases lock
2271  *  progress.
2272  *
2273  *  Since algorithm is based on heuristics, accessing another VCPU data without
2274  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2275  *  and continue with next VCPU and so on.
2276  */
2277 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2278 {
2279 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2280         bool eligible;
2281
2282         eligible = !vcpu->spin_loop.in_spin_loop ||
2283                     vcpu->spin_loop.dy_eligible;
2284
2285         if (vcpu->spin_loop.in_spin_loop)
2286                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2287
2288         return eligible;
2289 #else
2290         return true;
2291 #endif
2292 }
2293
2294 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2295 {
2296         struct kvm *kvm = me->kvm;
2297         struct kvm_vcpu *vcpu;
2298         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2299         int yielded = 0;
2300         int try = 3;
2301         int pass;
2302         int i;
2303
2304         kvm_vcpu_set_in_spin_loop(me, true);
2305         /*
2306          * We boost the priority of a VCPU that is runnable but not
2307          * currently running, because it got preempted by something
2308          * else and called schedule in __vcpu_run.  Hopefully that
2309          * VCPU is holding the lock that we need and will release it.
2310          * We approximate round-robin by starting at the last boosted VCPU.
2311          */
2312         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2313                 kvm_for_each_vcpu(i, vcpu, kvm) {
2314                         if (!pass && i <= last_boosted_vcpu) {
2315                                 i = last_boosted_vcpu;
2316                                 continue;
2317                         } else if (pass && i > last_boosted_vcpu)
2318                                 break;
2319                         if (!ACCESS_ONCE(vcpu->preempted))
2320                                 continue;
2321                         if (vcpu == me)
2322                                 continue;
2323                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2324                                 continue;
2325                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2326                                 continue;
2327
2328                         yielded = kvm_vcpu_yield_to(vcpu);
2329                         if (yielded > 0) {
2330                                 kvm->last_boosted_vcpu = i;
2331                                 break;
2332                         } else if (yielded < 0) {
2333                                 try--;
2334                                 if (!try)
2335                                         break;
2336                         }
2337                 }
2338         }
2339         kvm_vcpu_set_in_spin_loop(me, false);
2340
2341         /* Ensure vcpu is not eligible during next spinloop */
2342         kvm_vcpu_set_dy_eligible(me, false);
2343 }
2344 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2345
2346 static int kvm_vcpu_fault(struct vm_fault *vmf)
2347 {
2348         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2349         struct page *page;
2350
2351         if (vmf->pgoff == 0)
2352                 page = virt_to_page(vcpu->run);
2353 #ifdef CONFIG_X86
2354         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2355                 page = virt_to_page(vcpu->arch.pio_data);
2356 #endif
2357 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2358         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2359                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2360 #endif
2361         else
2362                 return kvm_arch_vcpu_fault(vcpu, vmf);
2363         get_page(page);
2364         vmf->page = page;
2365         return 0;
2366 }
2367
2368 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2369         .fault = kvm_vcpu_fault,
2370 };
2371
2372 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2373 {
2374         vma->vm_ops = &kvm_vcpu_vm_ops;
2375         return 0;
2376 }
2377
2378 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2379 {
2380         struct kvm_vcpu *vcpu = filp->private_data;
2381
2382         debugfs_remove_recursive(vcpu->debugfs_dentry);
2383         kvm_put_kvm(vcpu->kvm);
2384         return 0;
2385 }
2386
2387 static struct file_operations kvm_vcpu_fops = {
2388         .release        = kvm_vcpu_release,
2389         .unlocked_ioctl = kvm_vcpu_ioctl,
2390 #ifdef CONFIG_KVM_COMPAT
2391         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2392 #endif
2393         .mmap           = kvm_vcpu_mmap,
2394         .llseek         = noop_llseek,
2395 };
2396
2397 /*
2398  * Allocates an inode for the vcpu.
2399  */
2400 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2401 {
2402         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2403 }
2404
2405 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2406 {
2407         char dir_name[ITOA_MAX_LEN * 2];
2408         int ret;
2409
2410         if (!kvm_arch_has_vcpu_debugfs())
2411                 return 0;
2412
2413         if (!debugfs_initialized())
2414                 return 0;
2415
2416         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2417         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2418                                                                 vcpu->kvm->debugfs_dentry);
2419         if (!vcpu->debugfs_dentry)
2420                 return -ENOMEM;
2421
2422         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2423         if (ret < 0) {
2424                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2425                 return ret;
2426         }
2427
2428         return 0;
2429 }
2430
2431 /*
2432  * Creates some virtual cpus.  Good luck creating more than one.
2433  */
2434 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2435 {
2436         int r;
2437         struct kvm_vcpu *vcpu;
2438
2439         if (id >= KVM_MAX_VCPU_ID)
2440                 return -EINVAL;
2441
2442         mutex_lock(&kvm->lock);
2443         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2444                 mutex_unlock(&kvm->lock);
2445                 return -EINVAL;
2446         }
2447
2448         kvm->created_vcpus++;
2449         mutex_unlock(&kvm->lock);
2450
2451         vcpu = kvm_arch_vcpu_create(kvm, id);
2452         if (IS_ERR(vcpu)) {
2453                 r = PTR_ERR(vcpu);
2454                 goto vcpu_decrement;
2455         }
2456
2457         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2458
2459         r = kvm_arch_vcpu_setup(vcpu);
2460         if (r)
2461                 goto vcpu_destroy;
2462
2463         r = kvm_create_vcpu_debugfs(vcpu);
2464         if (r)
2465                 goto vcpu_destroy;
2466
2467         mutex_lock(&kvm->lock);
2468         if (kvm_get_vcpu_by_id(kvm, id)) {
2469                 r = -EEXIST;
2470                 goto unlock_vcpu_destroy;
2471         }
2472
2473         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2474
2475         /* Now it's all set up, let userspace reach it */
2476         kvm_get_kvm(kvm);
2477         r = create_vcpu_fd(vcpu);
2478         if (r < 0) {
2479                 kvm_put_kvm(kvm);
2480                 goto unlock_vcpu_destroy;
2481         }
2482
2483         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2484
2485         /*
2486          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2487          * before kvm->online_vcpu's incremented value.
