]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
cpu/hotplug: Cleanup state names
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88  * Ordering of locks:
89  *
90  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113                            unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116                                   unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133         if (pfn_valid(pfn))
134                 return PageReserved(pfn_to_page(pfn));
135
136         return true;
137 }
138
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144         int cpu;
145
146         if (mutex_lock_killable(&vcpu->mutex))
147                 return -EINTR;
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158         preempt_disable();
159         kvm_arch_vcpu_put(vcpu);
160         preempt_notifier_unregister(&vcpu->preempt_notifier);
161         preempt_enable();
162         mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172         int i, cpu, me;
173         cpumask_var_t cpus;
174         bool called = true;
175         struct kvm_vcpu *vcpu;
176
177         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179         me = get_cpu();
180         kvm_for_each_vcpu(i, vcpu, kvm) {
181                 kvm_make_request(req, vcpu);
182                 cpu = vcpu->cpu;
183
184                 /* Set ->requests bit before we read ->mode. */
185                 smp_mb__after_atomic();
186
187                 if (cpus != NULL && cpu != -1 && cpu != me &&
188                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189                         cpumask_set_cpu(cpu, cpus);
190         }
191         if (unlikely(cpus == NULL))
192                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193         else if (!cpumask_empty(cpus))
194                 smp_call_function_many(cpus, ack_flush, NULL, 1);
195         else
196                 called = false;
197         put_cpu();
198         free_cpumask_var(cpus);
199         return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205         /*
206          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207          * kvm_make_all_cpus_request.
208          */
209         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211         /*
212          * We want to publish modifications to the page tables before reading
213          * mode. Pairs with a memory barrier in arch-specific code.
214          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215          * and smp_mb in walk_shadow_page_lockless_begin/end.
216          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217          *
218          * There is already an smp_mb__after_atomic() before
219          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220          * barrier here.
221          */
222         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223                 ++kvm->stat.remote_tlb_flush;
224         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236         struct page *page;
237         int r;
238
239         mutex_init(&vcpu->mutex);
240         vcpu->cpu = -1;
241         vcpu->kvm = kvm;
242         vcpu->vcpu_id = id;
243         vcpu->pid = NULL;
244         init_swait_queue_head(&vcpu->wq);
245         kvm_async_pf_vcpu_init(vcpu);
246
247         vcpu->pre_pcpu = -1;
248         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251         if (!page) {
252                 r = -ENOMEM;
253                 goto fail;
254         }
255         vcpu->run = page_address(page);
256
257         kvm_vcpu_set_in_spin_loop(vcpu, false);
258         kvm_vcpu_set_dy_eligible(vcpu, false);
259         vcpu->preempted = false;
260
261         r = kvm_arch_vcpu_init(vcpu);
262         if (r < 0)
263                 goto fail_free_run;
264         return 0;
265
266 fail_free_run:
267         free_page((unsigned long)vcpu->run);
268 fail:
269         return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275         put_pid(vcpu->pid);
276         kvm_arch_vcpu_uninit(vcpu);
277         free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284         return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288                                              struct mm_struct *mm,
289                                              unsigned long address)
290 {
291         struct kvm *kvm = mmu_notifier_to_kvm(mn);
292         int need_tlb_flush, idx;
293
294         /*
295          * When ->invalidate_page runs, the linux pte has been zapped
296          * already but the page is still allocated until
297          * ->invalidate_page returns. So if we increase the sequence
298          * here the kvm page fault will notice if the spte can't be
299          * established because the page is going to be freed. If
300          * instead the kvm page fault establishes the spte before
301          * ->invalidate_page runs, kvm_unmap_hva will release it
302          * before returning.
303          *
304          * The sequence increase only need to be seen at spin_unlock
305          * time, and not at spin_lock time.
306          *
307          * Increasing the sequence after the spin_unlock would be
308          * unsafe because the kvm page fault could then establish the
309          * pte after kvm_unmap_hva returned, without noticing the page
310          * is going to be freed.
311          */
312         idx = srcu_read_lock(&kvm->srcu);
313         spin_lock(&kvm->mmu_lock);
314
315         kvm->mmu_notifier_seq++;
316         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317         /* we've to flush the tlb before the pages can be freed */
318         if (need_tlb_flush)
319                 kvm_flush_remote_tlbs(kvm);
320
321         spin_unlock(&kvm->mmu_lock);
322
323         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325         srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329                                         struct mm_struct *mm,
330                                         unsigned long address,
331                                         pte_t pte)
332 {
333         struct kvm *kvm = mmu_notifier_to_kvm(mn);
334         int idx;
335
336         idx = srcu_read_lock(&kvm->srcu);
337         spin_lock(&kvm->mmu_lock);
338         kvm->mmu_notifier_seq++;
339         kvm_set_spte_hva(kvm, address, pte);
340         spin_unlock(&kvm->mmu_lock);
341         srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345                                                     struct mm_struct *mm,
346                                                     unsigned long start,
347                                                     unsigned long end)
348 {
349         struct kvm *kvm = mmu_notifier_to_kvm(mn);
350         int need_tlb_flush = 0, idx;
351
352         idx = srcu_read_lock(&kvm->srcu);
353         spin_lock(&kvm->mmu_lock);
354         /*
355          * The count increase must become visible at unlock time as no
356          * spte can be established without taking the mmu_lock and
357          * count is also read inside the mmu_lock critical section.
358          */
359         kvm->mmu_notifier_count++;
360         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361         need_tlb_flush |= kvm->tlbs_dirty;
362         /* we've to flush the tlb before the pages can be freed */
363         if (need_tlb_flush)
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371                                                   struct mm_struct *mm,
372                                                   unsigned long start,
373                                                   unsigned long end)
374 {
375         struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * This sequence increase will notify the kvm page fault that
380          * the page that is going to be mapped in the spte could have
381          * been freed.
382          */
383         kvm->mmu_notifier_seq++;
384         smp_wmb();
385         /*
386          * The above sequence increase must be visible before the
387          * below count decrease, which is ensured by the smp_wmb above
388          * in conjunction with the smp_rmb in mmu_notifier_retry().
389          */
390         kvm->mmu_notifier_count--;
391         spin_unlock(&kvm->mmu_lock);
392
393         BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397                                               struct mm_struct *mm,
398                                               unsigned long start,
399                                               unsigned long end)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int young, idx;
403
404         idx = srcu_read_lock(&kvm->srcu);
405         spin_lock(&kvm->mmu_lock);
406
407         young = kvm_age_hva(kvm, start, end);
408         if (young)
409                 kvm_flush_remote_tlbs(kvm);
410
411         spin_unlock(&kvm->mmu_lock);
412         srcu_read_unlock(&kvm->srcu, idx);
413
414         return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418                                         struct mm_struct *mm,
419                                         unsigned long start,
420                                         unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427         /*
428          * Even though we do not flush TLB, this will still adversely
429          * affect performance on pre-Haswell Intel EPT, where there is
430          * no EPT Access Bit to clear so that we have to tear down EPT
431          * tables instead. If we find this unacceptable, we can always
432          * add a parameter to kvm_age_hva so that it effectively doesn't
433          * do anything on clear_young.
434          *
435          * Also note that currently we never issue secondary TLB flushes
436          * from clear_young, leaving this job up to the regular system
437          * cadence. If we find this inaccurate, we might come up with a
438          * more sophisticated heuristic later.
439          */
440         young = kvm_age_hva(kvm, start, end);
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448                                        struct mm_struct *mm,
449                                        unsigned long address)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         young = kvm_test_age_hva(kvm, address);
457         spin_unlock(&kvm->mmu_lock);
458         srcu_read_unlock(&kvm->srcu, idx);
459
460         return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464                                      struct mm_struct *mm)
465 {
466         struct kvm *kvm = mmu_notifier_to_kvm(mn);
467         int idx;
468
469         idx = srcu_read_lock(&kvm->srcu);
470         kvm_arch_flush_shadow_all(kvm);
471         srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
476         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
478         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
479         .clear_young            = kvm_mmu_notifier_clear_young,
480         .test_young             = kvm_mmu_notifier_test_young,
481         .change_pte             = kvm_mmu_notifier_change_pte,
482         .release                = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495         return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502         int i;
503         struct kvm_memslots *slots;
504
505         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506         if (!slots)
507                 return NULL;
508
509         /*
510          * Init kvm generation close to the maximum to easily test the
511          * code of handling generation number wrap-around.
512          */
513         slots->generation = -150;
514         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515                 slots->id_to_index[i] = slots->memslots[i].id = i;
516
517         return slots;
518 }
519
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522         if (!memslot->dirty_bitmap)
523                 return;
524
525         kvfree(memslot->dirty_bitmap);
526         memslot->dirty_bitmap = NULL;
527 }
528
529 /*
530  * Free any memory in @free but not in @dont.
531  */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533                               struct kvm_memory_slot *dont)
534 {
535         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536                 kvm_destroy_dirty_bitmap(free);
537
538         kvm_arch_free_memslot(kvm, free, dont);
539
540         free->npages = 0;
541 }
542
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545         struct kvm_memory_slot *memslot;
546
547         if (!slots)
548                 return;
549
550         kvm_for_each_memslot(memslot, slots)
551                 kvm_free_memslot(kvm, memslot, NULL);
552
553         kvfree(slots);
554 }
555
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558         int i;
559
560         if (!kvm->debugfs_dentry)
561                 return;
562
563         debugfs_remove_recursive(kvm->debugfs_dentry);
564
565         if (kvm->debugfs_stat_data) {
566                 for (i = 0; i < kvm_debugfs_num_entries; i++)
567                         kfree(kvm->debugfs_stat_data[i]);
568                 kfree(kvm->debugfs_stat_data);
569         }
570 }
571
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574         char dir_name[ITOA_MAX_LEN * 2];
575         struct kvm_stat_data *stat_data;
576         struct kvm_stats_debugfs_item *p;
577
578         if (!debugfs_initialized())
579                 return 0;
580
581         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583                                                  kvm_debugfs_dir);
584         if (!kvm->debugfs_dentry)
585                 return -ENOMEM;
586
587         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588                                          sizeof(*kvm->debugfs_stat_data),
589                                          GFP_KERNEL);
590         if (!kvm->debugfs_stat_data)
591                 return -ENOMEM;
592
593         for (p = debugfs_entries; p->name; p++) {
594                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595                 if (!stat_data)
596                         return -ENOMEM;
597
598                 stat_data->kvm = kvm;
599                 stat_data->offset = p->offset;
600                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601                 if (!debugfs_create_file(p->name, 0644,
602                                          kvm->debugfs_dentry,
603                                          stat_data,
604                                          stat_fops_per_vm[p->kind]))
605                         return -ENOMEM;
606         }
607         return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612         int r, i;
613         struct kvm *kvm = kvm_arch_alloc_vm();
614
615         if (!kvm)
616                 return ERR_PTR(-ENOMEM);
617
618         spin_lock_init(&kvm->mmu_lock);
619         atomic_inc(&current->mm->mm_count);
620         kvm->mm = current->mm;
621         kvm_eventfd_init(kvm);
622         mutex_init(&kvm->lock);
623         mutex_init(&kvm->irq_lock);
624         mutex_init(&kvm->slots_lock);
625         atomic_set(&kvm->users_count, 1);
626         INIT_LIST_HEAD(&kvm->devices);
627
628         r = kvm_arch_init_vm(kvm, type);
629         if (r)
630                 goto out_err_no_disable;
631
632         r = hardware_enable_all();
633         if (r)
634                 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642         r = -ENOMEM;
643         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644                 kvm->memslots[i] = kvm_alloc_memslots();
645                 if (!kvm->memslots[i])
646                         goto out_err_no_srcu;
647         }
648
649         if (init_srcu_struct(&kvm->srcu))
650                 goto out_err_no_srcu;
651         if (init_srcu_struct(&kvm->irq_srcu))
652                 goto out_err_no_irq_srcu;
653         for (i = 0; i < KVM_NR_BUSES; i++) {
654                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655                                         GFP_KERNEL);
656                 if (!kvm->buses[i])
657                         goto out_err;
658         }
659
660         r = kvm_init_mmu_notifier(kvm);
661         if (r)
662                 goto out_err;
663
664         spin_lock(&kvm_lock);
665         list_add(&kvm->vm_list, &vm_list);
666         spin_unlock(&kvm_lock);
667
668         preempt_notifier_inc();
669
670         return kvm;
671
672 out_err:
673         cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675         cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677         hardware_disable_all();
678 out_err_no_disable:
679         for (i = 0; i < KVM_NR_BUSES; i++)
680                 kfree(kvm->buses[i]);
681         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682                 kvm_free_memslots(kvm, kvm->memslots[i]);
683         kvm_arch_free_vm(kvm);
684         mmdrop(current->mm);
685         return ERR_PTR(r);
686 }
687
688 /*
689  * Avoid using vmalloc for a small buffer.
