X-Git-Url: https://git.karo-electronics.de/?a=blobdiff_plain;f=Documentation%2Fcachetlb.txt;h=9164ae3b83bcc6b466ffe25cf97093b72684a944;hb=d8204a37baf5474d3154eb536c936369be2bd5c0;hp=2b5f823abd035fd180d94732c523671378c2ef9d;hpb=ef77ad5e67447b3744574c29b97da6677d6d3f18;p=mv-sheeva.git diff --git a/Documentation/cachetlb.txt b/Documentation/cachetlb.txt index 2b5f823abd0..9164ae3b83b 100644 --- a/Documentation/cachetlb.txt +++ b/Documentation/cachetlb.txt @@ -5,7 +5,7 @@ This document describes the cache/tlb flushing interfaces called by the Linux VM subsystem. It enumerates over each interface, -describes it's intended purpose, and what side effect is expected +describes its intended purpose, and what side effect is expected after the interface is invoked. The side effects described below are stated for a uniprocessor @@ -231,7 +231,7 @@ require a whole different set of interfaces to handle properly. The biggest problem is that of virtual aliasing in the data cache of a processor. -Is your port susceptible to virtual aliasing in it's D-cache? +Is your port susceptible to virtual aliasing in its D-cache? Well, if your D-cache is virtually indexed, is larger in size than PAGE_SIZE, and does not prevent multiple cache lines for the same physical address from existing at once, you have this problem. @@ -249,7 +249,7 @@ one way to solve this (in particular SPARC_FLAG_MMAPSHARED). Next, you have to solve the D-cache aliasing issue for all other cases. Please keep in mind that fact that, for a given page mapped into some user address space, there is always at least one more -mapping, that of the kernel in it's linear mapping starting at +mapping, that of the kernel in its linear mapping starting at PAGE_OFFSET. So immediately, once the first user maps a given physical page into its address space, by implication the D-cache aliasing problem has the potential to exist since the kernel already