2488          */
2489         smp_wmb();
2490         atomic_inc(&kvm->online_vcpus);
2491
2492         mutex_unlock(&kvm->lock);
2493         kvm_arch_vcpu_postcreate(vcpu);
2494         return r;
2495
2496 unlock_vcpu_destroy:
2497         mutex_unlock(&kvm->lock);
2498         debugfs_remove_recursive(vcpu->debugfs_dentry);
2499 vcpu_destroy:
2500         kvm_arch_vcpu_destroy(vcpu);
2501 vcpu_decrement:
2502         mutex_lock(&kvm->lock);
2503         kvm->created_vcpus--;
2504         mutex_unlock(&kvm->lock);
2505         return r;
2506 }
2507
2508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2509 {
2510         if (sigset) {
2511                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512                 vcpu->sigset_active = 1;
2513                 vcpu->sigset = *sigset;
2514         } else
2515                 vcpu->sigset_active = 0;
2516         return 0;
2517 }
2518
2519 static long kvm_vcpu_ioctl(struct file *filp,
2520                            unsigned int ioctl, unsigned long arg)
2521 {
2522         struct kvm_vcpu *vcpu = filp->private_data;
2523         void __user *argp = (void __user *)arg;
2524         int r;
2525         struct kvm_fpu *fpu = NULL;
2526         struct kvm_sregs *kvm_sregs = NULL;
2527
2528         if (vcpu->kvm->mm != current->mm)
2529                 return -EIO;
2530
2531         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2532                 return -EINVAL;
2533
2534 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2535         /*
2536          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2537          * so vcpu_load() would break it.
2538          */
2539         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2540                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2541 #endif
2542
2543
2544         r = vcpu_load(vcpu);
2545         if (r)
2546                 return r;
2547         switch (ioctl) {
2548         case KVM_RUN:
2549                 r = -EINVAL;
2550                 if (arg)
2551                         goto out;
2552                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2553                         /* The thread running this VCPU changed. */
2554                         struct pid *oldpid = vcpu->pid;
2555                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2556
2557                         rcu_assign_pointer(vcpu->pid, newpid);
2558                         if (oldpid)
2559                                 synchronize_rcu();
2560                         put_pid(oldpid);
2561                 }
2562                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2563                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2564                 break;
2565         case KVM_GET_REGS: {
2566                 struct kvm_regs *kvm_regs;
2567
2568                 r = -ENOMEM;
2569                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2570                 if (!kvm_regs)
2571                         goto out;
2572                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2573                 if (r)
2574                         goto out_free1;
2575                 r = -EFAULT;
2576                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2577                         goto out_free1;
2578                 r = 0;
2579 out_free1:
2580                 kfree(kvm_regs);
2581                 break;
2582         }
2583         case KVM_SET_REGS: {
2584                 struct kvm_regs *kvm_regs;
2585
2586                 r = -ENOMEM;
2587                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2588                 if (IS_ERR(kvm_regs)) {
2589                         r = PTR_ERR(kvm_regs);
2590                         goto out;
2591                 }
2592                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2593                 kfree(kvm_regs);
2594                 break;
2595         }
2596         case KVM_GET_SREGS: {
2597                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2598                 r = -ENOMEM;
2599                 if (!kvm_sregs)
2600                         goto out;
2601                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2602                 if (r)
2603                         goto out;
2604                 r = -EFAULT;
2605                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2606                         goto out;
2607                 r = 0;
2608                 break;
2609         }
2610         case KVM_SET_SREGS: {
2611                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2612                 if (IS_ERR(kvm_sregs)) {
2613                         r = PTR_ERR(kvm_sregs);
2614                         kvm_sregs = NULL;
2615                         goto out;
2616                 }
2617                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2618                 break;
2619         }
2620         case KVM_GET_MP_STATE: {
2621                 struct kvm_mp_state mp_state;
2622
2623                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2624                 if (r)
2625                         goto out;
2626                 r = -EFAULT;
2627                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2628                         goto out;
2629                 r = 0;
2630                 break;
2631         }
2632         case KVM_SET_MP_STATE: {
2633                 struct kvm_mp_state mp_state;
2634
2635                 r = -EFAULT;
2636                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2637                         goto out;
2638                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2639                 break;
2640         }
2641         case KVM_TRANSLATE: {
2642                 struct kvm_translation tr;
2643
2644                 r = -EFAULT;
2645                 if (copy_from_user(&tr, argp, sizeof(tr)))
2646                         goto out;
2647                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2648                 if (r)
2649                         goto out;
2650                 r = -EFAULT;
2651                 if (copy_to_user(argp, &tr, sizeof(tr)))
2652                         goto out;
2653                 r = 0;
2654                 break;
2655         }
2656         case KVM_SET_GUEST_DEBUG: {
2657                 struct kvm_guest_debug dbg;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2661                         goto out;
2662                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2663                 break;
2664         }
2665         case KVM_SET_SIGNAL_MASK: {
2666                 struct kvm_signal_mask __user *sigmask_arg = argp;
2667                 struct kvm_signal_mask kvm_sigmask;
2668                 sigset_t sigset, *p;
2669
2670                 p = NULL;
2671                 if (argp) {
2672                         r = -EFAULT;
2673                         if (copy_from_user(&kvm_sigmask, argp,
2674                                            sizeof(kvm_sigmask)))
2675                                 goto out;
2676                         r = -EINVAL;
2677                         if (kvm_sigmask.len != sizeof(sigset))
2678                                 goto out;
2679                         r = -EFAULT;
2680                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2681                                            sizeof(sigset)))
2682                                 goto out;