690  * Should not be used when the size is statically known.
691  */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694         if (size > PAGE_SIZE)
695                 return vzalloc(size);
696         else
697                 return kzalloc(size, GFP_KERNEL);
698 }
699
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702         struct kvm_device *dev, *tmp;
703
704         /*
705          * We do not need to take the kvm->lock here, because nobody else
706          * has a reference to the struct kvm at this point and therefore
707          * cannot access the devices list anyhow.
708          */
709         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710                 list_del(&dev->vm_node);
711                 dev->ops->destroy(dev);
712         }
713 }
714
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717         int i;
718         struct mm_struct *mm = kvm->mm;
719
720         kvm_destroy_vm_debugfs(kvm);
721         kvm_arch_sync_events(kvm);
722         spin_lock(&kvm_lock);
723         list_del(&kvm->vm_list);
724         spin_unlock(&kvm_lock);
725         kvm_free_irq_routing(kvm);
726         for (i = 0; i < KVM_NR_BUSES; i++)
727                 kvm_io_bus_destroy(kvm->buses[i]);
728         kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732         kvm_arch_flush_shadow_all(kvm);
733 #endif
734         kvm_arch_destroy_vm(kvm);
735         kvm_destroy_devices(kvm);
736         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737                 kvm_free_memslots(kvm, kvm->memslots[i]);
738         cleanup_srcu_struct(&kvm->irq_srcu);
739         cleanup_srcu_struct(&kvm->srcu);
740         kvm_arch_free_vm(kvm);
741         preempt_notifier_dec();
742         hardware_disable_all();
743         mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748         atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754         if (atomic_dec_and_test(&kvm->users_count))
755                 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762         struct kvm *kvm = filp->private_data;
763
764         kvm_irqfd_release(kvm);
765
766         kvm_put_kvm(kvm);
767         return 0;
768 }
769
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779         if (!memslot->dirty_bitmap)
780                 return -ENOMEM;
781
782         return 0;
783 }
784
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792                             struct kvm_memory_slot *new)
793 {
794         int id = new->id;
795         int i = slots->id_to_index[id];
796         struct kvm_memory_slot *mslots = slots->memslots;
797
798         WARN_ON(mslots[i].id != id);
799         if (!new->npages) {
800                 WARN_ON(!mslots[i].npages);
801                 if (mslots[i].npages)
802                         slots->used_slots--;
803         } else {
804                 if (!mslots[i].npages)
805                         slots->used_slots++;
806         }
807
808         while (i < KVM_MEM_SLOTS_NUM - 1 &&
809                new->base_gfn <= mslots[i + 1].base_gfn) {
810                 if (!mslots[i + 1].npages)
811                         break;
812                 mslots[i] = mslots[i + 1];
813                 slots->id_to_index[mslots[i].id] = i;
814                 i++;
815         }
816
817         /*
818          * The ">=" is needed when creating a slot with base_gfn == 0,
819          * so that it moves before all those with base_gfn == npages == 0.
820          *
821          * On the other hand, if new->npages is zero, the above loop has
822          * already left i pointing to the beginning of the empty part of
823          * mslots, and the ">=" would move the hole backwards in this
824          * case---which is wrong.  So skip the loop when deleting a slot.
825          */
826         if (new->npages) {
827                 while (i > 0 &&
828                        new->base_gfn >= mslots[i - 1].base_gfn) {
829                         mslots[i] = mslots[i - 1];
830                         slots->id_to_index[mslots[i].id] = i;
831                         i--;
832                 }
833         } else
834                 WARN_ON_ONCE(i != slots->used_slots);
835
836         mslots[i] = *new;
837         slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845         valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848         if (mem->flags & ~valid_flags)
849                 return -EINVAL;
850
851         return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855                 int as_id, struct kvm_memslots *slots)
856 {
857         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859         /*
860          * Set the low bit in the generation, which disables SPTE caching
861          * until the end of synchronize_srcu_expedited.
862          */
863         WARN_ON(old_memslots->generation & 1);
864         slots->generation = old_memslots->generation + 1;
865
866         rcu_assign_pointer(kvm->memslots[as_id], slots);
867         synchronize_srcu_expedited(&kvm->srcu);
868
869         /*
870          * Increment the new memslot generation a second time. This prevents
871          * vm exits that race with memslot updates from caching a memslot
872          * generation that will (potentially) be valid forever.
873          */
874         slots->generation++;
875
876         kvm_arch_memslots_updated(kvm, slots);
877
878         return old_memslots;
879 }
880
881 /*
882  * Allocate some memory and give it an address in the guest physical address
883  * space.
884  *
885  * Discontiguous memory is allowed, mostly for framebuffers.
886  *
887  * Must be called holding kvm->slots_lock for write.
888  */
889 int __kvm_set_memory_region(struct kvm *kvm,
890                             const struct kvm_userspace_memory_region *mem)
891 {
892         int r;
893         gfn_t base_gfn;
894         unsigned long npages;
895         struct kvm_memory_slot *slot;
896         struct kvm_memory_slot old, new;
897         struct kvm_memslots *slots = NULL, *old_memslots;
898         int as_id, id;
899         enum kvm_mr_change change;
900
901         r = check_memory_region_flags(mem);
902         if (r)
903                 goto out;
904
905         r = -EINVAL;
906         as_id = mem->slot >> 16;
907         id = (u16)mem->slot;
908
909         /* General sanity checks */
910         if (mem->memory_size & (PAGE_SIZE - 1))
911                 goto out;
912         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913                 goto out;
914         /* We can read the guest memory with __xxx_user() later on. */
915         if ((id < KVM_USER_MEM_SLOTS) &&
916             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917              !access_ok(VERIFY_WRITE,
918                         (void __user *)(unsigned long)mem->userspace_addr,
919                         mem->memory_size)))
920                 goto out;
921         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922                 goto out;
923         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924                 goto out;
925
926         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928         npages = mem->memory_size >> PAGE_SHIFT;
929
930         if (npages > KVM_MEM_MAX_NR_PAGES)
931                 goto out;
932
933         new = old = *slot;
934
935         new.id = id;
936         new.base_gfn = base_gfn;
937         new.npages = npages;
938         new.flags = mem->flags;
939
940         if (npages) {
941                 if (!old.npages)
942                         change = KVM_MR_CREATE;
943                 else { /* Modify an existing slot. */
944                         if ((mem->userspace_addr != old.userspace_addr) ||
945                             (npages != old.npages) ||
946                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947                                 goto out;
948
949                         if (base_gfn != old.base_gfn)
950                                 change = KVM_MR_MOVE;
951                         else if (new.flags != old.flags)
952                                 change = KVM_MR_FLAGS_ONLY;
953                         else { /* Nothing to change. */
954                                 r = 0;
955                                 goto out;
956                         }
957                 }
958         } else {
959                 if (!old.npages)
960                         goto out;
961
962                 change = KVM_MR_DELETE;
963                 new.base_gfn = 0;
964                 new.flags = 0;
965         }
966
967         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968                 /* Check for overlaps */
969                 r = -EEXIST;
970                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972                             (slot->id == id))
973                                 continue;
974                         if (!((base_gfn + npages <= slot->base_gfn) ||
975                               (base_gfn >= slot->base_gfn + slot->npages)))
976                                 goto out;
977                 }
978         }
979
980         /* Free page dirty bitmap if unneeded */
981         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982                 new.dirty_bitmap = NULL;
983
984         r = -ENOMEM;
985         if (change == KVM_MR_CREATE) {
986                 new.userspace_addr = mem->userspace_addr;
987
988                 if (kvm_arch_create_memslot(kvm, &new, npages))
989                         goto out_free;
990         }
991
992         /* Allocate page dirty bitmap if needed */
993         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994                 if (kvm_create_dirty_bitmap(&new) < 0)
995                         goto out_free;
996         }
997
998         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999         if (!slots)
1000                 goto out_free;
1001         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004                 slot = id_to_memslot(slots, id);
1005                 slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007                 old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009                 /* slot was deleted or moved, clear iommu mapping */
1010                 kvm_iommu_unmap_pages(kvm, &old);
1011                 /* From this point no new shadow pages pointing to a deleted,
1012                  * or moved, memslot will be created.
1013                  *
1014                  * validation of sp->gfn happens in:
1015                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016                  *      - kvm_is_visible_gfn (mmu_check_roots)
1017                  */
1018                 kvm_arch_flush_shadow_memslot(kvm, slot);
1019
1020                 /*
1021                  * We can re-use the old_memslots from above, the only difference
1022                  * from the currently installed memslots is the invalid flag.  This
1023                  * will get overwritten by update_memslots anyway.
1024                  */
1025                 slots = old_memslots;
1026         }
1027
1028         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029         if (r)
1030                 goto out_slots;
1031
1032         /* actual memory is freed via old in kvm_free_memslot below */
1033         if (change == KVM_MR_DELETE) {
1034                 new.dirty_bitmap = NULL;
1035                 memset(&new.arch, 0, sizeof(new.arch));
1036         }
1037
1038         update_memslots(slots, &new);
1039         old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042
1043         kvm_free_memslot(kvm, &old, &new);
1044         kvfree(old_memslots);
1045
1046         /*
1047          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1048          * un-mapped and re-mapped if their base changes.  Since base change
1049          * unmapping is handled above with slot deletion, mapping alone is
1050          * needed here.  Anything else the iommu might care about for existing
1051          * slots (size changes, userspace addr changes and read-only flag
1052          * changes) is disallowed above, so any other attribute changes getting
1053          * here can be skipped.
1054          */
1055         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056                 r = kvm_iommu_map_pages(kvm, &new);
1057                 return r;
1058         }
1059
1060         return 0;
1061
1062 out_slots:
1063         kvfree(slots);
1064 out_free:
1065         kvm_free_memslot(kvm, &new, &old);
1066 out:
1067         return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070
1071 int kvm_set_memory_region(struct kvm *kvm,
1072                           const struct kvm_userspace_memory_region *mem)
1073 {
1074         int r;
1075
1076         mutex_lock(&kvm->slots_lock);
1077         r = __kvm_set_memory_region(kvm, mem);
1078         mutex_unlock(&kvm->slots_lock);
1079         return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084                                           struct kvm_userspace_memory_region *mem)
1085 {
1086         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087                 return -EINVAL;
1088
1089         return kvm_set_memory_region(kvm, mem);
1090 }
1091
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093                         struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095         struct kvm_memslots *slots;
1096         struct kvm_memory_slot *memslot;
1097         int r, i, as_id, id;
1098         unsigned long n;
1099         unsigned long any = 0;
1100
1101         r = -EINVAL;
1102         as_id = log->slot >> 16;
1103         id = (u16)log->slot;
1104         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105                 goto out;
1106
1107         slots = __kvm_memslots(kvm, as_id);
1108         memslot = id_to_memslot(slots, id);
1109         r = -ENOENT;
1110         if (!memslot->dirty_bitmap)
1111                 goto out;
1112
1113         n = kvm_dirty_bitmap_bytes(memslot);
1114
1115         for (i = 0; !any && i < n/sizeof(long); ++i)
1116                 any = memslot->dirty_bitmap[i];
1117
1118         r = -EFAULT;
1119         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120                 goto out;
1121
1122         if (any)
1123                 *is_dirty = 1;
1124
1125         r = 0;
1126 out:
1127         return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *      are dirty write protect them for next write.
