]> git.karo-electronics.de Git - karo-tx-linux.git/blobdiff - drivers/lguest/page_tables.c
lguest: per-vcpu lguest pgdir management
[karo-tx-linux.git] / drivers / lguest / page_tables.c
index 2a45f0691c9b23006f1aa54575b853b591aa8a57..fb665611ccc24a5c8c73dda7e4b4b7846aa35255 100644 (file)
@@ -26,7 +26,8 @@
  *
  * We use two-level page tables for the Guest.  If you're not entirely
  * comfortable with virtual addresses, physical addresses and page tables then
- * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
+ * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
+ * diagrams!).
  *
  * The Guest keeps page tables, but we maintain the actual ones here: these are
  * called "shadow" page tables.  Which is a very Guest-centric name: these are
  *
  * Anyway, this is the most complicated part of the Host code.  There are seven
  * parts to this:
- *  (i) Setting up a page table entry for the Guest when it faults,
- *  (ii) Setting up the page table entry for the Guest stack,
- *  (iii) Setting up a page table entry when the Guest tells us it has changed,
+ *  (i) Looking up a page table entry when the Guest faults,
+ *  (ii) Making sure the Guest stack is mapped,
+ *  (iii) Setting up a page table entry when the Guest tells us one has changed,
  *  (iv) Switching page tables,
- *  (v) Flushing (thowing away) page tables,
+ *  (v) Flushing (throwing away) page tables,
  *  (vi) Mapping the Switcher when the Guest is about to run,
  *  (vii) Setting up the page tables initially.
  :*/
 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
 
-/*H:320 With our shadow and Guest types established, we need to deal with
- * them: the page table code is curly enough to need helper functions to keep
- * it clear and clean.
+/*H:320 The page table code is curly enough to need helper functions to keep it
+ * clear and clean.
  *
  * There are two functions which return pointers to the shadow (aka "real")
  * page tables.
  *
  * spgd_addr() takes the virtual address and returns a pointer to the top-level
- * page directory entry for that address.  Since we keep track of several page
- * tables, the "i" argument tells us which one we're interested in (it's
+ * page directory entry (PGD) for that address.  Since we keep track of several
+ * page tables, the "i" argument tells us which one we're interested in (it's
  * usually the current one). */
 static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
 {
@@ -81,9 +81,9 @@ static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
        return &lg->pgdirs[i].pgdir[index];
 }
 
-/* This routine then takes the PGD entry given above, which contains the
- * address of the PTE page.  It then returns a pointer to the PTE entry for the
- * given address. */
+/* This routine then takes the page directory entry returned above, which
+ * contains the address of the page table entry (PTE) page.  It then returns a
+ * pointer to the PTE entry for the given address. */
 static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
 {
        pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
@@ -94,10 +94,10 @@ static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
 
 /* These two functions just like the above two, except they access the Guest
  * page tables.  Hence they return a Guest address. */
-static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
+static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
 {
        unsigned int index = vaddr >> (PGDIR_SHIFT);
-       return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
+       return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
 }
 
 static unsigned long gpte_addr(struct lguest *lg,
@@ -191,7 +191,7 @@ static void check_gpgd(struct lguest *lg, pgd_t gpgd)
 }
 
 /*H:330
- * (i) Setting up a page table entry for the Guest when it faults
+ * (i) Looking up a page table entry when the Guest faults.
  *
  * We saw this call in run_guest(): when we see a page fault in the Guest, we
  * come here.  That's because we only set up the shadow page tables lazily as
@@ -199,23 +199,24 @@ static void check_gpgd(struct lguest *lg, pgd_t gpgd)
  * and return to the Guest without it knowing.
  *
  * If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. */
-int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
+ * true.  Otherwise, it was a real fault and we need to tell the Guest. */
+int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
 {
        pgd_t gpgd;
        pgd_t *spgd;
        unsigned long gpte_ptr;
        pte_t gpte;
        pte_t *spte;
+       struct lguest *lg = cpu->lg;
 
        /* First step: get the top-level Guest page table entry. */
-       gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
+       gpgd = lgread(lg, gpgd_addr(cpu, vaddr), pgd_t);
        /* Toplevel not present?  We can't map it in. */
        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
                return 0;
 
        /* Now look at the matching shadow entry. */
-       spgd = spgd_addr(lg, lg->pgdidx, vaddr);
+       spgd = spgd_addr(lg, cpu->cpu_pgd, vaddr);
        if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
                /* No shadow entry: allocate a new shadow PTE page. */
                unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
@@ -246,16 +247,16 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
        if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
                return 0;
 