2683                         p = &sigset;
2684                 }
2685                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2686                 break;
2687         }
2688         case KVM_GET_FPU: {
2689                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2690                 r = -ENOMEM;
2691                 if (!fpu)
2692                         goto out;
2693                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2694                 if (r)
2695                         goto out;
2696                 r = -EFAULT;
2697                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2698                         goto out;
2699                 r = 0;
2700                 break;
2701         }
2702         case KVM_SET_FPU: {
2703                 fpu = memdup_user(argp, sizeof(*fpu));
2704                 if (IS_ERR(fpu)) {
2705                         r = PTR_ERR(fpu);
2706                         fpu = NULL;
2707                         goto out;
2708                 }
2709                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2710                 break;
2711         }
2712         default:
2713                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2714         }
2715 out:
2716         vcpu_put(vcpu);
2717         kfree(fpu);
2718         kfree(kvm_sregs);
2719         return r;
2720 }
2721
2722 #ifdef CONFIG_KVM_COMPAT
2723 static long kvm_vcpu_compat_ioctl(struct file *filp,
2724                                   unsigned int ioctl, unsigned long arg)
2725 {
2726         struct kvm_vcpu *vcpu = filp->private_data;
2727         void __user *argp = compat_ptr(arg);
2728         int r;
2729
2730         if (vcpu->kvm->mm != current->mm)
2731                 return -EIO;
2732
2733         switch (ioctl) {
2734         case KVM_SET_SIGNAL_MASK: {
2735                 struct kvm_signal_mask __user *sigmask_arg = argp;
2736                 struct kvm_signal_mask kvm_sigmask;
2737                 compat_sigset_t csigset;
2738                 sigset_t sigset;
2739
2740                 if (argp) {
2741                         r = -EFAULT;
2742                         if (copy_from_user(&kvm_sigmask, argp,
2743                                            sizeof(kvm_sigmask)))
2744                                 goto out;
2745                         r = -EINVAL;
2746                         if (kvm_sigmask.len != sizeof(csigset))
2747                                 goto out;
2748                         r = -EFAULT;
2749                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2750                                            sizeof(csigset)))
2751                                 goto out;
2752                         sigset_from_compat(&sigset, &csigset);
2753                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2754                 } else
2755                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2756                 break;
2757         }
2758         default:
2759                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2760         }
2761
2762 out:
2763         return r;
2764 }
2765 #endif
2766
2767 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2768                                  int (*accessor)(struct kvm_device *dev,
2769                                                  struct kvm_device_attr *attr),
2770                                  unsigned long arg)
2771 {
2772         struct kvm_device_attr attr;
2773
2774         if (!accessor)
2775                 return -EPERM;
2776
2777         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2778                 return -EFAULT;
2779
2780         return accessor(dev, &attr);
2781 }
2782
2783 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2784                              unsigned long arg)
2785 {
2786         struct kvm_device *dev = filp->private_data;
2787
2788         switch (ioctl) {
2789         case KVM_SET_DEVICE_ATTR:
2790                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2791         case KVM_GET_DEVICE_ATTR:
2792                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2793         case KVM_HAS_DEVICE_ATTR:
2794                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2795         default:
2796                 if (dev->ops->ioctl)
2797                         return dev->ops->ioctl(dev, ioctl, arg);
2798
2799                 return -ENOTTY;
2800         }
2801 }
2802
2803 static int kvm_device_release(struct inode *inode, struct file *filp)
2804 {
2805         struct kvm_device *dev = filp->private_data;
2806         struct kvm *kvm = dev->kvm;
2807
2808         kvm_put_kvm(kvm);
2809         return 0;
2810 }
2811
2812 static const struct file_operations kvm_device_fops = {
2813         .unlocked_ioctl = kvm_device_ioctl,
2814 #ifdef CONFIG_KVM_COMPAT
2815         .compat_ioctl = kvm_device_ioctl,
2816 #endif
2817         .release = kvm_device_release,
2818 };
2819
2820 struct kvm_device *kvm_device_from_filp(struct file *filp)
2821 {
2822         if (filp->f_op != &kvm_device_fops)
2823                 return NULL;
2824
2825         return filp->private_data;
2826 }
2827
2828 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2829 #ifdef CONFIG_KVM_MPIC
2830         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2831         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2832 #endif
2833
2834 #ifdef CONFIG_KVM_XICS
2835         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2836 #endif
2837 };
2838
2839 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2840 {
2841         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2842                 return -ENOSPC;
2843
2844         if (kvm_device_ops_table[type] != NULL)
2845                 return -EEXIST;
2846
2847         kvm_device_ops_table[type] = ops;
2848         return 0;
2849 }
2850
2851 void kvm_unregister_device_ops(u32 type)
2852 {
2853         if (kvm_device_ops_table[type] != NULL)
2854                 kvm_device_ops_table[type] = NULL;
2855 }
2856
2857 static int kvm_ioctl_create_device(struct kvm *kvm,
2858                                    struct kvm_create_device *cd)
2859 {
2860         struct kvm_device_ops *ops = NULL;
2861         struct kvm_device *dev;
2862         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2863         int ret;
2864
2865         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2866                 return -ENODEV;
2867
2868         ops = kvm_device_ops_table[cd->type];
2869         if (ops == NULL)
2870                 return -ENODEV;
2871
2872         if (test)
2873                 return 0;
2874
2875         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2876         if (!dev)
2877                 return -ENOMEM;
2878
2879         dev->ops = ops;
2880         dev->kvm = kvm;
2881
2882         mutex_lock(&kvm->lock);
2883         ret = ops->create(dev, cd->type);
2884         if (ret < 0) {
2885                 mutex_unlock(&kvm->lock);
2886                 kfree(dev);
2887                 return ret;
2888         }
2889         list_add(&dev->vm_node, &kvm->devices);
2890         mutex_unlock(&kvm->lock);
2891
2892         if (ops->init)
2893                 ops->init(dev);
2894
2895         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2896         if (ret < 0) {
2897                 mutex_lock(&kvm->lock);
2898                 list_del(&dev->vm_node);
2899                 mutex_unlock(&kvm->lock);
2900                 ops->destroy(dev);
