X-Git-Url: https://git.karo-electronics.de/?a=blobdiff_plain;f=lib%2Frsa%2Frsa-verify.c;fp=lib%2Frsa%2Frsa-verify.c;h=02cc4e335309becf02288fff81167cdca6734bab;hb=5e62c5c013a717c5afd3397f7f4c823f66f04daf;hp=0000000000000000000000000000000000000000;hpb=e1b6c5e43bfba97f46fdb57724405ba916cec3b4;p=karo-tx-uboot.git diff --git a/lib/rsa/rsa-verify.c b/lib/rsa/rsa-verify.c new file mode 100644 index 0000000000..02cc4e3353 --- /dev/null +++ b/lib/rsa/rsa-verify.c @@ -0,0 +1,372 @@ +/* + * Copyright (c) 2013, Google Inc. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include +#include +#include +#include +#include +#include +#include + +/** + * struct rsa_public_key - holder for a public key + * + * An RSA public key consists of a modulus (typically called N), the inverse + * and R^2, where R is 2^(# key bits). + */ +struct rsa_public_key { + uint len; /* Length of modulus[] in number of uint32_t */ + uint32_t n0inv; /* -1 / modulus[0] mod 2^32 */ + uint32_t *modulus; /* modulus as little endian array */ + uint32_t *rr; /* R^2 as little endian array */ +}; + +#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) + +#define RSA2048_BYTES (2048 / 8) + +/* This is the minimum/maximum key size we support, in bits */ +#define RSA_MIN_KEY_BITS 2048 +#define RSA_MAX_KEY_BITS 2048 + +/* This is the maximum signature length that we support, in bits */ +#define RSA_MAX_SIG_BITS 2048 + +static const uint8_t padding_sha1_rsa2048[RSA2048_BYTES - SHA1_SUM_LEN] = { + 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x21, 0x30, + 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, + 0x05, 0x00, 0x04, 0x14 +}; + +/** + * subtract_modulus() - subtract modulus from the given value + * + * @key: Key containing modulus to subtract + * @num: Number to subtract modulus from, as little endian word array + */ +static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) +{ + int64_t acc = 0; + uint i; + + for (i = 0; i < key->len; i++) { + acc += (uint64_t)num[i] - key->modulus[i]; + num[i] = (uint32_t)acc; + acc >>= 32; + } +} + +/** + * greater_equal_modulus() - check if a value is >= modulus + * + * @key: Key containing modulus to check + * @num: Number to check against modulus, as little endian word array + * @return 0 if num < modulus, 1 if num >= modulus + */ +static int greater_equal_modulus(const struct rsa_public_key *key, + uint32_t num[]) +{ + uint32_t i; + + for (i = key->len - 1; i >= 0; i--) { + if (num[i] < key->modulus[i]) + return 0; + if (num[i] > key->modulus[i]) + return 1; + } + + return 1; /* equal */ +} + +/** + * montgomery_mul_add_step() - Perform montgomery multiply-add step + * + * Operation: montgomery result[] += a * b[] / n0inv % modulus + * + * @key: RSA key + * @result: Place to put result, as little endian word array + * @a: Multiplier + * @b: Multiplicand, as little endian word array + */ +static void montgomery_mul_add_step(const struct rsa_public_key *key, + uint32_t result[], const uint32_t a, const uint32_t b[]) +{ + uint64_t acc_a, acc_b; + uint32_t d0; + uint i; + + acc_a = (uint64_t)a * b[0] + result[0]; + d0 = (uint32_t)acc_a * key->n0inv; + acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; + for (i = 1; i < key->len; i++) { + acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; + acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + + (uint32_t)acc_a; + result[i - 1] = (uint32_t)acc_b; + } + + acc_a = (acc_a >> 32) + (acc_b >> 32); + + result[i - 1] = (uint32_t)acc_a; + + if (acc_a >> 32) + subtract_modulus(key, result); +} + +/** + * montgomery_mul() - Perform montgomery mutitply + * + * Operation: montgomery result[] = a[] * b[] / n0inv % modulus + * + * @key: RSA key + * @result: Place to put result, as little endian word array + * @a: Multiplier, as little endian word array + * @b: Multiplicand, as little endian word array + */ +static void montgomery_mul(const struct rsa_public_key *key, + uint32_t result[], uint32_t a[], const uint32_t b[]) +{ + uint i; + + for (i = 0; i < key->len; ++i) + result[i] = 0; + for (i = 0; i < key->len; ++i) + montgomery_mul_add_step(key, result, a[i], b); +} + +/** + * pow_mod() - in-place public exponentiation + * + * @key: RSA key + * @inout: Big-endian word array containing value and result + */ +static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) +{ + uint32_t *result, *ptr; + uint i; + + /* Sanity check for stack size - key->len is in 32-bit words */ + if (key->len > RSA_MAX_KEY_BITS / 32) { + debug("RSA key words %u exceeds maximum %d\n", key->len, + RSA_MAX_KEY_BITS / 32); + return -EINVAL; + } + + uint32_t val[key->len], acc[key->len], tmp[key->len]; + result = tmp; /* Re-use location. */ + + /* Convert from big endian byte array to little endian word array. */ + for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) + val[i] = get_unaligned_be32(ptr); + + montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ + for (i = 0; i < 16; i += 2) { + montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ + montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ + } + montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ + + /* Make sure result < mod; result is at most 1x mod too large. */ + if (greater_equal_modulus(key, result)) + subtract_modulus(key, result); + + /* Convert to bigendian byte array */ + for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) + put_unaligned_be32(result[i], ptr); + + return 0; +} + +static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig, + const uint32_t sig_len, const uint8_t *hash) +{ + const uint8_t *padding; + int pad_len; + int ret; + + if (!key || !sig || !hash) + return -EIO; + + if (sig_len != (key->len * sizeof(uint32_t))) { + debug("Signature is of incorrect length %d\n", sig_len); + return -EINVAL; + } + + /* Sanity check for stack size */ + if (sig_len > RSA_MAX_SIG_BITS / 8) { + debug("Signature length %u exceeds maximum %d\n", sig_len, + RSA_MAX_SIG_BITS / 8); + return -EINVAL; + } + + uint32_t buf[sig_len / sizeof(uint32_t)]; + + memcpy(buf, sig, sig_len); + + ret = pow_mod(key, buf); + if (ret) + return ret; + + /* Determine padding to use depending on the signature type. */ + padding = padding_sha1_rsa2048; + pad_len = RSA2048_BYTES - SHA1_SUM_LEN; + + /* Check pkcs1.5 padding bytes. */ + if (memcmp(buf, padding, pad_len)) { + debug("In RSAVerify(): Padding check failed!\n"); + return -EINVAL; + } + + /* Check hash. */ + if (memcmp((uint8_t *)buf + pad_len, hash, sig_len - pad_len)) { + debug("In RSAVerify(): Hash check failed!\n"); + return -EACCES; + } + + return 0; +} + +static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) +{ + int i; + + for (i = 0; i < len; i++) + dst[i] = fdt32_to_cpu(src[len - 1 - i]); +} + +static int rsa_verify_with_keynode(struct image_sign_info *info, + const void *hash, uint8_t *sig, uint sig_len, int node) +{ + const void *blob = info->fdt_blob; + struct rsa_public_key key; + const void *modulus, *rr; + int ret; + + if (node < 0) { + debug("%s: Skipping invalid node", __func__); + return -EBADF; + } + if (!fdt_getprop(blob, node, "rsa,n0-inverse", NULL)) { + debug("%s: Missing rsa,n0-inverse", __func__); + return -EFAULT; + } + key.len = fdtdec_get_int(blob, node, "rsa,num-bits", 0); + key.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); + modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); + rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); + if (!key.len || !modulus || !rr) { + debug("%s: Missing RSA key info", __func__); + return -EFAULT; + } + + /* Sanity check for stack size */ + if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { + debug("RSA key bits %u outside allowed range %d..%d\n", + key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); + return -EFAULT; + } + key.len /= sizeof(uint32_t) * 8; + uint32_t key1[key.len], key2[key.len]; + + key.modulus = key1; + key.rr = key2; + rsa_convert_big_endian(key.modulus, modulus, key.len); + rsa_convert_big_endian(key.rr, rr, key.len); + if (!key.modulus || !key.rr) { + debug("%s: Out of memory", __func__); + return -ENOMEM; + } + + debug("key length %d\n", key.len); + ret = rsa_verify_key(&key, sig, sig_len, hash); + if (ret) { + printf("%s: RSA failed to verify: %d\n", __func__, ret); + return ret; + } + + return 0; +} + +int rsa_verify(struct image_sign_info *info, + const struct image_region region[], int region_count, + uint8_t *sig, uint sig_len) +{ + const void *blob = info->fdt_blob; + uint8_t hash[SHA1_SUM_LEN]; + int ndepth, noffset; + int sig_node, node; + char name[100]; + sha1_context ctx; + int ret, i; + + sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); + if (sig_node < 0) { + debug("%s: No signature node found\n", __func__); + return -ENOENT; + } + + sha1_starts(&ctx); + for (i = 0; i < region_count; i++) + sha1_update(&ctx, region[i].data, region[i].size); + sha1_finish(&ctx, hash); + + /* See if we must use a particular key */ + if (info->required_keynode != -1) { + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, + info->required_keynode); + if (!ret) + return ret; + } + + /* Look for a key that matches our hint */ + snprintf(name, sizeof(name), "key-%s", info->keyname); + node = fdt_subnode_offset(blob, sig_node, name); + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); + if (!ret) + return ret; + + /* No luck, so try each of the keys in turn */ + for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); + (noffset >= 0) && (ndepth > 0); + noffset = fdt_next_node(info->fit, noffset, &ndepth)) { + if (ndepth == 1 && noffset != node) { + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, + noffset); + if (!ret) + break; + } + } + + return ret; +}