1135  * @kvm:        pointer to kvm instance
1136  * @log:        slot id and address to which we copy the log
1137  * @is_dirty:   flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155                         struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157         struct kvm_memslots *slots;
1158         struct kvm_memory_slot *memslot;
1159         int r, i, as_id, id;
1160         unsigned long n;
1161         unsigned long *dirty_bitmap;
1162         unsigned long *dirty_bitmap_buffer;
1163
1164         r = -EINVAL;
1165         as_id = log->slot >> 16;
1166         id = (u16)log->slot;
1167         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168                 goto out;
1169
1170         slots = __kvm_memslots(kvm, as_id);
1171         memslot = id_to_memslot(slots, id);
1172
1173         dirty_bitmap = memslot->dirty_bitmap;
1174         r = -ENOENT;
1175         if (!dirty_bitmap)
1176                 goto out;
1177
1178         n = kvm_dirty_bitmap_bytes(memslot);
1179
1180         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181         memset(dirty_bitmap_buffer, 0, n);
1182
1183         spin_lock(&kvm->mmu_lock);
1184         *is_dirty = false;
1185         for (i = 0; i < n / sizeof(long); i++) {
1186                 unsigned long mask;
1187                 gfn_t offset;
1188
1189                 if (!dirty_bitmap[i])
1190                         continue;
1191
1192                 *is_dirty = true;
1193
1194                 mask = xchg(&dirty_bitmap[i], 0);
1195                 dirty_bitmap_buffer[i] = mask;
1196
1197                 if (mask) {
1198                         offset = i * BITS_PER_LONG;
1199                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200                                                                 offset, mask);
1201                 }
1202         }
1203
1204         spin_unlock(&kvm->mmu_lock);
1205
1206         r = -EFAULT;
1207         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208                 goto out;
1209
1210         r = 0;
1211 out:
1212         return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216
1217 bool kvm_largepages_enabled(void)
1218 {
1219         return largepages_enabled;
1220 }
1221
1222 void kvm_disable_largepages(void)
1223 {
1224         largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242
1243         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244               memslot->flags & KVM_MEMSLOT_INVALID)
1245                 return false;
1246
1247         return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253         struct vm_area_struct *vma;
1254         unsigned long addr, size;
1255
1256         size = PAGE_SIZE;
1257
1258         addr = gfn_to_hva(kvm, gfn);
1259         if (kvm_is_error_hva(addr))
1260                 return PAGE_SIZE;
1261
1262         down_read(&current->mm->mmap_sem);
1263         vma = find_vma(current->mm, addr);
1264         if (!vma)
1265                 goto out;
1266
1267         size = vma_kernel_pagesize(vma);
1268
1269 out:
1270         up_read(&current->mm->mmap_sem);
1271
1272         return size;
1273 }
1274
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277         return slot->flags & KVM_MEM_READONLY;
1278 }
1279
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281                                        gfn_t *nr_pages, bool write)
1282 {
1283         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284                 return KVM_HVA_ERR_BAD;
1285
1286         if (memslot_is_readonly(slot) && write)
1287                 return KVM_HVA_ERR_RO_BAD;
1288
1289         if (nr_pages)
1290                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1291
1292         return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296                                      gfn_t *nr_pages)
1297 {
1298         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302                                         gfn_t gfn)
1303 {
1304         return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325                                       gfn_t gfn, bool *writable)
1326 {
1327         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328
1329         if (!kvm_is_error_hva(hva) && writable)
1330                 *writable = !memslot_is_readonly(slot);
1331
1332         return hva;
1333 }
1334
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338
1339         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345
1346         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
1349 static int get_user_page_nowait(unsigned long start, int write,
1350                 struct page **page)
1351 {
1352         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353
1354         if (write)
1355                 flags |= FOLL_WRITE;
1356
1357         return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363
1364         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365         return rc == -EHWPOISON;
1366 }
1367
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375         struct page *page[1];
1376         int npages;
1377
1378         if (!(async || atomic))
1379                 return false;
1380
1381         /*
1382          * Fast pin a writable pfn only if it is a write fault request
1383          * or the caller allows to map a writable pfn for a read fault
1384          * request.
1385          */
1386         if (!(write_fault || writable))
1387                 return false;
1388
1389         npages = __get_user_pages_fast(addr, 1, 1, page);
1390         if (npages == 1) {
1391                 *pfn = page_to_pfn(page[0]);
1392
1393                 if (writable)
1394                         *writable = true;
1395                 return true;
1396         }
1397
1398         return false;
1399 }
1400
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406                            bool *writable, kvm_pfn_t *pfn)
1407 {
1408         struct page *page[1];
1409         int npages = 0;
1410
1411         might_sleep();
1412
1413         if (writable)
1414                 *writable = write_fault;
1415
1416         if (async) {
1417                 down_read(&current->mm->mmap_sem);
1418                 npages = get_user_page_nowait(addr, write_fault, page);
1419                 up_read(&current->mm->mmap_sem);
1420         } else {
1421                 unsigned int flags = FOLL_HWPOISON;
1422
1423                 if (write_fault)
1424                         flags |= FOLL_WRITE;
1425
1426                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1427         }
1428         if (npages != 1)
1429                 return npages;
1430
1431         /* map read fault as writable if possible */
1432         if (unlikely(!write_fault) && writable) {
1433                 struct page *wpage[1];
1434
1435                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436                 if (npages == 1) {
1437                         *writable = true;
1438                         put_page(page[0]);
1439                         page[0] = wpage[0];
1440                 }
1441
1442                 npages = 1;
1443         }
1444         *pfn = page_to_pfn(page[0]);
1445         return npages;
1446 }
1447
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450         if (unlikely(!(vma->vm_flags & VM_READ)))
1451                 return false;
1452
1453         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454                 return false;
1455
1456         return true;
1457 }
1458
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460                                unsigned long addr, bool *async,
1461                                bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463         unsigned long pfn;
1464         int r;
1465
1466         r = follow_pfn(vma, addr, &pfn);
1467         if (r) {
1468                 /*
1469                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470                  * not call the fault handler, so do it here.
1471                  */
1472                 bool unlocked = false;
1473                 r = fixup_user_fault(current, current->mm, addr,
1474                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1475                                      &unlocked);
1476                 if (unlocked)
1477                         return -EAGAIN;
1478                 if (r)
1479                         return r;
1480
1481                 r = follow_pfn(vma, addr, &pfn);
1482                 if (r)
1483                         return r;
1484
1485         }
1486
1487
1488         /*
1489          * Get a reference here because callers of *hva_to_pfn* and
1490          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1492          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493          * simply do nothing for reserved pfns.
1494          *
1495          * Whoever called remap_pfn_range is also going to call e.g.
1496          * unmap_mapping_range before the underlying pages are freed,
1497          * causing a call to our MMU notifier.
1498          */ 
1499         kvm_get_pfn(pfn);
1500
1501         *p_pfn = pfn;
1502         return 0;
1503 }
1504
1505 /*
1506  * Pin guest page in memory and return its pfn.
1507  * @addr: host virtual address which maps memory to the guest
1508  * @atomic: whether this function can sleep
1509  * @async: whether this function need to wait IO complete if the
1510  *         host page is not in the memory
1511  * @write_fault: whether we should get a writable host page
1512  * @writable: whether it allows to map a writable host page for !@write_fault
1513  *
1514  * The function will map a writable host page for these two cases:
1515  * 1): @write_fault = true
1516  * 2): @write_fault = false && @writable, @writable will tell the caller
1517  *     whether the mapping is writable.