2901                 return ret;
2902         }
2903
2904         kvm_get_kvm(kvm);
2905         cd->fd = ret;
2906         return 0;
2907 }
2908
2909 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2910 {
2911         switch (arg) {
2912         case KVM_CAP_USER_MEMORY:
2913         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2914         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2915         case KVM_CAP_INTERNAL_ERROR_DATA:
2916 #ifdef CONFIG_HAVE_KVM_MSI
2917         case KVM_CAP_SIGNAL_MSI:
2918 #endif
2919 #ifdef CONFIG_HAVE_KVM_IRQFD
2920         case KVM_CAP_IRQFD:
2921         case KVM_CAP_IRQFD_RESAMPLE:
2922 #endif
2923         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2924         case KVM_CAP_CHECK_EXTENSION_VM:
2925                 return 1;
2926 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2927         case KVM_CAP_IRQ_ROUTING:
2928                 return KVM_MAX_IRQ_ROUTES;
2929 #endif
2930 #if KVM_ADDRESS_SPACE_NUM > 1
2931         case KVM_CAP_MULTI_ADDRESS_SPACE:
2932                 return KVM_ADDRESS_SPACE_NUM;
2933 #endif
2934         case KVM_CAP_MAX_VCPU_ID:
2935                 return KVM_MAX_VCPU_ID;
2936         default:
2937                 break;
2938         }
2939         return kvm_vm_ioctl_check_extension(kvm, arg);
2940 }
2941
2942 static long kvm_vm_ioctl(struct file *filp,
2943                            unsigned int ioctl, unsigned long arg)
2944 {
2945         struct kvm *kvm = filp->private_data;
2946         void __user *argp = (void __user *)arg;
2947         int r;
2948
2949         if (kvm->mm != current->mm)
2950                 return -EIO;
2951         switch (ioctl) {
2952         case KVM_CREATE_VCPU:
2953                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2954                 break;
2955         case KVM_SET_USER_MEMORY_REGION: {
2956                 struct kvm_userspace_memory_region kvm_userspace_mem;
2957
2958                 r = -EFAULT;
2959                 if (copy_from_user(&kvm_userspace_mem, argp,
2960                                                 sizeof(kvm_userspace_mem)))
2961                         goto out;
2962
2963                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2964                 break;
2965         }
2966         case KVM_GET_DIRTY_LOG: {
2967                 struct kvm_dirty_log log;
2968
2969                 r = -EFAULT;
2970                 if (copy_from_user(&log, argp, sizeof(log)))
2971                         goto out;
2972                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2973                 break;
2974         }
2975 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2976         case KVM_REGISTER_COALESCED_MMIO: {
2977                 struct kvm_coalesced_mmio_zone zone;
2978
2979                 r = -EFAULT;
2980                 if (copy_from_user(&zone, argp, sizeof(zone)))
2981                         goto out;
2982                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2983                 break;
2984         }
2985         case KVM_UNREGISTER_COALESCED_MMIO: {
2986                 struct kvm_coalesced_mmio_zone zone;
2987
2988                 r = -EFAULT;
2989                 if (copy_from_user(&zone, argp, sizeof(zone)))
2990                         goto out;
2991                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2992                 break;
2993         }
2994 #endif
2995         case KVM_IRQFD: {
2996                 struct kvm_irqfd data;
2997
2998                 r = -EFAULT;
2999                 if (copy_from_user(&data, argp, sizeof(data)))
3000                         goto out;
3001                 r = kvm_irqfd(kvm, &data);
3002                 break;
3003         }
3004         case KVM_IOEVENTFD: {
3005                 struct kvm_ioeventfd data;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&data, argp, sizeof(data)))
3009                         goto out;
3010                 r = kvm_ioeventfd(kvm, &data);
3011                 break;
3012         }
3013 #ifdef CONFIG_HAVE_KVM_MSI
3014         case KVM_SIGNAL_MSI: {
3015                 struct kvm_msi msi;
3016
3017                 r = -EFAULT;
3018                 if (copy_from_user(&msi, argp, sizeof(msi)))
3019                         goto out;
3020                 r = kvm_send_userspace_msi(kvm, &msi);
3021                 break;
3022         }
3023 #endif
3024 #ifdef __KVM_HAVE_IRQ_LINE
3025         case KVM_IRQ_LINE_STATUS:
3026         case KVM_IRQ_LINE: {
3027                 struct kvm_irq_level irq_event;
3028
3029                 r = -EFAULT;
3030                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3031                         goto out;
3032
3033                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3034                                         ioctl == KVM_IRQ_LINE_STATUS);
3035                 if (r)
3036                         goto out;
3037
3038                 r = -EFAULT;
3039                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3040                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3041                                 goto out;
3042                 }
3043
3044                 r = 0;
3045                 break;
3046         }
3047 #endif
3048 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3049         case KVM_SET_GSI_ROUTING: {
3050                 struct kvm_irq_routing routing;
3051                 struct kvm_irq_routing __user *urouting;
3052                 struct kvm_irq_routing_entry *entries = NULL;
3053
3054                 r = -EFAULT;
3055                 if (copy_from_user(&routing, argp, sizeof(routing)))
3056                         goto out;
3057                 r = -EINVAL;
3058                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3059                         goto out;
3060                 if (routing.flags)
3061                         goto out;
3062                 if (routing.nr) {
3063                         r = -ENOMEM;
3064                         entries = vmalloc(routing.nr * sizeof(*entries));
3065                         if (!entries)
3066                                 goto out;
3067                         r = -EFAULT;
3068                         urouting = argp;
3069                         if (copy_from_user(entries, urouting->entries,
3070                                            routing.nr * sizeof(*entries)))
3071                                 goto out_free_irq_routing;
3072                 }
3073                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3074                                         routing.flags);
3075 out_free_irq_routing:
3076                 vfree(entries);
3077                 break;
3078         }
3079 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3080         case KVM_CREATE_DEVICE: {
3081                 struct kvm_create_device cd;
3082
3083                 r = -EFAULT;
3084                 if (copy_from_user(&cd, argp, sizeof(cd)))
3085                         goto out;
3086
3087                 r = kvm_ioctl_create_device(kvm, &cd);
3088                 if (r)
3089                         goto out;
3090
3091                 r = -EFAULT;
3092                 if (copy_to_user(argp, &cd, sizeof(cd)))
3093                         goto out;
3094
3095                 r = 0;
3096                 break;
3097         }
3098         case KVM_CHECK_EXTENSION:
3099                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3100                 break;