-       /* User access to a kernel page? (bit 3 == user access) */
+       /* User access to a kernel-only page? (bit 3 == user access) */
        if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
                return 0;
 
        /* Check that the Guest PTE flags are OK, and the page number is below
         * the pfn_limit (ie. not mapping the Launcher binary). */
        check_gpte(lg, gpte);
+
        /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
        gpte = pte_mkyoung(gpte);
-
        if (errcode & 2)
                gpte = pte_mkdirty(gpte);
 
@@ -272,39 +273,44 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
        else
                /* If this is a read, don't set the "writable" bit in the page
                 * table entry, even if the Guest says it's writable.  That way
-                * we come back here when a write does actually ocur, so we can
-                * update the Guest's _PAGE_DIRTY flag. */
+                * we will come back here when a write does actually occur, so
+                * we can update the Guest's _PAGE_DIRTY flag. */
                *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
 
        /* Finally, we write the Guest PTE entry back: we've set the
         * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
        lgwrite(lg, gpte_ptr, pte_t, gpte);
 
-       /* We succeeded in mapping the page! */
+       /* The fault is fixed, the page table is populated, the mapping
+        * manipulated, the result returned and the code complete.  A small
+        * delay and a trace of alliteration are the only indications the Guest
+        * has that a page fault occurred at all. */
        return 1;
 }
 
-/*H:360 (ii) Setting up the page table entry for the Guest stack.
+/*H:360
+ * (ii) Making sure the Guest stack is mapped.
  *
- * Remember pin_stack_pages() which makes sure the stack is mapped?  It could
- * simply call demand_page(), but as we've seen that logic is quite long, and
- * usually the stack pages are already mapped anyway, so it's not required.
+ * Remember that direct traps into the Guest need a mapped Guest kernel stack.
+ * pin_stack_pages() calls us here: we could simply call demand_page(), but as
+ * we've seen that logic is quite long, and usually the stack pages are already
+ * mapped, so it's overkill.
  *
  * This is a quick version which answers the question: is this virtual address
  * mapped by the shadow page tables, and is it writable? */
-static int page_writable(struct lguest *lg, unsigned long vaddr)
+static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
 {
        pgd_t *spgd;
        unsigned long flags;
 
-       /* Look at the top level entry: is it present? */
-       spgd = spgd_addr(lg, lg->pgdidx, vaddr);
+       /* Look at the current top level entry: is it present? */
+       spgd = spgd_addr(cpu->lg, cpu->cpu_pgd, vaddr);
        if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
                return 0;
 
        /* Check the flags on the pte entry itself: it must be present and
         * writable. */
-       flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
+       flags = pte_flags(*(spte_addr(cpu->lg, *spgd, vaddr)));
 
        return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
 }
@@ -312,10 +318,10 @@ static int page_writable(struct lguest *lg, unsigned long vaddr)
 /* So, when pin_stack_pages() asks us to pin a page, we check if it's already
  * in the page tables, and if not, we call demand_page() with error code 2
  * (meaning "write"). */
-void pin_page(struct lguest *lg, unsigned long vaddr)
+void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
 {
-       if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
-               kill_guest(lg, "bad stack page %#lx", vaddr);
+       if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
+               kill_guest(cpu->lg, "bad stack page %#lx", vaddr);
 }
 
 /*H:450 If we chase down the release_pgd() code, it looks like this: */
@@ -333,15 +339,14 @@ static void release_pgd(struct lguest *lg, pgd_t *spgd)
                        release_pte(ptepage[i]);
                /* Now we can free the page of PTEs */
                free_page((long)ptepage);
-               /* And zero out the PGD entry we we never release it twice. */
+               /* And zero out the PGD entry so we never release it twice. */
                *spgd = __pgd(0);
        }
 }
 
-/*H:440 (v) Flushing (thowing away) page tables,
- *
- * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the kernel address. */
+/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
+ * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
+ * It simply releases every PTE page from 0 up to the Guest's kernel address. */
 static void flush_user_mappings(struct lguest *lg, int idx)
 {
        unsigned int i;
@@ -350,30 +355,32 @@ static void flush_user_mappings(struct lguest *lg, int idx)
                release_pgd(lg, lg->pgdirs[idx].pgdir + i);
 }
 
-/* The Guest also has a hypercall to do this manually: it's used when a large
- * number of mappings have been changed. */
-void guest_pagetable_flush_user(struct lguest *lg)
+/*H:440 (v) Flushing (throwing away) page tables,
+ *
+ * The Guest has a hypercall to throw away the page tables: it's used when a
+ * large number of mappings have been changed. */
+void guest_pagetable_flush_user(struct lg_cpu *cpu)
 {
        /* Drop the userspace part of the current page table. */
-       flush_user_mappings(lg, lg->pgdidx);
+       flush_user_mappings(cpu->lg, cpu->cpu_pgd);
 }
 /*:*/
 