1518  */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520                         bool write_fault, bool *writable)
1521 {
1522         struct vm_area_struct *vma;
1523         kvm_pfn_t pfn = 0;
1524         int npages, r;
1525
1526         /* we can do it either atomically or asynchronously, not both */
1527         BUG_ON(atomic && async);
1528
1529         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530                 return pfn;
1531
1532         if (atomic)
1533                 return KVM_PFN_ERR_FAULT;
1534
1535         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536         if (npages == 1)
1537                 return pfn;
1538
1539         down_read(&current->mm->mmap_sem);
1540         if (npages == -EHWPOISON ||
1541               (!async && check_user_page_hwpoison(addr))) {
1542                 pfn = KVM_PFN_ERR_HWPOISON;
1543                 goto exit;
1544         }
1545
1546 retry:
1547         vma = find_vma_intersection(current->mm, addr, addr + 1);
1548
1549         if (vma == NULL)
1550                 pfn = KVM_PFN_ERR_FAULT;
1551         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553                 if (r == -EAGAIN)
1554                         goto retry;
1555                 if (r < 0)
1556                         pfn = KVM_PFN_ERR_FAULT;
1557         } else {
1558                 if (async && vma_is_valid(vma, write_fault))
1559                         *async = true;
1560                 pfn = KVM_PFN_ERR_FAULT;
1561         }
1562 exit:
1563         up_read(&current->mm->mmap_sem);
1564         return pfn;
1565 }
1566
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568                                bool atomic, bool *async, bool write_fault,
1569                                bool *writable)
1570 {
1571         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572
1573         if (addr == KVM_HVA_ERR_RO_BAD) {
1574                 if (writable)
1575                         *writable = false;
1576                 return KVM_PFN_ERR_RO_FAULT;
1577         }
1578
1579         if (kvm_is_error_hva(addr)) {
1580                 if (writable)
1581                         *writable = false;
1582                 return KVM_PFN_NOSLOT;
1583         }
1584
1585         /* Do not map writable pfn in the readonly memslot. */
1586         if (writable && memslot_is_readonly(slot)) {
1587                 *writable = false;
1588                 writable = NULL;
1589         }
1590
1591         return hva_to_pfn(addr, atomic, async, write_fault,
1592                           writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597                       bool *writable)
1598 {
1599         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600                                     write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641                             struct page **pages, int nr_pages)
1642 {
1643         unsigned long addr;
1644         gfn_t entry;
1645
1646         addr = gfn_to_hva_many(slot, gfn, &entry);
1647         if (kvm_is_error_hva(addr))
1648                 return -1;
1649
1650         if (entry < nr_pages)
1651                 return 0;
1652
1653         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659         if (is_error_noslot_pfn(pfn))
1660                 return KVM_ERR_PTR_BAD_PAGE;
1661
1662         if (kvm_is_reserved_pfn(pfn)) {
1663                 WARN_ON(1);
1664                 return KVM_ERR_PTR_BAD_PAGE;
1665         }
1666
1667         return pfn_to_page(pfn);
1668 }
1669
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672         kvm_pfn_t pfn;
1673
1674         pfn = gfn_to_pfn(kvm, gfn);
1675
1676         return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682         kvm_pfn_t pfn;
1683
1684         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685
1686         return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692         WARN_ON(is_error_page(page));
1693
1694         kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701                 put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707         WARN_ON(is_error_page(page));
1708
1709         kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715         kvm_set_pfn_dirty(pfn);
1716         kvm_release_pfn_clean(pfn);
1717 }
1718
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721         if (!kvm_is_reserved_pfn(pfn)) {
1722                 struct page *page = pfn_to_page(pfn);
1723
1724                 if (!PageReserved(page))
1725                         SetPageDirty(page);
1726         }
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732         if (!kvm_is_reserved_pfn(pfn))
1733                 mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739         if (!kvm_is_reserved_pfn(pfn))
1740                 get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746         if (len > PAGE_SIZE - offset)
1747                 return PAGE_SIZE - offset;
1748         else
1749                 return len;
1750 }
1751
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753                                  void *data, int offset, int len)
1754 {
1755         int r;
1756         unsigned long addr;
1757
1758         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759         if (kvm_is_error_hva(addr))
1760                 return -EFAULT;
1761         r = __copy_from_user(data, (void __user *)addr + offset, len);
1762         if (r)
1763                 return -EFAULT;
1764         return 0;
1765 }
1766
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768                         int len)
1769 {
1770         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771
1772         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777                              int offset, int len)
1778 {
1779         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780
1781         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787         gfn_t gfn = gpa >> PAGE_SHIFT;
1788         int seg;
1789         int offset = offset_in_page(gpa);
1790         int ret;
1791
1792         while ((seg = next_segment(len, offset)) != 0) {
1793                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794                 if (ret < 0)
1795                         return ret;
1796                 offset = 0;
1797                 len -= seg;
1798                 data += seg;
1799                 ++gfn;
1800         }
1801         return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807         gfn_t gfn = gpa >> PAGE_SHIFT;
1808         int seg;
1809         int offset = offset_in_page(gpa);
1810         int ret;
1811
1812         while ((seg = next_segment(len, offset)) != 0) {
1813                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814                 if (ret < 0)
1815                         return ret;
1816                 offset = 0;
1817                 len -= seg;
1818                 data += seg;
1819                 ++gfn;
1820         }
1821         return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826                                    void *data, int offset, unsigned long len)
1827 {
1828         int r;
1829         unsigned long addr;
1830
1831         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832         if (kvm_is_error_hva(addr))
1833                 return -EFAULT;
1834         pagefault_disable();
1835         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836         pagefault_enable();
1837         if (r)
1838                 return -EFAULT;
1839         return 0;
1840 }
1841
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843                           unsigned long len)
1844 {
1845         gfn_t gfn = gpa >> PAGE_SHIFT;
1846         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847         int offset = offset_in_page(gpa);
1848
1849         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854                                void *data, unsigned long len)
1855 {
1856         gfn_t gfn = gpa >> PAGE_SHIFT;
1857         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858         int offset = offset_in_page(gpa);
1859
1860         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865                                   const void *data, int offset, int len)
1866 {
1867         int r;
1868         unsigned long addr;
1869
1870         addr = gfn_to_hva_memslot(memslot, gfn);
1871         if (kvm_is_error_hva(addr))
1872                 return -EFAULT;
1873         r = __copy_to_user((void __user *)addr + offset, data, len);
1874         if (r)
1875                 return -EFAULT;
1876         mark_page_dirty_in_slot(memslot, gfn);
1877         return 0;
1878 }
1879
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881                          const void *data, int offset, int len)
1882 {
1883         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884
1885         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890                               const void *data, int offset, int len)
1891 {
1892         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893
1894         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899                     unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 data += seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920                          unsigned long len)
1921 {
1922         gfn_t gfn = gpa >> PAGE_SHIFT;
1923         int seg;
1924         int offset = offset_in_page(gpa);
1925         int ret;
1926
1927         while ((seg = next_segment(len, offset)) != 0) {
1928                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929                 if (ret < 0)
1930                         return ret;
1931                 offset = 0;
1932                 len -= seg;
1933                 data += seg;
1934                 ++gfn;
1935         }
1936         return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939
1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941                               gpa_t gpa, unsigned long len)
1942 {
1943         struct kvm_memslots *slots = kvm_memslots(kvm);
1944         int offset = offset_in_page(gpa);
1945         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948         gfn_t nr_pages_avail;
1949
1950         ghc->gpa = gpa;
1951         ghc->generation = slots->generation;
1952         ghc->len = len;
1953         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1954         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956                 ghc->hva += offset;
1957         } else {
1958                 /*
1959                  * If the requested region crosses two memslots, we still
1960                  * verify that the entire region is valid here.
1961                  */
1962                 while (start_gfn <= end_gfn) {
1963                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1964                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965                                                    &nr_pages_avail);
1966                         if (kvm_is_error_hva(ghc->hva))
1967                                 return -EFAULT;
1968                         start_gfn += nr_pages_avail;
1969                 }
1970                 /* Use the slow path for cross page reads and writes. */
1971                 ghc->memslot = NULL;
1972         }
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1976
1977 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978                            void *data, int offset, unsigned long len)
1979 {
1980         struct kvm_memslots *slots = kvm_memslots(kvm);
1981         int r;
1982         gpa_t gpa = ghc->gpa + offset;
1983
1984         BUG_ON(len + offset > ghc->len);
1985
1986         if (slots->generation != ghc->generation)
1987                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1988
1989         if (unlikely(!ghc->memslot))
1990                 return kvm_write_guest(kvm, gpa, data, len);
1991
1992         if (kvm_is_error_hva(ghc->hva))
1993                 return -EFAULT;
1994
1995         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1996         if (r)
1997                 return -EFAULT;
1998         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1999
2000         return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2003
2004 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2005                            void *data, unsigned long len)
2006 {
2007         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2010
2011 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2012                            void *data, unsigned long len)
2013 {
2014         struct kvm_memslots *slots = kvm_memslots(kvm);
2015         int r;
2016
2017         BUG_ON(len > ghc->len);
2018
2019         if (slots->generation != ghc->generation)
2020                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2021
2022         if (unlikely(!ghc->memslot))
2023                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2024
2025         if (kvm_is_error_hva(ghc->hva))
2026                 return -EFAULT;
2027
2028         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2029         if (r)
2030                 return -EFAULT;
2031
2032         return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2035
2036 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2037 {
2038         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2039
2040         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2043
2044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2045 {
2046         gfn_t gfn = gpa >> PAGE_SHIFT;
2047         int seg;
2048         int offset = offset_in_page(gpa);
2049         int ret;
2050
2051         while ((seg = next_segment(len, offset)) != 0) {
2052                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2053                 if (ret < 0)
2054                         return ret;
2055                 offset = 0;
2056                 len -= seg;
2057                 ++gfn;
2058         }
2059         return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2062
2063 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2064                                     gfn_t gfn)
2065 {
2066         if (memslot && memslot->dirty_bitmap) {
2067                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2068
2069                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2070         }
2071 }
2072
2073 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2074 {
2075         struct kvm_memory_slot *memslot;
2076
2077         memslot = gfn_to_memslot(kvm, gfn);
2078         mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(mark_page_dirty);
2081
2082 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2083 {
2084         struct kvm_memory_slot *memslot;
2085
2086         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087         mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2090
2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2092 {
2093         unsigned int old, val, grow;
2094
2095         old = val = vcpu->halt_poll_ns;
2096         grow = READ_ONCE(halt_poll_ns_grow);
2097         /* 10us base */
2098         if (val == 0 && grow)
2099                 val = 10000;
2100         else
2101                 val *= grow;
2102
2103         if (val > halt_poll_ns)
2104                 val = halt_poll_ns;
2105
2106         vcpu->halt_poll_ns = val;
2107         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2108 }
2109
2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2111 {
2112         unsigned int old, val, shrink;
2113
2114         old = val = vcpu->halt_poll_ns;
2115         shrink = READ_ONCE(halt_poll_ns_shrink);
2116         if (shrink == 0)
2117                 val = 0;
2118         else
2119                 val /= shrink;
2120
2121         vcpu->halt_poll_ns = val;
2122         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2123 }
2124
2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2126 {
2127         if (kvm_arch_vcpu_runnable(vcpu)) {
2128                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2129                 return -EINTR;
2130         }
2131         if (kvm_cpu_has_pending_timer(vcpu))
2132                 return -EINTR;
2133         if (signal_pending(current))
2134                 return -EINTR;
2135
2136         return 0;
2137 }
2138
2139 /*
2140  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2141  */
2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2143 {
2144         ktime_t start, cur;
2145         DECLARE_SWAITQUEUE(wait);
2146         bool waited = false;
2147         u64 block_ns;
2148
2149         start = cur = ktime_get();
2150         if (vcpu->halt_poll_ns) {
2151                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2152
2153                 ++vcpu->stat.halt_attempted_poll;
2154                 do {
2155                         /*
2156                          * This sets KVM_REQ_UNHALT if an interrupt
2157                          * arrives.
2158                          */
2159                         if (kvm_vcpu_check_block(vcpu) < 0) {
2160                                 ++vcpu->stat.halt_successful_poll;
2161                                 if (!vcpu_valid_wakeup(vcpu))
2162                                         ++vcpu->stat.halt_poll_invalid;
2163                                 goto out;
2164                         }
2165                         cur = ktime_get();
2166                 } while (single_task_running() && ktime_before(cur, stop));
2167         }
2168
2169         kvm_arch_vcpu_blocking(vcpu);
2170
2171         for (;;) {
2172                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2173
2174                 if (kvm_vcpu_check_block(vcpu) < 0)
2175                         break;
2176
2177                 waited = true;
2178                 schedule();
2179         }
2180
2181         finish_swait(&vcpu->wq, &wait);
2182         cur = ktime_get();
2183
2184         kvm_arch_vcpu_unblocking(vcpu);
2185 out:
2186         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2187
2188         if (!vcpu_valid_wakeup(vcpu))
2189                 shrink_halt_poll_ns(vcpu);
2190         else if (halt_poll_ns) {
2191                 if (block_ns <= vcpu->halt_poll_ns)
2192                         ;
2193                 /* we had a long block, shrink polling */
2194                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2195                         shrink_halt_poll_ns(vcpu);
2196                 /* we had a short halt and our poll time is too small */
2197                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2198                         block_ns < halt_poll_ns)
2199                         grow_halt_poll_ns(vcpu);
2200         } else
2201                 vcpu->halt_poll_ns = 0;
2202
2203         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2204         kvm_arch_vcpu_block_finish(vcpu);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2207
2208 #ifndef CONFIG_S390
2209 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2210 {
2211         struct swait_queue_head *wqp;
2212
2213         wqp = kvm_arch_vcpu_wq(vcpu);
2214         if (swait_active(wqp)) {
2215                 swake_up(wqp);
2216                 ++vcpu->stat.halt_wakeup;
2217         }
2218
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2221
2222 /*
2223  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224  */
2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227         int me;
2228         int cpu = vcpu->cpu;
2229
2230         kvm_vcpu_wake_up(vcpu);
2231         me = get_cpu();
2232         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2233                 if (kvm_arch_vcpu_should_kick(vcpu))
2234                         smp_send_reschedule(cpu);
2235         put_cpu();
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2238 #endif /* !CONFIG_S390 */
2239
2240 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2241 {
2242         struct pid *pid;
2243         struct task_struct *task = NULL;
2244         int ret = 0;
2245
2246         rcu_read_lock();
2247         pid = rcu_dereference(target->pid);
2248         if (pid)
2249                 task = get_pid_task(pid, PIDTYPE_PID);
2250         rcu_read_unlock();
2251         if (!task)
2252                 return ret;
2253         ret = yield_to(task, 1);
2254         put_task_struct(task);
2255
2256         return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2259
2260 /*
2261  * Helper that checks whether a VCPU is eligible for directed yield.