3101         default:
3102                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3103         }
3104 out:
3105         return r;
3106 }
3107
3108 #ifdef CONFIG_KVM_COMPAT
3109 struct compat_kvm_dirty_log {
3110         __u32 slot;
3111         __u32 padding1;
3112         union {
3113                 compat_uptr_t dirty_bitmap; /* one bit per page */
3114                 __u64 padding2;
3115         };
3116 };
3117
3118 static long kvm_vm_compat_ioctl(struct file *filp,
3119                            unsigned int ioctl, unsigned long arg)
3120 {
3121         struct kvm *kvm = filp->private_data;
3122         int r;
3123
3124         if (kvm->mm != current->mm)
3125                 return -EIO;
3126         switch (ioctl) {
3127         case KVM_GET_DIRTY_LOG: {
3128                 struct compat_kvm_dirty_log compat_log;
3129                 struct kvm_dirty_log log;
3130
3131                 if (copy_from_user(&compat_log, (void __user *)arg,
3132                                    sizeof(compat_log)))
3133                         return -EFAULT;
3134                 log.slot         = compat_log.slot;
3135                 log.padding1     = compat_log.padding1;
3136                 log.padding2     = compat_log.padding2;
3137                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3138
3139                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3140                 break;
3141         }
3142         default:
3143                 r = kvm_vm_ioctl(filp, ioctl, arg);
3144         }
3145         return r;
3146 }
3147 #endif
3148
3149 static struct file_operations kvm_vm_fops = {
3150         .release        = kvm_vm_release,
3151         .unlocked_ioctl = kvm_vm_ioctl,
3152 #ifdef CONFIG_KVM_COMPAT
3153         .compat_ioctl   = kvm_vm_compat_ioctl,
3154 #endif
3155         .llseek         = noop_llseek,
3156 };
3157
3158 static int kvm_dev_ioctl_create_vm(unsigned long type)
3159 {
3160         int r;
3161         struct kvm *kvm;
3162         struct file *file;
3163
3164         kvm = kvm_create_vm(type);
3165         if (IS_ERR(kvm))
3166                 return PTR_ERR(kvm);
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168         r = kvm_coalesced_mmio_init(kvm);
3169         if (r < 0) {
3170                 kvm_put_kvm(kvm);
3171                 return r;
3172         }
3173 #endif
3174         r = get_unused_fd_flags(O_CLOEXEC);
3175         if (r < 0) {
3176                 kvm_put_kvm(kvm);
3177                 return r;
3178         }
3179         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3180         if (IS_ERR(file)) {
3181                 put_unused_fd(r);
3182                 kvm_put_kvm(kvm);
3183                 return PTR_ERR(file);
3184         }
3185
3186         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3187                 put_unused_fd(r);
3188                 fput(file);
3189                 return -ENOMEM;
3190         }
3191
3192         fd_install(r, file);
3193         return r;
3194 }
3195
3196 static long kvm_dev_ioctl(struct file *filp,
3197                           unsigned int ioctl, unsigned long arg)
3198 {
3199         long r = -EINVAL;
3200
3201         switch (ioctl) {
3202         case KVM_GET_API_VERSION:
3203                 if (arg)
3204                         goto out;
3205                 r = KVM_API_VERSION;
3206                 break;
3207         case KVM_CREATE_VM:
3208                 r = kvm_dev_ioctl_create_vm(arg);
3209                 break;
3210         case KVM_CHECK_EXTENSION:
3211                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3212                 break;
3213         case KVM_GET_VCPU_MMAP_SIZE:
3214                 if (arg)
3215                         goto out;
3216                 r = PAGE_SIZE;     /* struct kvm_run */
3217 #ifdef CONFIG_X86
3218                 r += PAGE_SIZE;    /* pio data page */
3219 #endif
3220 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3221                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3222 #endif
3223                 break;
3224         case KVM_TRACE_ENABLE:
3225         case KVM_TRACE_PAUSE:
3226         case KVM_TRACE_DISABLE:
3227                 r = -EOPNOTSUPP;
3228                 break;
3229         default:
3230                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3231         }
3232 out:
3233         return r;
3234 }
3235
3236 static struct file_operations kvm_chardev_ops = {
3237         .unlocked_ioctl = kvm_dev_ioctl,
3238         .compat_ioctl   = kvm_dev_ioctl,
3239         .llseek         = noop_llseek,
3240 };
3241
3242 static struct miscdevice kvm_dev = {
3243         KVM_MINOR,
3244         "kvm",
3245         &kvm_chardev_ops,
3246 };
3247
3248 static void hardware_enable_nolock(void *junk)
3249 {
3250         int cpu = raw_smp_processor_id();
3251         int r;
3252
3253         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3254                 return;
3255
3256         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3257
3258         r = kvm_arch_hardware_enable();
3259
3260         if (r) {
3261                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3262                 atomic_inc(&hardware_enable_failed);
3263                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3264         }
3265 }
3266
3267 static int kvm_starting_cpu(unsigned int cpu)
3268 {
3269         raw_spin_lock(&kvm_count_lock);
3270         if (kvm_usage_count)
3271                 hardware_enable_nolock(NULL);
3272         raw_spin_unlock(&kvm_count_lock);
3273         return 0;
3274 }
3275
3276 static void hardware_disable_nolock(void *junk)
3277 {
3278         int cpu = raw_smp_processor_id();
3279
3280         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281                 return;
3282         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3283         kvm_arch_hardware_disable();
3284 }
3285
3286 static int kvm_dying_cpu(unsigned int cpu)
3287 {
3288         raw_spin_lock(&kvm_count_lock);
3289         if (kvm_usage_count)
3290                 hardware_disable_nolock(NULL);
3291         raw_spin_unlock(&kvm_count_lock);
3292         return 0;
3293 }
3294
3295 static void hardware_disable_all_nolock(void)
3296 {
3297         BUG_ON(!kvm_usage_count);
3298
3299         kvm_usage_count--;
3300         if (!kvm_usage_count)
3301                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3302 }
3303
3304 static void hardware_disable_all(void)
3305 {
3306         raw_spin_lock(&kvm_count_lock);
3307         hardware_disable_all_nolock();
3308         raw_spin_unlock(&kvm_count_lock);
3309 }
3310
3311 static int hardware_enable_all(void)
3312 {
3313         int r = 0;
3314
3315         raw_spin_lock(&kvm_count_lock);
3316
3317         kvm_usage_count++;
3318         if (kvm_usage_count == 1) {
3319                 atomic_set(&hardware_enable_failed, 0);
3320                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3321
3322                 if (atomic_read(&hardware_enable_failed)) {
3323                         hardware_disable_all_nolock();
3324                         r = -EBUSY;
3325                 }
3326         }
3327
3328         raw_spin_unlock(&kvm_count_lock);
3329
3330         return r;
3331 }
3332
3333 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3334                       void *v)
3335 {
3336         /*
3337          * Some (well, at least mine) BIOSes hang on reboot if
3338          * in vmx root mode.