 /* We walk down the guest page tables to get a guest-physical address */
-unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
+unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
 {
        pgd_t gpgd;
        pte_t gpte;
 
        /* First step: get the top-level Guest page table entry. */
-       gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
+       gpgd = lgread(cpu->lg, gpgd_addr(cpu, vaddr), pgd_t);
        /* Toplevel not present?  We can't map it in. */
        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
-               kill_guest(lg, "Bad address %#lx", vaddr);
+               kill_guest(cpu->lg, "Bad address %#lx", vaddr);
 
-       gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
+       gpte = lgread(cpu->lg, gpte_addr(cpu->lg, gpgd, vaddr), pte_t);
        if (!(pte_flags(gpte) & _PAGE_PRESENT))
-               kill_guest(lg, "Bad address %#lx", vaddr);
+               kill_guest(cpu->lg, "Bad address %#lx", vaddr);
 
        return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
 }
@@ -393,11 +400,12 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
 /*H:435 And this is us, creating the new page directory.  If we really do
  * allocate a new one (and so the kernel parts are not there), we set
  * blank_pgdir. */
-static unsigned int new_pgdir(struct lguest *lg,
+static unsigned int new_pgdir(struct lg_cpu *cpu,
                              unsigned long gpgdir,
                              int *blank_pgdir)
 {
        unsigned int next;
+       struct lguest *lg = cpu->lg;
 
        /* We pick one entry at random to throw out.  Choosing the Least
         * Recently Used might be better, but this is easy. */
@@ -407,7 +415,7 @@ static unsigned int new_pgdir(struct lguest *lg,
                lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
                /* If the allocation fails, just keep using the one we have */
                if (!lg->pgdirs[next].pgdir)
-                       next = lg->pgdidx;
+                       next = cpu->cpu_pgd;
                else
                        /* This is a blank page, so there are no kernel
                         * mappings: caller must map the stack! */
@@ -423,27 +431,30 @@ static unsigned int new_pgdir(struct lguest *lg,
 
 /*H:430 (iv) Switching page tables
  *
- * This is what happens when the Guest changes page tables (ie. changes the
- * top-level pgdir).  This happens on almost every context switch. */
-void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
+ * Now we've seen all the page table setting and manipulation, let's see what
+ * what happens when the Guest changes page tables (ie. changes the top-level
+ * pgdir).  This occurs on almost every context switch. */
+void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
 {
        int newpgdir, repin = 0;
+       struct lguest *lg = cpu->lg;
 
        /* Look to see if we have this one already. */
        newpgdir = find_pgdir(lg, pgtable);
        /* If not, we allocate or mug an existing one: if it's a fresh one,
         * repin gets set to 1. */
        if (newpgdir == ARRAY_SIZE(lg->pgdirs))
-               newpgdir = new_pgdir(lg, pgtable, &repin);
+               newpgdir = new_pgdir(cpu, pgtable, &repin);
        /* Change the current pgd index to the new one. */
-       lg->pgdidx = newpgdir;
+       cpu->cpu_pgd = newpgdir;
        /* If it was completely blank, we map in the Guest kernel stack */
        if (repin)
-               pin_stack_pages(lg);
+               pin_stack_pages(cpu);
 }
 
 /*H:470 Finally, a routine which throws away everything: all PGD entries in all
- * the shadow page tables.  This is used when we destroy the Guest. */
+ * the shadow page tables, including the Guest's kernel mappings.  This is used
+ * when we destroy the Guest. */
 static void release_all_pagetables(struct lguest *lg)
 {
        unsigned int i, j;
@@ -458,13 +469,22 @@ static void release_all_pagetables(struct lguest *lg)
 
 /* We also throw away everything when a Guest tells us it's changed a kernel
  * mapping.  Since kernel mappings are in every page table, it's easiest to
- * throw them all away.  This is amazingly slow, but thankfully rare. */
-void guest_pagetable_clear_all(struct lguest *lg)
+ * throw them all away.  This traps the Guest in amber for a while as
+ * everything faults back in, but it's rare. */
+void guest_pagetable_clear_all(struct lg_cpu *cpu)
 {
-       release_all_pagetables(lg);
+       release_all_pagetables(cpu->lg);
        /* We need the Guest kernel stack mapped again. */
-       pin_stack_pages(lg);
+       pin_stack_pages(cpu);
 }
+/*:*/
+/*M:009 Since we throw away all mappings when a kernel mapping changes, our
+ * performance sucks for guests using highmem.  In fact, a guest with
+ * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
+ * usually slower than a Guest with less memory.
+ *
+ * This, of course, cannot be fixed.  It would take some kind of... well, I
+ * don't know, but the term "puissant code-fu" comes to mind. :*/
 