2262  * Most eligible candidate to yield is decided by following heuristics:
2263  *
2264  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2265  *  (preempted lock holder), indicated by @in_spin_loop.
2266  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2267  *
2268  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2269  *  chance last time (mostly it has become eligible now since we have probably
2270  *  yielded to lockholder in last iteration. This is done by toggling
2271  *  @dy_eligible each time a VCPU checked for eligibility.)
2272  *
2273  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2274  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2275  *  burning. Giving priority for a potential lock-holder increases lock
2276  *  progress.
2277  *
2278  *  Since algorithm is based on heuristics, accessing another VCPU data without
2279  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2280  *  and continue with next VCPU and so on.
2281  */
2282 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2283 {
2284 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2285         bool eligible;
2286
2287         eligible = !vcpu->spin_loop.in_spin_loop ||
2288                     vcpu->spin_loop.dy_eligible;
2289
2290         if (vcpu->spin_loop.in_spin_loop)
2291                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2292
2293         return eligible;
2294 #else
2295         return true;
2296 #endif
2297 }
2298
2299 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2300 {
2301         struct kvm *kvm = me->kvm;
2302         struct kvm_vcpu *vcpu;
2303         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2304         int yielded = 0;
2305         int try = 3;
2306         int pass;
2307         int i;
2308
2309         kvm_vcpu_set_in_spin_loop(me, true);
2310         /*
2311          * We boost the priority of a VCPU that is runnable but not
2312          * currently running, because it got preempted by something
2313          * else and called schedule in __vcpu_run.  Hopefully that
2314          * VCPU is holding the lock that we need and will release it.
2315          * We approximate round-robin by starting at the last boosted VCPU.
2316          */
2317         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2318                 kvm_for_each_vcpu(i, vcpu, kvm) {
2319                         if (!pass && i <= last_boosted_vcpu) {
2320                                 i = last_boosted_vcpu;
2321                                 continue;
2322                         } else if (pass && i > last_boosted_vcpu)
2323                                 break;
2324                         if (!ACCESS_ONCE(vcpu->preempted))
2325                                 continue;
2326                         if (vcpu == me)
2327                                 continue;
2328                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2329                                 continue;
2330                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2331                                 continue;
2332
2333                         yielded = kvm_vcpu_yield_to(vcpu);
2334                         if (yielded > 0) {
2335                                 kvm->last_boosted_vcpu = i;
2336                                 break;
2337                         } else if (yielded < 0) {
2338                                 try--;
2339                                 if (!try)
2340                                         break;
2341                         }
2342                 }
2343         }
2344         kvm_vcpu_set_in_spin_loop(me, false);
2345
2346         /* Ensure vcpu is not eligible during next spinloop */
2347         kvm_vcpu_set_dy_eligible(me, false);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2350
2351 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2352 {
2353         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2354         struct page *page;
2355
2356         if (vmf->pgoff == 0)
2357                 page = virt_to_page(vcpu->run);
2358 #ifdef CONFIG_X86
2359         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2360                 page = virt_to_page(vcpu->arch.pio_data);
2361 #endif
2362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2363         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2364                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2365 #endif
2366         else
2367                 return kvm_arch_vcpu_fault(vcpu, vmf);
2368         get_page(page);
2369         vmf->page = page;
2370         return 0;
2371 }
2372
2373 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2374         .fault = kvm_vcpu_fault,
2375 };
2376
2377 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2378 {
2379         vma->vm_ops = &kvm_vcpu_vm_ops;
2380         return 0;
2381 }
2382
2383 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2384 {
2385         struct kvm_vcpu *vcpu = filp->private_data;
2386
2387         debugfs_remove_recursive(vcpu->debugfs_dentry);
2388         kvm_put_kvm(vcpu->kvm);
2389         return 0;
2390 }
2391
2392 static struct file_operations kvm_vcpu_fops = {
2393         .release        = kvm_vcpu_release,
2394         .unlocked_ioctl = kvm_vcpu_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2397 #endif
2398         .mmap           = kvm_vcpu_mmap,
2399         .llseek         = noop_llseek,
2400 };
2401
2402 /*
2403  * Allocates an inode for the vcpu.
2404  */
2405 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2406 {
2407         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2408 }
2409
2410 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2411 {
2412         char dir_name[ITOA_MAX_LEN * 2];
2413         int ret;
2414
2415         if (!kvm_arch_has_vcpu_debugfs())
2416                 return 0;
2417
2418         if (!debugfs_initialized())
2419                 return 0;
2420
2421         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2422         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2423                                                                 vcpu->kvm->debugfs_dentry);
2424         if (!vcpu->debugfs_dentry)
2425                 return -ENOMEM;
2426
2427         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2428         if (ret < 0) {
2429                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2430                 return ret;
2431         }
2432
2433         return 0;
2434 }
2435
2436 /*
2437  * Creates some virtual cpus.  Good luck creating more than one.
2438  */
2439 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2440 {
2441         int r;
2442         struct kvm_vcpu *vcpu;
2443
2444         if (id >= KVM_MAX_VCPU_ID)
2445                 return -EINVAL;
2446
2447         mutex_lock(&kvm->lock);
2448         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2449                 mutex_unlock(&kvm->lock);
2450                 return -EINVAL;
2451         }
2452
2453         kvm->created_vcpus++;
2454         mutex_unlock(&kvm->lock);
2455
2456         vcpu = kvm_arch_vcpu_create(kvm, id);
2457         if (IS_ERR(vcpu)) {
2458                 r = PTR_ERR(vcpu);
2459                 goto vcpu_decrement;
2460         }
2461
2462         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2463
2464         r = kvm_arch_vcpu_setup(vcpu);
2465         if (r)
2466                 goto vcpu_destroy;
2467
2468         r = kvm_create_vcpu_debugfs(vcpu);
2469         if (r)
2470                 goto vcpu_destroy;
2471
2472         mutex_lock(&kvm->lock);
2473         if (kvm_get_vcpu_by_id(kvm, id)) {
2474                 r = -EEXIST;
2475                 goto unlock_vcpu_destroy;
2476         }
2477
2478         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2479
2480         /* Now it's all set up, let userspace reach it */
2481         kvm_get_kvm(kvm);
2482         r = create_vcpu_fd(vcpu);
2483         if (r < 0) {
2484                 kvm_put_kvm(kvm);
2485                 goto unlock_vcpu_destroy;
2486         }
2487
2488         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2489
2490         /*
2491          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2492          * before kvm->online_vcpu's incremented value.
2493          */
2494         smp_wmb();
2495         atomic_inc(&kvm->online_vcpus);
2496
2497         mutex_unlock(&kvm->lock);
2498         kvm_arch_vcpu_postcreate(vcpu);
2499         return r;
2500
2501 unlock_vcpu_destroy:
2502         mutex_unlock(&kvm->lock);
2503         debugfs_remove_recursive(vcpu->debugfs_dentry);
2504 vcpu_destroy:
2505         kvm_arch_vcpu_destroy(vcpu);
2506 vcpu_decrement:
2507         mutex_lock(&kvm->lock);
2508         kvm->created_vcpus--;
2509         mutex_unlock(&kvm->lock);
2510         return r;
2511 }
2512
2513 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2514 {
2515         if (sigset) {
2516                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2517                 vcpu->sigset_active = 1;
2518                 vcpu->sigset = *sigset;
2519         } else
2520                 vcpu->sigset_active = 0;
2521         return 0;
2522 }
2523
2524 static long kvm_vcpu_ioctl(struct file *filp,
2525                            unsigned int ioctl, unsigned long arg)
2526 {
2527         struct kvm_vcpu *vcpu = filp->private_data;
2528         void __user *argp = (void __user *)arg;
2529         int r;
2530         struct kvm_fpu *fpu = NULL;
2531         struct kvm_sregs *kvm_sregs = NULL;
2532
2533         if (vcpu->kvm->mm != current->mm)
2534                 return -EIO;
2535
2536         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2537                 return -EINVAL;
2538
2539 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2540         /*
2541          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2542          * so vcpu_load() would break it.
2543          */
2544         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2545                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2546 #endif
2547
2548
2549         r = vcpu_load(vcpu);
2550         if (r)
2551                 return r;
2552         switch (ioctl) {
2553         case KVM_RUN:
2554                 r = -EINVAL;
2555                 if (arg)
2556                         goto out;
2557                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2558                         /* The thread running this VCPU changed. */
2559                         struct pid *oldpid = vcpu->pid;
2560                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2561
2562                         rcu_assign_pointer(vcpu->pid, newpid);
2563                         if (oldpid)
2564                                 synchronize_rcu();
2565                         put_pid(oldpid);
2566                 }
2567                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2568                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2569                 break;
2570         case KVM_GET_REGS: {
2571                 struct kvm_regs *kvm_regs;
2572
2573                 r = -ENOMEM;
2574                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2575                 if (!kvm_regs)
2576                         goto out;
2577                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2578                 if (r)
2579                         goto out_free1;
2580                 r = -EFAULT;
2581                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2582                         goto out_free1;
2583                 r = 0;
2584 out_free1:
2585                 kfree(kvm_regs);
2586                 break;
2587         }
2588         case KVM_SET_REGS: {
2589                 struct kvm_regs *kvm_regs;
2590
2591                 r = -ENOMEM;
2592                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2593                 if (IS_ERR(kvm_regs)) {
2594                         r = PTR_ERR(kvm_regs);
2595                         goto out;
2596                 }
2597                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2598                 kfree(kvm_regs);
2599                 break;
2600         }
2601         case KVM_GET_SREGS: {
2602                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2603                 r = -ENOMEM;
2604                 if (!kvm_sregs)
2605                         goto out;
2606                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2607                 if (r)
2608                         goto out;
2609                 r = -EFAULT;
2610                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2611                         goto out;
2612                 r = 0;
2613                 break;
2614         }
2615         case KVM_SET_SREGS: {
2616                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2617                 if (IS_ERR(kvm_sregs)) {
2618                         r = PTR_ERR(kvm_sregs);
2619                         kvm_sregs = NULL;
2620                         goto out;
2621                 }
2622                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2623                 break;
2624         }
2625         case KVM_GET_MP_STATE: {
2626                 struct kvm_mp_state mp_state;
2627
2628                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2629                 if (r)
2630                         goto out;
2631                 r = -EFAULT;
2632                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2633                         goto out;
2634                 r = 0;
2635                 break;
2636         }
2637         case KVM_SET_MP_STATE: {
2638                 struct kvm_mp_state mp_state;
2639
2640                 r = -EFAULT;
2641                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2642                         goto out;
2643                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2644                 break;
2645         }
2646         case KVM_TRANSLATE: {
2647                 struct kvm_translation tr;
2648
2649                 r = -EFAULT;
2650                 if (copy_from_user(&tr, argp, sizeof(tr)))
2651                         goto out;
2652                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2653                 if (r)
2654                         goto out;
2655                 r = -EFAULT;
2656                 if (copy_to_user(argp, &tr, sizeof(tr)))
2657                         goto out;
2658                 r = 0;
2659                 break;
2660         }
2661         case KVM_SET_GUEST_DEBUG: {
2662                 struct kvm_guest_debug dbg;
2663
2664                 r = -EFAULT;
2665                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2666                         goto out;
2667                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2668                 break;
2669         }
2670         case KVM_SET_SIGNAL_MASK: {
2671                 struct kvm_signal_mask __user *sigmask_arg = argp;
2672                 struct kvm_signal_mask kvm_sigmask;
2673                 sigset_t sigset, *p;
2674
2675                 p = NULL;
2676                 if (argp) {
2677                         r = -EFAULT;
2678                         if (copy_from_user(&kvm_sigmask, argp,
2679                                            sizeof(kvm_sigmask)))
2680                                 goto out;
2681                         r = -EINVAL;
2682                         if (kvm_sigmask.len != sizeof(sigset))
2683                                 goto out;