3339          *
3340          * And Intel TXT required VMX off for all cpu when system shutdown.
3341          */
3342         pr_info("kvm: exiting hardware virtualization\n");
3343         kvm_rebooting = true;
3344         on_each_cpu(hardware_disable_nolock, NULL, 1);
3345         return NOTIFY_OK;
3346 }
3347
3348 static struct notifier_block kvm_reboot_notifier = {
3349         .notifier_call = kvm_reboot,
3350         .priority = 0,
3351 };
3352
3353 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3354 {
3355         int i;
3356
3357         for (i = 0; i < bus->dev_count; i++) {
3358                 struct kvm_io_device *pos = bus->range[i].dev;
3359
3360                 kvm_iodevice_destructor(pos);
3361         }
3362         kfree(bus);
3363 }
3364
3365 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3366                                  const struct kvm_io_range *r2)
3367 {
3368         gpa_t addr1 = r1->addr;
3369         gpa_t addr2 = r2->addr;
3370
3371         if (addr1 < addr2)
3372                 return -1;
3373
3374         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3375          * accept any overlapping write.  Any order is acceptable for
3376          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3377          * we process all of them.
3378          */
3379         if (r2->len) {
3380                 addr1 += r1->len;
3381                 addr2 += r2->len;
3382         }
3383
3384         if (addr1 > addr2)
3385                 return 1;
3386
3387         return 0;
3388 }
3389
3390 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3391 {
3392         return kvm_io_bus_cmp(p1, p2);
3393 }
3394
3395 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3396                           gpa_t addr, int len)
3397 {
3398         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3399                 .addr = addr,
3400                 .len = len,
3401                 .dev = dev,
3402         };
3403
3404         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3405                 kvm_io_bus_sort_cmp, NULL);
3406
3407         return 0;
3408 }
3409
3410 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3411                              gpa_t addr, int len)
3412 {
3413         struct kvm_io_range *range, key;
3414         int off;
3415
3416         key = (struct kvm_io_range) {
3417                 .addr = addr,
3418                 .len = len,
3419         };
3420
3421         range = bsearch(&key, bus->range, bus->dev_count,
3422                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3423         if (range == NULL)
3424                 return -ENOENT;
3425
3426         off = range - bus->range;
3427
3428         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3429                 off--;
3430
3431         return off;
3432 }
3433
3434 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3435                               struct kvm_io_range *range, const void *val)
3436 {
3437         int idx;
3438
3439         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3440         if (idx < 0)
3441                 return -EOPNOTSUPP;
3442
3443         while (idx < bus->dev_count &&
3444                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3445                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3446                                         range->len, val))
3447                         return idx;
3448                 idx++;
3449         }
3450
3451         return -EOPNOTSUPP;
3452 }
3453
3454 /* kvm_io_bus_write - called under kvm->slots_lock */
3455 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3456                      int len, const void *val)
3457 {
3458         struct kvm_io_bus *bus;
3459         struct kvm_io_range range;
3460         int r;
3461
3462         range = (struct kvm_io_range) {
3463                 .addr = addr,
3464                 .len = len,
3465         };
3466
3467         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3468         if (!bus)
3469                 return -ENOMEM;
3470         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3471         return r < 0 ? r : 0;
3472 }
3473
3474 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3475 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3476                             gpa_t addr, int len, const void *val, long cookie)
3477 {
3478         struct kvm_io_bus *bus;
3479         struct kvm_io_range range;
3480
3481         range = (struct kvm_io_range) {
3482                 .addr = addr,
3483                 .len = len,
3484         };
3485
3486         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3487         if (!bus)
3488                 return -ENOMEM;
3489
3490         /* First try the device referenced by cookie. */
3491         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3492             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3493                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3494                                         val))
3495                         return cookie;
3496
3497         /*
3498          * cookie contained garbage; fall back to search and return the
3499          * correct cookie value.
3500          */
3501         return __kvm_io_bus_write(vcpu, bus, &range, val);
3502 }
3503
3504 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3505                              struct kvm_io_range *range, void *val)
3506 {
3507         int idx;
3508
3509         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3510         if (idx < 0)
3511                 return -EOPNOTSUPP;
3512
3513         while (idx < bus->dev_count &&
3514                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3515                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3516                                        range->len, val))
3517                         return idx;
3518                 idx++;
3519         }
3520
3521         return -EOPNOTSUPP;
3522 }
3523 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3524
3525 /* kvm_io_bus_read - called under kvm->slots_lock */
3526 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3527                     int len, void *val)
3528 {
3529         struct kvm_io_bus *bus;
3530         struct kvm_io_range range;
3531         int r;
3532
3533         range = (struct kvm_io_range) {
3534                 .addr = addr,
3535                 .len = len,
3536         };
3537
3538         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3539         if (!bus)
3540                 return -ENOMEM;
3541         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3542         return r < 0 ? r : 0;
3543 }
3544
3545
3546 /* Caller must hold slots_lock. */
3547 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3548                             int len, struct kvm_io_device *dev)
3549 {
3550         struct kvm_io_bus *new_bus, *bus;
3551
3552         bus = kvm->buses[bus_idx];
3553         if (!bus)
3554                 return -ENOMEM;
3555
3556         /* exclude ioeventfd which is limited by maximum fd */
3557         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558                 return -ENOSPC;
3559
3560         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3562         if (!new_bus)
3563                 return -ENOMEM;
3564         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565                sizeof(struct kvm_io_range)));
3566         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568         synchronize_srcu_expedited(&kvm->srcu);
3569         kfree(bus);
3570
3571         return 0;
3572 }
3573
3574 /* Caller must hold slots_lock. */
3575 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576                                struct kvm_io_device *dev)
3577 {
3578         int i;
3579         struct kvm_io_bus *new_bus, *bus;
3580
3581         bus = kvm->buses[bus_idx];
3582         if (!bus)
3583                 return;
3584
3585         for (i = 0; i < bus->dev_count; i++)
3586                 if (bus->range[i].dev == dev) {
3587                         break;
3588                 }
3589
3590         if (i == bus->dev_count)
3591                 return;
3592
3593         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3594                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3595         if (!new_bus)  {
3596                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3597                 goto broken;
3598         }
3599
3600         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3601         new_bus->dev_count--;
3602         memcpy(new_bus->range + i, bus->range + i + 1,
3603                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3604
3605 broken:
3606         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3607         synchronize_srcu_expedited(&kvm->srcu);
3608         kfree(bus);
3609         return;
3610 }
3611
3612 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3613                                          gpa_t addr)
3614 {
3615         struct kvm_io_bus *bus;
3616         int dev_idx, srcu_idx;
3617         struct kvm_io_device *iodev = NULL;
3618
3619         srcu_idx = srcu_read_lock(&kvm->srcu);
3620
3621         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3622         if (!bus)
3623                 goto out_unlock;
3624
3625         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3626         if (dev_idx < 0)
3627                 goto out_unlock;
3628
3629         iodev = bus->range[dev_idx].dev;
3630
3631 out_unlock:
3632         srcu_read_unlock(&kvm->srcu, srcu_idx);
3633
3634         return iodev;
3635 }
3636 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3637
3638 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3639                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3640                            const char *fmt)
3641 {
3642         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3643                                           inode->i_private;
3644
3645         /* The debugfs files are a reference to the kvm struct which
3646          * is still valid when kvm_destroy_vm is called.