 /*H:420 This is the routine which actually sets the page table entry for then
  * "idx"'th shadow page table.
@@ -483,7 +503,7 @@ void guest_pagetable_clear_all(struct lguest *lg)
 static void do_set_pte(struct lguest *lg, int idx,
                       unsigned long vaddr, pte_t gpte)
 {
-       /* Look up the matching shadow page directot entry. */
+       /* Look up the matching shadow page directory entry. */
        pgd_t *spgd = spgd_addr(lg, idx, vaddr);
 
        /* If the top level isn't present, there's no entry to update. */
@@ -500,7 +520,8 @@ static void do_set_pte(struct lguest *lg, int idx,
                        *spte = gpte_to_spte(lg, gpte,
                                             pte_flags(gpte) & _PAGE_DIRTY);
                } else
-                       /* Otherwise we can demand_page() it in later. */
+                       /* Otherwise kill it and we can demand_page() it in
+                        * later. */
                        *spte = __pte(0);
        }
 }
@@ -535,7 +556,7 @@ void guest_set_pte(struct lguest *lg,
 }
 
 /*H:400
- * (iii) Setting up a page table entry when the Guest tells us it has changed.
+ * (iii) Setting up a page table entry when the Guest tells us one has changed.
  *
  * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
  * with the other side of page tables while we're here: what happens when the
@@ -572,11 +593,11 @@ int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
 {
        /* We start on the first shadow page table, and give it a blank PGD
         * page. */
-       lg->pgdidx = 0;
-       lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
-       lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
-       if (!lg->pgdirs[lg->pgdidx].pgdir)
+       lg->pgdirs[0].gpgdir = pgtable;
+       lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
+       if (!lg->pgdirs[0].pgdir)
                return -ENOMEM;
+       lg->cpus[0].cpu_pgd = 0;
        return 0;
 }
 
@@ -588,7 +609,7 @@ void page_table_guest_data_init(struct lguest *lg)
            /* We tell the Guest that it can't use the top 4MB of virtual
             * addresses used by the Switcher. */
            || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
-           || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
+           || put_user(lg->pgdirs[0].gpgdir, &lg->lguest_data->pgdir))
                kill_guest(lg, "bad guest page %p", lg->lguest_data);
 
        /* In flush_user_mappings() we loop from 0 to
@@ -612,20 +633,22 @@ void free_guest_pagetable(struct lguest *lg)
 
 /*H:480 (vi) Mapping the Switcher when the Guest is about to run.
  *
- * The Switcher and the two pages for this CPU need to be available to the
+ * The Switcher and the two pages for this CPU need to be visible in the
  * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
- * for each CPU already set up, we just need to hook them in. */
-void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
+ * for each CPU already set up, we just need to hook them in now we know which
+ * Guest is about to run on this CPU. */
+void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
 {
        pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
        pgd_t switcher_pgd;
        pte_t regs_pte;
+       unsigned long pfn;
 
        /* Make the last PGD entry for this Guest point to the Switcher's PTE
         * page for this CPU (with appropriate flags). */
        switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
 
-       lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
+       cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
 
        /* We also change the Switcher PTE page.  When we're running the Guest,
         * we want the Guest's "regs" page to appear where the first Switcher
@@ -634,7 +657,8 @@ void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
         * CPU's "struct lguest_pages": if we make sure the Guest's register
         * page is already mapped there, we don't have to copy them out
         * again. */
-       regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
+       pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
+       regs_pte = pfn_pte(pfn, __pgprot(_PAGE_KERNEL));
        switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
 }
 /*:*/
@@ -677,6 +701,18 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
                           __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
 }
 
+/* We've made it through the page table code.  Perhaps our tired brains are
+ * still processing the details, or perhaps we're simply glad it's over.
+ *
+ * If nothing else, note that all this complexity in juggling shadow page
+ * tables in sync with the Guest's page tables is for one reason: for most
+ * Guests this page table dance determines how bad performance will be.  This
+ * is why Xen uses exotic direct Guest pagetable manipulation, and why both
+ * Intel and AMD have implemented shadow page table support directly into
+ * hardware.
+ *
+ * There is just one file remaining in the Host. */
+
 /*H:510 At boot or module load time, init_pagetables() allocates and populates
  * the Switcher PTE page for each CPU. */
 __init int init_pagetables(struct page **switcher_page, unsigned int pages)