2684                         r = -EFAULT;
2685                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2686                                            sizeof(sigset)))
2687                                 goto out;
2688                         p = &sigset;
2689                 }
2690                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2691                 break;
2692         }
2693         case KVM_GET_FPU: {
2694                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2695                 r = -ENOMEM;
2696                 if (!fpu)
2697                         goto out;
2698                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2699                 if (r)
2700                         goto out;
2701                 r = -EFAULT;
2702                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2703                         goto out;
2704                 r = 0;
2705                 break;
2706         }
2707         case KVM_SET_FPU: {
2708                 fpu = memdup_user(argp, sizeof(*fpu));
2709                 if (IS_ERR(fpu)) {
2710                         r = PTR_ERR(fpu);
2711                         fpu = NULL;
2712                         goto out;
2713                 }
2714                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2715                 break;
2716         }
2717         default:
2718                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2719         }
2720 out:
2721         vcpu_put(vcpu);
2722         kfree(fpu);
2723         kfree(kvm_sregs);
2724         return r;
2725 }
2726
2727 #ifdef CONFIG_KVM_COMPAT
2728 static long kvm_vcpu_compat_ioctl(struct file *filp,
2729                                   unsigned int ioctl, unsigned long arg)
2730 {
2731         struct kvm_vcpu *vcpu = filp->private_data;
2732         void __user *argp = compat_ptr(arg);
2733         int r;
2734
2735         if (vcpu->kvm->mm != current->mm)
2736                 return -EIO;
2737
2738         switch (ioctl) {
2739         case KVM_SET_SIGNAL_MASK: {
2740                 struct kvm_signal_mask __user *sigmask_arg = argp;
2741                 struct kvm_signal_mask kvm_sigmask;
2742                 compat_sigset_t csigset;
2743                 sigset_t sigset;
2744
2745                 if (argp) {
2746                         r = -EFAULT;
2747                         if (copy_from_user(&kvm_sigmask, argp,
2748                                            sizeof(kvm_sigmask)))
2749                                 goto out;
2750                         r = -EINVAL;
2751                         if (kvm_sigmask.len != sizeof(csigset))
2752                                 goto out;
2753                         r = -EFAULT;
2754                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2755                                            sizeof(csigset)))
2756                                 goto out;
2757                         sigset_from_compat(&sigset, &csigset);
2758                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2759                 } else
2760                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2761                 break;
2762         }
2763         default:
2764                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2765         }
2766
2767 out:
2768         return r;
2769 }
2770 #endif
2771
2772 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2773                                  int (*accessor)(struct kvm_device *dev,
2774                                                  struct kvm_device_attr *attr),
2775                                  unsigned long arg)
2776 {
2777         struct kvm_device_attr attr;
2778
2779         if (!accessor)
2780                 return -EPERM;
2781
2782         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2783                 return -EFAULT;
2784
2785         return accessor(dev, &attr);
2786 }
2787
2788 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2789                              unsigned long arg)
2790 {
2791         struct kvm_device *dev = filp->private_data;
2792
2793         switch (ioctl) {
2794         case KVM_SET_DEVICE_ATTR:
2795                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2796         case KVM_GET_DEVICE_ATTR:
2797                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2798         case KVM_HAS_DEVICE_ATTR:
2799                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2800         default:
2801                 if (dev->ops->ioctl)
2802                         return dev->ops->ioctl(dev, ioctl, arg);
2803
2804                 return -ENOTTY;
2805         }
2806 }
2807
2808 static int kvm_device_release(struct inode *inode, struct file *filp)
2809 {
2810         struct kvm_device *dev = filp->private_data;
2811         struct kvm *kvm = dev->kvm;
2812
2813         kvm_put_kvm(kvm);
2814         return 0;
2815 }
2816
2817 static const struct file_operations kvm_device_fops = {
2818         .unlocked_ioctl = kvm_device_ioctl,
2819 #ifdef CONFIG_KVM_COMPAT
2820         .compat_ioctl = kvm_device_ioctl,
2821 #endif
2822         .release = kvm_device_release,
2823 };
2824
2825 struct kvm_device *kvm_device_from_filp(struct file *filp)
2826 {
2827         if (filp->f_op != &kvm_device_fops)
2828                 return NULL;
2829
2830         return filp->private_data;
2831 }
2832
2833 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2834 #ifdef CONFIG_KVM_MPIC
2835         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2836         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2837 #endif
2838
2839 #ifdef CONFIG_KVM_XICS
2840         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2841 #endif
2842 };
2843
2844 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2845 {
2846         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2847                 return -ENOSPC;
2848
2849         if (kvm_device_ops_table[type] != NULL)
2850                 return -EEXIST;
2851
2852         kvm_device_ops_table[type] = ops;
2853         return 0;
2854 }
2855
2856 void kvm_unregister_device_ops(u32 type)
2857 {
2858         if (kvm_device_ops_table[type] != NULL)
2859                 kvm_device_ops_table[type] = NULL;
2860 }
2861
2862 static int kvm_ioctl_create_device(struct kvm *kvm,
2863                                    struct kvm_create_device *cd)
2864 {
2865         struct kvm_device_ops *ops = NULL;
2866         struct kvm_device *dev;
2867         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2868         int ret;
2869
2870         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2871                 return -ENODEV;
2872
2873         ops = kvm_device_ops_table[cd->type];
2874         if (ops == NULL)
2875                 return -ENODEV;
2876
2877         if (test)
2878                 return 0;
2879
2880         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2881         if (!dev)
2882                 return -ENOMEM;
2883
2884         dev->ops = ops;
2885         dev->kvm = kvm;
2886
2887         mutex_lock(&kvm->lock);
2888         ret = ops->create(dev, cd->type);
2889         if (ret < 0) {
2890                 mutex_unlock(&kvm->lock);
2891                 kfree(dev);
2892                 return ret;
2893         }
2894         list_add(&dev->vm_node, &kvm->devices);
2895         mutex_unlock(&kvm->lock);
2896
2897         if (ops->init)
2898                 ops->init(dev);
2899
2900         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2901         if (ret < 0) {
2902                 mutex_lock(&kvm->lock);
2903                 list_del(&dev->vm_node);
2904                 mutex_unlock(&kvm->lock);
2905                 ops->destroy(dev);
2906                 return ret;
2907         }
2908
2909         kvm_get_kvm(kvm);
2910         cd->fd = ret;
2911         return 0;
2912 }
2913
2914 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2915 {
2916         switch (arg) {
2917         case KVM_CAP_USER_MEMORY:
2918         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2919         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2920         case KVM_CAP_INTERNAL_ERROR_DATA:
2921 #ifdef CONFIG_HAVE_KVM_MSI
2922         case KVM_CAP_SIGNAL_MSI:
2923 #endif
2924 #ifdef CONFIG_HAVE_KVM_IRQFD
2925         case KVM_CAP_IRQFD:
2926         case KVM_CAP_IRQFD_RESAMPLE:
2927 #endif
2928         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2929         case KVM_CAP_CHECK_EXTENSION_VM:
2930                 return 1;
2931 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2932         case KVM_CAP_IRQ_ROUTING:
2933                 return KVM_MAX_IRQ_ROUTES;
2934 #endif
2935 #if KVM_ADDRESS_SPACE_NUM > 1
2936         case KVM_CAP_MULTI_ADDRESS_SPACE:
2937                 return KVM_ADDRESS_SPACE_NUM;
2938 #endif
2939         case KVM_CAP_MAX_VCPU_ID:
2940                 return KVM_MAX_VCPU_ID;
2941         default:
2942                 break;
2943         }
2944         return kvm_vm_ioctl_check_extension(kvm, arg);
2945 }
2946
2947 static long kvm_vm_ioctl(struct file *filp,
2948                            unsigned int ioctl, unsigned long arg)
2949 {
2950         struct kvm *kvm = filp->private_data;
2951         void __user *argp = (void __user *)arg;
2952         int r;
2953
2954         if (kvm->mm != current->mm)
2955                 return -EIO;
2956         switch (ioctl) {
2957         case KVM_CREATE_VCPU:
2958                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2959                 break;
2960         case KVM_SET_USER_MEMORY_REGION: {
2961                 struct kvm_userspace_memory_region kvm_userspace_mem;
2962
2963                 r = -EFAULT;
2964                 if (copy_from_user(&kvm_userspace_mem, argp,
2965                                                 sizeof(kvm_userspace_mem)))
2966                         goto out;
2967
2968                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2969                 break;
2970         }
2971         case KVM_GET_DIRTY_LOG: {
2972                 struct kvm_dirty_log log;
2973
2974                 r = -EFAULT;
2975                 if (copy_from_user(&log, argp, sizeof(log)))
2976                         goto out;
2977                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2978                 break;
2979         }
2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981         case KVM_REGISTER_COALESCED_MMIO: {
2982                 struct kvm_coalesced_mmio_zone zone;
2983
2984                 r = -EFAULT;
2985                 if (copy_from_user(&zone, argp, sizeof(zone)))
2986                         goto out;
2987                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2988                 break;
2989         }
2990         case KVM_UNREGISTER_COALESCED_MMIO: {
2991                 struct kvm_coalesced_mmio_zone zone;
2992
2993                 r = -EFAULT;
2994                 if (copy_from_user(&zone, argp, sizeof(zone)))
2995                         goto out;
2996                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2997                 break;
2998         }
2999 #endif
3000         case KVM_IRQFD: {
3001                 struct kvm_irqfd data;
3002
3003                 r = -EFAULT;
3004                 if (copy_from_user(&data, argp, sizeof(data)))
3005                         goto out;
3006                 r = kvm_irqfd(kvm, &data);
3007                 break;
3008         }
3009         case KVM_IOEVENTFD: {
3010                 struct kvm_ioeventfd data;
3011
3012                 r = -EFAULT;
3013                 if (copy_from_user(&data, argp, sizeof(data)))
3014                         goto out;
3015                 r = kvm_ioeventfd(kvm, &data);
3016                 break;
3017         }
3018 #ifdef CONFIG_HAVE_KVM_MSI
3019         case KVM_SIGNAL_MSI: {
3020                 struct kvm_msi msi;
3021
3022                 r = -EFAULT;
3023                 if (copy_from_user(&msi, argp, sizeof(msi)))
3024                         goto out;
3025                 r = kvm_send_userspace_msi(kvm, &msi);
3026                 break;
3027         }
3028 #endif
3029 #ifdef __KVM_HAVE_IRQ_LINE
3030         case KVM_IRQ_LINE_STATUS:
3031         case KVM_IRQ_LINE: {
3032                 struct kvm_irq_level irq_event;
3033
3034                 r = -EFAULT;
3035                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3036                         goto out;
3037
3038                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3039                                         ioctl == KVM_IRQ_LINE_STATUS);
3040                 if (r)
3041                         goto out;
3042
3043                 r = -EFAULT;
3044                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3045                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3046                                 goto out;
3047                 }
3048
3049                 r = 0;
3050                 break;
3051         }
3052 #endif
3053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3054         case KVM_SET_GSI_ROUTING: {
3055                 struct kvm_irq_routing routing;
3056                 struct kvm_irq_routing __user *urouting;
3057                 struct kvm_irq_routing_entry *entries = NULL;
3058
3059                 r = -EFAULT;
3060                 if (copy_from_user(&routing, argp, sizeof(routing)))
3061                         goto out;
3062                 r = -EINVAL;
3063                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3064                         goto out;
3065                 if (routing.flags)
3066                         goto out;
3067                 if (routing.nr) {
3068                         r = -ENOMEM;
3069                         entries = vmalloc(routing.nr * sizeof(*entries));
3070                         if (!entries)
3071                                 goto out;
3072                         r = -EFAULT;
3073                         urouting = argp;
3074                         if (copy_from_user(entries, urouting->entries,
3075                                            routing.nr * sizeof(*entries)))
3076                                 goto out_free_irq_routing;
3077                 }
3078                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3079                                         routing.flags);
3080 out_free_irq_routing:
3081                 vfree(entries);
3082                 break;
3083         }
3084 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3085         case KVM_CREATE_DEVICE: {
3086                 struct kvm_create_device cd;
3087
3088                 r = -EFAULT;
3089                 if (copy_from_user(&cd, argp, sizeof(cd)))
3090                         goto out;
3091
3092                 r = kvm_ioctl_create_device(kvm, &cd);
3093                 if (r)
3094                         goto out;
3095
3096                 r = -EFAULT;
3097                 if (copy_to_user(argp, &cd, sizeof(cd)))
3098                         goto out;
3099
3100                 r = 0;
3101                 break;
3102         }
3103         case KVM_CHECK_EXTENSION:
3104                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3105                 break;
3106         default:
3107                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3108         }
3109 out:
3110         return r;
3111 }
3112
3113 #ifdef CONFIG_KVM_COMPAT
3114 struct compat_kvm_dirty_log {
3115         __u32 slot;
3116         __u32 padding1;
3117         union {
3118                 compat_uptr_t dirty_bitmap; /* one bit per page */