3647          * To avoid the race between open and the removal of the debugfs
3648          * directory we test against the users count.
3649          */
3650         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3651                 return -ENOENT;
3652
3653         if (simple_attr_open(inode, file, get, set, fmt)) {
3654                 kvm_put_kvm(stat_data->kvm);
3655                 return -ENOMEM;
3656         }
3657
3658         return 0;
3659 }
3660
3661 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3662 {
3663         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3664                                           inode->i_private;
3665
3666         simple_attr_release(inode, file);
3667         kvm_put_kvm(stat_data->kvm);
3668
3669         return 0;
3670 }
3671
3672 static int vm_stat_get_per_vm(void *data, u64 *val)
3673 {
3674         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3675
3676         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3677
3678         return 0;
3679 }
3680
3681 static int vm_stat_clear_per_vm(void *data, u64 val)
3682 {
3683         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684
3685         if (val)
3686                 return -EINVAL;
3687
3688         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3689
3690         return 0;
3691 }
3692
3693 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3694 {
3695         __simple_attr_check_format("%llu\n", 0ull);
3696         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3697                                 vm_stat_clear_per_vm, "%llu\n");
3698 }
3699
3700 static const struct file_operations vm_stat_get_per_vm_fops = {
3701         .owner   = THIS_MODULE,
3702         .open    = vm_stat_get_per_vm_open,
3703         .release = kvm_debugfs_release,
3704         .read    = simple_attr_read,
3705         .write   = simple_attr_write,
3706         .llseek  = generic_file_llseek,
3707 };
3708
3709 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3710 {
3711         int i;
3712         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3713         struct kvm_vcpu *vcpu;
3714
3715         *val = 0;
3716
3717         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3718                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3719
3720         return 0;
3721 }
3722
3723 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3724 {
3725         int i;
3726         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3727         struct kvm_vcpu *vcpu;
3728
3729         if (val)
3730                 return -EINVAL;
3731
3732         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3733                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3734
3735         return 0;
3736 }
3737
3738 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3739 {
3740         __simple_attr_check_format("%llu\n", 0ull);
3741         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3742                                  vcpu_stat_clear_per_vm, "%llu\n");
3743 }
3744
3745 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3746         .owner   = THIS_MODULE,
3747         .open    = vcpu_stat_get_per_vm_open,
3748         .release = kvm_debugfs_release,
3749         .read    = simple_attr_read,
3750         .write   = simple_attr_write,
3751         .llseek  = generic_file_llseek,
3752 };
3753
3754 static const struct file_operations *stat_fops_per_vm[] = {
3755         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3756         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3757 };
3758
3759 static int vm_stat_get(void *_offset, u64 *val)
3760 {
3761         unsigned offset = (long)_offset;
3762         struct kvm *kvm;
3763         struct kvm_stat_data stat_tmp = {.offset = offset};
3764         u64 tmp_val;
3765
3766         *val = 0;
3767         spin_lock(&kvm_lock);
3768         list_for_each_entry(kvm, &vm_list, vm_list) {
3769                 stat_tmp.kvm = kvm;
3770                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3771                 *val += tmp_val;
3772         }
3773         spin_unlock(&kvm_lock);
3774         return 0;
3775 }
3776
3777 static int vm_stat_clear(void *_offset, u64 val)
3778 {
3779         unsigned offset = (long)_offset;
3780         struct kvm *kvm;
3781         struct kvm_stat_data stat_tmp = {.offset = offset};
3782
3783         if (val)
3784                 return -EINVAL;
3785
3786         spin_lock(&kvm_lock);
3787         list_for_each_entry(kvm, &vm_list, vm_list) {
3788                 stat_tmp.kvm = kvm;
3789                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3790         }
3791         spin_unlock(&kvm_lock);
3792
3793         return 0;
3794 }
3795
3796 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3797
3798 static int vcpu_stat_get(void *_offset, u64 *val)
3799 {
3800         unsigned offset = (long)_offset;
3801         struct kvm *kvm;
3802         struct kvm_stat_data stat_tmp = {.offset = offset};
3803         u64 tmp_val;
3804
3805         *val = 0;
3806         spin_lock(&kvm_lock);
3807         list_for_each_entry(kvm, &vm_list, vm_list) {
3808                 stat_tmp.kvm = kvm;
3809                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3810                 *val += tmp_val;
3811         }
3812         spin_unlock(&kvm_lock);
3813         return 0;
3814 }
3815
3816 static int vcpu_stat_clear(void *_offset, u64 val)
3817 {
3818         unsigned offset = (long)_offset;
3819         struct kvm *kvm;
3820         struct kvm_stat_data stat_tmp = {.offset = offset};
3821
3822         if (val)
3823                 return -EINVAL;
3824
3825         spin_lock(&kvm_lock);
3826         list_for_each_entry(kvm, &vm_list, vm_list) {
3827                 stat_tmp.kvm = kvm;
3828                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3829         }
3830         spin_unlock(&kvm_lock);
3831
3832         return 0;
3833 }
3834
3835 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3836                         "%llu\n");
3837
3838 static const struct file_operations *stat_fops[] = {
3839         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3840         [KVM_STAT_VM]   = &vm_stat_fops,
3841 };
3842
3843 static int kvm_init_debug(void)
3844 {
3845         int r = -EEXIST;
3846         struct kvm_stats_debugfs_item *p;
3847
3848         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3849         if (kvm_debugfs_dir == NULL)
3850                 goto out;
3851
3852         kvm_debugfs_num_entries = 0;
3853         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3854                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3855                                          (void *)(long)p->offset,
3856                                          stat_fops[p->kind]))
3857                         goto out_dir;
3858         }
3859
3860         return 0;
3861
3862 out_dir:
3863         debugfs_remove_recursive(kvm_debugfs_dir);
3864 out:
3865         return r;
3866 }
3867
3868 static int kvm_suspend(void)
3869 {
3870         if (kvm_usage_count)
3871                 hardware_disable_nolock(NULL);
3872         return 0;
3873 }
3874
3875 static void kvm_resume(void)
3876 {
3877         if (kvm_usage_count) {
3878                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3879                 hardware_enable_nolock(NULL);
3880         }
3881 }
3882
3883 static struct syscore_ops kvm_syscore_ops = {
3884         .suspend = kvm_suspend,
3885         .resume = kvm_resume,
3886 };
3887
3888 static inline
3889 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3890 {
3891         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3892 }
3893
3894 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3895 {
3896         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3897
3898         if (vcpu->preempted)
3899                 vcpu->preempted = false;
3900
3901         kvm_arch_sched_in(vcpu, cpu);
3902
3903         kvm_arch_vcpu_load(vcpu, cpu);
3904 }
3905
3906 static void kvm_sched_out(struct preempt_notifier *pn,
3907                           struct task_struct *next)
3908 {
3909         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3910
3911         if (current->state == TASK_RUNNING)
3912                 vcpu->preempted = true;
3913         kvm_arch_vcpu_put(vcpu);
3914 }
3915
3916 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3917                   struct module *module)
3918 {
3919         int r;
3920         int cpu;
3921
3922         r = kvm_arch_init(opaque);
3923         if (r)
3924                 goto out_fail;
3925
3926         /*
3927          * kvm_arch_init makes sure there's at most one caller
3928          * for architectures that support multiple implementations,
3929          * like intel and amd on x86.
3930          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3931          * conflicts in case kvm is already setup for another implementation.
3932          */
3933         r = kvm_irqfd_init();
3934         if (r)
3935                 goto out_irqfd;
3936
3937         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3938                 r = -ENOMEM;
3939                 goto out_free_0;
3940         }
3941
3942         r = kvm_arch_hardware_setup();
3943         if (r < 0)
3944                 goto out_free_0a;
3945
3946         for_each_online_cpu(cpu) {
3947                 smp_call_function_single(cpu,
3948                                 kvm_arch_check_processor_compat,
3949                                 &r, 1);
3950                 if (r < 0)
3951                         goto out_free_1;
3952         }
3953
3954         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3955                                       kvm_starting_cpu, kvm_dying_cpu);
3956         if (r)
3957                 goto out_free_2;
3958         register_reboot_notifier(&kvm_reboot_notifier);
3959
3960         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3961         if (!vcpu_align)
3962                 vcpu_align = __alignof__(struct kvm_vcpu);
3963         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3964                                            0, NULL);
3965         if (!kvm_vcpu_cache) {
3966                 r = -ENOMEM;
3967                 goto out_free_3;
3968         }
3969
3970         r = kvm_async_pf_init();
3971         if (r)
3972                 goto out_free;
3973
3974         kvm_chardev_ops.owner = module;
3975         kvm_vm_fops.owner = module;
3976         kvm_vcpu_fops.owner = module;
3977
3978         r = misc_register(&kvm_dev);
3979         if (r) {
3980                 pr_err("kvm: misc device register failed\n");
3981                 goto out_unreg;
3982         }
3983
3984         register_syscore_ops(&kvm_syscore_ops);
3985
3986         kvm_preempt_ops.sched_in = kvm_sched_in;
3987         kvm_preempt_ops.sched_out = kvm_sched_out;
3988
3989         r = kvm_init_debug();
3990         if (r) {
3991                 pr_err("kvm: create debugfs files failed\n");
3992                 goto out_undebugfs;
3993         }
3994
3995         r = kvm_vfio_ops_init();
3996         WARN_ON(r);
3997
3998         return 0;
3999
4000 out_undebugfs:
4001         unregister_syscore_ops(&kvm_syscore_ops);
4002         misc_deregister(&kvm_dev);
4003 out_unreg:
4004         kvm_async_pf_deinit();
4005 out_free:
4006         kmem_cache_destroy(kvm_vcpu_cache);
4007 out_free_3:
4008         unregister_reboot_notifier(&kvm_reboot_notifier);
4009         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4010 out_free_2:
4011 out_free_1:
4012         kvm_arch_hardware_unsetup();
4013 out_free_0a:
4014         free_cpumask_var(cpus_hardware_enabled);
4015 out_free_0:
4016         kvm_irqfd_exit();
4017 out_irqfd:
4018         kvm_arch_exit();
4019 out_fail:
4020         return r;
4021 }
4022 EXPORT_SYMBOL_GPL(kvm_init);
4023
4024 void kvm_exit(void)
4025 {
4026         debugfs_remove_recursive(kvm_debugfs_dir);
4027         misc_deregister(&kvm_dev);
4028         kmem_cache_destroy(kvm_vcpu_cache);
4029         kvm_async_pf_deinit();
4030         unregister_syscore_ops(&kvm_syscore_ops);
4031         unregister_reboot_notifier(&kvm_reboot_notifier);
4032         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4033         on_each_cpu(hardware_disable_nolock, NULL, 1);
4034         kvm_arch_hardware_unsetup();
4035         kvm_arch_exit();
4036         kvm_irqfd_exit();
4037         free_cpumask_var(cpus_hardware_enabled);
4038         kvm_vfio_ops_exit();
4039 }
4040 EXPORT_SYMBOL_GPL(kvm_exit);