3119                 __u64 padding2;
3120         };
3121 };
3122
3123 static long kvm_vm_compat_ioctl(struct file *filp,
3124                            unsigned int ioctl, unsigned long arg)
3125 {
3126         struct kvm *kvm = filp->private_data;
3127         int r;
3128
3129         if (kvm->mm != current->mm)
3130                 return -EIO;
3131         switch (ioctl) {
3132         case KVM_GET_DIRTY_LOG: {
3133                 struct compat_kvm_dirty_log compat_log;
3134                 struct kvm_dirty_log log;
3135
3136                 r = -EFAULT;
3137                 if (copy_from_user(&compat_log, (void __user *)arg,
3138                                    sizeof(compat_log)))
3139                         goto out;
3140                 log.slot         = compat_log.slot;
3141                 log.padding1     = compat_log.padding1;
3142                 log.padding2     = compat_log.padding2;
3143                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3144
3145                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3146                 break;
3147         }
3148         default:
3149                 r = kvm_vm_ioctl(filp, ioctl, arg);
3150         }
3151
3152 out:
3153         return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158         .release        = kvm_vm_release,
3159         .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161         .compat_ioctl   = kvm_vm_compat_ioctl,
3162 #endif
3163         .llseek         = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168         int r;
3169         struct kvm *kvm;
3170         struct file *file;
3171
3172         kvm = kvm_create_vm(type);
3173         if (IS_ERR(kvm))
3174                 return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176         r = kvm_coalesced_mmio_init(kvm);
3177         if (r < 0) {
3178                 kvm_put_kvm(kvm);
3179                 return r;
3180         }
3181 #endif
3182         r = get_unused_fd_flags(O_CLOEXEC);
3183         if (r < 0) {
3184                 kvm_put_kvm(kvm);
3185                 return r;
3186         }
3187         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188         if (IS_ERR(file)) {
3189                 put_unused_fd(r);
3190                 kvm_put_kvm(kvm);
3191                 return PTR_ERR(file);
3192         }
3193
3194         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195                 put_unused_fd(r);
3196                 fput(file);
3197                 return -ENOMEM;
3198         }
3199
3200         fd_install(r, file);
3201         return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205                           unsigned int ioctl, unsigned long arg)
3206 {
3207         long r = -EINVAL;
3208
3209         switch (ioctl) {
3210         case KVM_GET_API_VERSION:
3211                 if (arg)
3212                         goto out;
3213                 r = KVM_API_VERSION;
3214                 break;
3215         case KVM_CREATE_VM:
3216                 r = kvm_dev_ioctl_create_vm(arg);
3217                 break;
3218         case KVM_CHECK_EXTENSION:
3219                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220                 break;
3221         case KVM_GET_VCPU_MMAP_SIZE:
3222                 if (arg)
3223                         goto out;
3224                 r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226                 r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231                 break;
3232         case KVM_TRACE_ENABLE:
3233         case KVM_TRACE_PAUSE:
3234         case KVM_TRACE_DISABLE:
3235                 r = -EOPNOTSUPP;
3236                 break;
3237         default:
3238                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239         }
3240 out:
3241         return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245         .unlocked_ioctl = kvm_dev_ioctl,
3246         .compat_ioctl   = kvm_dev_ioctl,
3247         .llseek         = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251         KVM_MINOR,
3252         "kvm",
3253         &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258         int cpu = raw_smp_processor_id();
3259         int r;
3260
3261         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262                 return;
3263
3264         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266         r = kvm_arch_hardware_enable();
3267
3268         if (r) {
3269                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270                 atomic_inc(&hardware_enable_failed);
3271                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272         }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277         raw_spin_lock(&kvm_count_lock);
3278         if (kvm_usage_count)
3279                 hardware_enable_nolock(NULL);
3280         raw_spin_unlock(&kvm_count_lock);
3281         return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286         int cpu = raw_smp_processor_id();
3287
3288         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289                 return;
3290         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291         kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296         raw_spin_lock(&kvm_count_lock);
3297         if (kvm_usage_count)
3298                 hardware_disable_nolock(NULL);
3299         raw_spin_unlock(&kvm_count_lock);
3300         return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305         BUG_ON(!kvm_usage_count);
3306
3307         kvm_usage_count--;
3308         if (!kvm_usage_count)
3309                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314         raw_spin_lock(&kvm_count_lock);
3315         hardware_disable_all_nolock();
3316         raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321         int r = 0;
3322
3323         raw_spin_lock(&kvm_count_lock);
3324
3325         kvm_usage_count++;
3326         if (kvm_usage_count == 1) {
3327                 atomic_set(&hardware_enable_failed, 0);
3328                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330                 if (atomic_read(&hardware_enable_failed)) {
3331                         hardware_disable_all_nolock();
3332                         r = -EBUSY;
3333                 }
3334         }
3335
3336         raw_spin_unlock(&kvm_count_lock);
3337
3338         return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342                       void *v)
3343 {
3344         /*
3345          * Some (well, at least mine) BIOSes hang on reboot if
3346          * in vmx root mode.
3347          *
3348          * And Intel TXT required VMX off for all cpu when system shutdown.
3349          */
3350         pr_info("kvm: exiting hardware virtualization\n");
3351         kvm_rebooting = true;
3352         on_each_cpu(hardware_disable_nolock, NULL, 1);
3353         return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357         .notifier_call = kvm_reboot,
3358         .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363         int i;
3364
3365         for (i = 0; i < bus->dev_count; i++) {
3366                 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368                 kvm_iodevice_destructor(pos);
3369         }
3370         kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374                                  const struct kvm_io_range *r2)
3375 {
3376         gpa_t addr1 = r1->addr;
3377         gpa_t addr2 = r2->addr;
3378
3379         if (addr1 < addr2)
3380                 return -1;
3381
3382         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3383          * accept any overlapping write.  Any order is acceptable for
3384          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385          * we process all of them.
3386          */
3387         if (r2->len) {
3388                 addr1 += r1->len;
3389                 addr2 += r2->len;
3390         }
3391
3392         if (addr1 > addr2)
3393                 return 1;
3394
3395         return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400         return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404                           gpa_t addr, int len)
3405 {
3406         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407                 .addr = addr,
3408                 .len = len,
3409                 .dev = dev,
3410         };
3411
3412         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413                 kvm_io_bus_sort_cmp, NULL);
3414
3415         return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419                              gpa_t addr, int len)
3420 {
3421         struct kvm_io_range *range, key;
3422         int off;
3423
3424         key = (struct kvm_io_range) {
3425                 .addr = addr,
3426                 .len = len,
3427         };
3428
3429         range = bsearch(&key, bus->range, bus->dev_count,
3430                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431         if (range == NULL)
3432                 return -ENOENT;
3433
3434         off = range - bus->range;
3435
3436         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437                 off--;
3438
3439         return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443                               struct kvm_io_range *range, const void *val)
3444 {
3445         int idx;
3446
3447         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448         if (idx < 0)
3449                 return -EOPNOTSUPP;
3450
3451         while (idx < bus->dev_count &&
3452                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454                                         range->len, val))
3455                         return idx;
3456                 idx++;
3457         }
3458
3459         return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464                      int len, const void *val)
3465 {
3466         struct kvm_io_bus *bus;
3467         struct kvm_io_range range;
3468         int r;
3469
3470         range = (struct kvm_io_range) {
3471                 .addr = addr,
3472                 .len = len,
3473         };
3474
3475         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477         return r < 0 ? r : 0;
3478 }
3479
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482                             gpa_t addr, int len, const void *val, long cookie)
3483 {
3484         struct kvm_io_bus *bus;
3485         struct kvm_io_range range;
3486
3487         range = (struct kvm_io_range) {
3488                 .addr = addr,
3489                 .len = len,
3490         };
3491
3492         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493
3494         /* First try the device referenced by cookie. */
3495         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3496             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3497                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3498                                         val))
3499                         return cookie;
3500
3501         /*
3502          * cookie contained garbage; fall back to search and return the
3503          * correct cookie value.
3504          */
3505         return __kvm_io_bus_write(vcpu, bus, &range, val);
3506 }
3507
3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3509                              struct kvm_io_range *range, void *val)
3510 {
3511         int idx;
3512
3513         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3514         if (idx < 0)
3515                 return -EOPNOTSUPP;
3516
3517         while (idx < bus->dev_count &&
3518                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3519                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3520                                        range->len, val))
3521                         return idx;
3522                 idx++;
3523         }
3524
3525         return -EOPNOTSUPP;
3526 }
3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3528
3529 /* kvm_io_bus_read - called under kvm->slots_lock */
3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3531                     int len, void *val)
3532 {
3533         struct kvm_io_bus *bus;
3534         struct kvm_io_range range;
3535         int r;
3536
3537         range = (struct kvm_io_range) {
3538                 .addr = addr,
3539                 .len = len,
3540         };
3541
3542         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3543         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3544         return r < 0 ? r : 0;
3545 }
3546
3547
3548 /* Caller must hold slots_lock. */
3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3550                             int len, struct kvm_io_device *dev)
3551 {
3552         struct kvm_io_bus *new_bus, *bus;
3553
3554         bus = kvm->buses[bus_idx];
3555         /* exclude ioeventfd which is limited by maximum fd */
3556         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557                 return -ENOSPC;
3558
3559         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3561         if (!new_bus)
3562                 return -ENOMEM;
3563         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564                sizeof(struct kvm_io_range)));
3565         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567         synchronize_srcu_expedited(&kvm->srcu);
3568         kfree(bus);
3569
3570         return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575                               struct kvm_io_device *dev)
3576 {
3577         int i, r;
3578         struct kvm_io_bus *new_bus, *bus;
3579
3580         bus = kvm->buses[bus_idx];
3581         r = -ENOENT;
3582         for (i = 0; i < bus->dev_count; i++)
3583                 if (bus->range[i].dev == dev) {
3584                         r = 0;
3585                         break;
3586                 }
3587
3588         if (r)
3589                 return r;
3590
3591         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3593         if (!new_bus)
3594                 return -ENOMEM;
3595
3596         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597         new_bus->dev_count--;
3598         memcpy(new_bus->range + i, bus->range + i + 1,
3599                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602         synchronize_srcu_expedited(&kvm->srcu);
3603         kfree(bus);
3604         return r;
3605 }
3606
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608                                          gpa_t addr)
3609 {
3610         struct kvm_io_bus *bus;
3611         int dev_idx, srcu_idx;
3612         struct kvm_io_device *iodev = NULL;
3613
3614         srcu_idx = srcu_read_lock(&kvm->srcu);
3615
3616         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617
3618         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3619         if (dev_idx < 0)
3620                 goto out_unlock;
3621
3622         iodev = bus->range[dev_idx].dev;
3623
3624 out_unlock:
3625         srcu_read_unlock(&kvm->srcu, srcu_idx);
3626
3627         return iodev;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3630
3631 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3632                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3633                            const char *fmt)
3634 {
3635         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3636                                           inode->i_private;
3637
3638         /* The debugfs files are a reference to the kvm struct which
3639          * is still valid when kvm_destroy_vm is called.
3640          * To avoid the race between open and the removal of the debugfs
3641          * directory we test against the users count.
3642          */
3643         if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3644                 return -ENOENT;
3645
3646         if (simple_attr_open(inode, file, get, set, fmt)) {
3647                 kvm_put_kvm(stat_data->kvm);
3648                 return -ENOMEM;
3649         }
3650
3651         return 0;
3652 }
3653
3654 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3655 {
3656         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657                                           inode->i_private;
3658
3659         simple_attr_release(inode, file);
3660         kvm_put_kvm(stat_data->kvm);
3661
3662         return 0;
3663 }
3664
3665 static int vm_stat_get_per_vm(void *data, u64 *val)
3666 {
3667         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3668
3669         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3670
3671         return 0;
3672 }
3673
3674 static int vm_stat_clear_per_vm(void *data, u64 val)
3675 {
3676         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3677
3678         if (val)
3679                 return -EINVAL;
3680
3681         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3682
3683         return 0;
3684 }
3685
3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3687 {
3688         __simple_attr_check_format("%llu\n", 0ull);
3689         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3690                                 vm_stat_clear_per_vm, "%llu\n");
3691 }
3692
3693 static const struct file_operations vm_stat_get_per_vm_fops = {
3694         .owner   = THIS_MODULE,
3695         .open    = vm_stat_get_per_vm_open,
3696         .release = kvm_debugfs_release,
3697         .read    = simple_attr_read,
3698         .write   = simple_attr_write,
3699         .llseek  = generic_file_llseek,
3700 };
3701
3702 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3703 {
3704         int i;
3705         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706         struct kvm_vcpu *vcpu;
3707
3708         *val = 0;
3709
3710         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3711                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3712
3713         return 0;
3714 }
3715
3716 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3717 {
3718         int i;
3719         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720         struct kvm_vcpu *vcpu;
3721
3722         if (val)
3723                 return -EINVAL;
3724
3725         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3727
3728         return 0;
3729 }
3730
3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3732 {
3733         __simple_attr_check_format("%llu\n", 0ull);
3734         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3735                                  vcpu_stat_clear_per_vm, "%llu\n");
3736 }
3737
3738 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3739         .owner   = THIS_MODULE,
3740         .open    = vcpu_stat_get_per_vm_open,
3741         .release = kvm_debugfs_release,
3742         .read    = simple_attr_read,
3743         .write   = simple_attr_write,
3744         .llseek  = generic_file_llseek,
3745 };
3746
3747 static const struct file_operations *stat_fops_per_vm[] = {
3748         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3749         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3750 };
3751
3752 static int vm_stat_get(void *_offset, u64 *val)
3753 {
3754         unsigned offset = (long)_offset;
3755         struct kvm *kvm;
3756         struct kvm_stat_data stat_tmp = {.offset = offset};
3757         u64 tmp_val;
3758
3759         *val = 0;
3760         spin_lock(&kvm_lock);
3761         list_for_each_entry(kvm, &vm_list, vm_list) {
3762                 stat_tmp.kvm = kvm;
3763                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3764                 *val += tmp_val;
3765         }
3766         spin_unlock(&kvm_lock);
3767         return 0;
3768 }
3769
3770 static int vm_stat_clear(void *_offset, u64 val)
3771 {
3772         unsigned offset = (long)_offset;
3773         struct kvm *kvm;
3774         struct kvm_stat_data stat_tmp = {.offset = offset};
3775
3776         if (val)
3777                 return -EINVAL;
3778
3779         spin_lock(&kvm_lock);
3780         list_for_each_entry(kvm, &vm_list, vm_list) {
3781                 stat_tmp.kvm = kvm;
3782                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3783         }
3784         spin_unlock(&kvm_lock);
3785
3786         return 0;
3787 }
3788
3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3790
3791 static int vcpu_stat_get(void *_offset, u64 *val)
3792 {
3793         unsigned offset = (long)_offset;
3794         struct kvm *kvm;
3795         struct kvm_stat_data stat_tmp = {.offset = offset};
3796         u64 tmp_val;
3797
3798         *val = 0;
3799         spin_lock(&kvm_lock);
3800         list_for_each_entry(kvm, &vm_list, vm_list) {
3801                 stat_tmp.kvm = kvm;
3802                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803                 *val += tmp_val;
3804         }
3805         spin_unlock(&kvm_lock);
3806         return 0;
3807 }
3808
3809 static int vcpu_stat_clear(void *_offset, u64 val)
3810 {
3811         unsigned offset = (long)_offset;
3812         struct kvm *kvm;
3813         struct kvm_stat_data stat_tmp = {.offset = offset};
3814
3815         if (val)
3816                 return -EINVAL;
3817
3818         spin_lock(&kvm_lock);
3819         list_for_each_entry(kvm, &vm_list, vm_list) {
3820                 stat_tmp.kvm = kvm;
3821                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3822         }
3823         spin_unlock(&kvm_lock);
3824
3825         return 0;
3826 }
3827
3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3829                         "%llu\n");
3830
3831 static const struct file_operations *stat_fops[] = {
3832         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3833         [KVM_STAT_VM]   = &vm_stat_fops,
3834 };
3835
3836 static int kvm_init_debug(void)
3837 {
3838         int r = -EEXIST;
3839         struct kvm_stats_debugfs_item *p;
3840
3841         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3842         if (kvm_debugfs_dir == NULL)
3843                 goto out;
3844
3845         kvm_debugfs_num_entries = 0;
3846         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3847                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3848                                          (void *)(long)p->offset,
3849                                          stat_fops[p->kind]))
3850                         goto out_dir;
3851         }
3852
3853         return 0;
3854
3855 out_dir:
3856         debugfs_remove_recursive(kvm_debugfs_dir);
3857 out:
3858         return r;
3859 }
3860
3861 static int kvm_suspend(void)
3862 {
3863         if (kvm_usage_count)
3864                 hardware_disable_nolock(NULL);
3865         return 0;
3866 }
3867
3868 static void kvm_resume(void)
3869 {
3870         if (kvm_usage_count) {
3871                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3872                 hardware_enable_nolock(NULL);
3873         }
3874 }
3875
3876 static struct syscore_ops kvm_syscore_ops = {
3877         .suspend = kvm_suspend,
3878         .resume = kvm_resume,
3879 };
3880
3881 static inline
3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3883 {
3884         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3885 }
3886
3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3888 {
3889         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3890
3891         if (vcpu->preempted)
3892                 vcpu->preempted = false;
3893
3894         kvm_arch_sched_in(vcpu, cpu);
3895
3896         kvm_arch_vcpu_load(vcpu, cpu);
3897 }
3898
3899 static void kvm_sched_out(struct preempt_notifier *pn,
3900                           struct task_struct *next)
3901 {
3902         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3903
3904         if (current->state == TASK_RUNNING)
3905                 vcpu->preempted = true;
3906         kvm_arch_vcpu_put(vcpu);
3907 }
3908
3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3910                   struct module *module)
3911 {
3912         int r;
3913         int cpu;
3914
3915         r = kvm_arch_init(opaque);
3916         if (r)
3917                 goto out_fail;
3918
3919         /*
3920          * kvm_arch_init makes sure there's at most one caller
3921          * for architectures that support multiple implementations,
3922          * like intel and amd on x86.
3923          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3924          * conflicts in case kvm is already setup for another implementation.
3925          */
3926         r = kvm_irqfd_init();
3927         if (r)
3928                 goto out_irqfd;
3929
3930         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3931                 r = -ENOMEM;
3932                 goto out_free_0;
3933         }
3934
3935         r = kvm_arch_hardware_setup();
3936         if (r < 0)
3937                 goto out_free_0a;
3938
3939         for_each_online_cpu(cpu) {
3940                 smp_call_function_single(cpu,
3941                                 kvm_arch_check_processor_compat,
3942                                 &r, 1);
3943                 if (r < 0)
3944                         goto out_free_1;
3945         }
3946
3947         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3948                                       kvm_starting_cpu, kvm_dying_cpu);
3949         if (r)
3950                 goto out_free_2;
3951         register_reboot_notifier(&kvm_reboot_notifier);
3952
3953         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3954         if (!vcpu_align)
3955                 vcpu_align = __alignof__(struct kvm_vcpu);
3956         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3957                                            0, NULL);
3958         if (!kvm_vcpu_cache) {
3959                 r = -ENOMEM;
3960                 goto out_free_3;
3961         }
3962
3963         r = kvm_async_pf_init();
3964         if (r)
3965                 goto out_free;
3966
3967         kvm_chardev_ops.owner = module;
3968         kvm_vm_fops.owner = module;
3969         kvm_vcpu_fops.owner = module;
3970
3971         r = misc_register(&kvm_dev);
3972         if (r) {
3973                 pr_err("kvm: misc device register failed\n");
3974                 goto out_unreg;
3975         }
3976
3977         register_syscore_ops(&kvm_syscore_ops);
3978
3979         kvm_preempt_ops.sched_in = kvm_sched_in;
3980         kvm_preempt_ops.sched_out = kvm_sched_out;
3981
3982         r = kvm_init_debug();
3983         if (r) {
3984                 pr_err("kvm: create debugfs files failed\n");
3985                 goto out_undebugfs;
3986         }
3987
3988         r = kvm_vfio_ops_init();
3989         WARN_ON(r);
3990
3991         return 0;
3992
3993 out_undebugfs:
3994         unregister_syscore_ops(&kvm_syscore_ops);
3995         misc_deregister(&kvm_dev);
3996 out_unreg:
3997         kvm_async_pf_deinit();
3998 out_free:
3999         kmem_cache_destroy(kvm_vcpu_cache);
4000 out_free_3:
4001         unregister_reboot_notifier(&kvm_reboot_notifier);
4002         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4003 out_free_2:
4004 out_free_1:
4005         kvm_arch_hardware_unsetup();
4006 out_free_0a:
4007         free_cpumask_var(cpus_hardware_enabled);
4008 out_free_0:
4009         kvm_irqfd_exit();
4010 out_irqfd:
4011         kvm_arch_exit();
4012 out_fail:
4013         return r;
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init);
4016
4017 void kvm_exit(void)
4018 {
4019         debugfs_remove_recursive(kvm_debugfs_dir);
4020         misc_deregister(&kvm_dev);
4021         kmem_cache_destroy(kvm_vcpu_cache);
4022         kvm_async_pf_deinit();
4023         unregister_syscore_ops(&kvm_syscore_ops);
4024         unregister_reboot_notifier(&kvm_reboot_notifier);
4025         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4026         on_each_cpu(hardware_disable_nolock, NULL, 1);
4027         kvm_arch_hardware_unsetup();
4028         kvm_arch_exit();
4029         kvm_irqfd_exit();
4030         free_cpumask_var(cpus_hardware_enabled);
4031         kvm_vfio_ops_exit();
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_exit);