X-Git-Url: https://git.karo-electronics.de/?a=blobdiff_plain;f=mm%2Fslub.c;h=084184e706c63184124bcf874cfe6702e0343950;hb=7d9071a095023cd1db8fa18fa0d648dc1a5210e0;hp=816df0016555ad8a5cf03c8020e0b39b75b0a498;hpb=f212bd95a9f62b7929c59b16e1d3bbde2fb4081d;p=karo-tx-linux.git diff --git a/mm/slub.c b/mm/slub.c index 816df0016555..084184e706c6 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1306,6 +1306,17 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x) kasan_slab_free(s, x); } +static void setup_object(struct kmem_cache *s, struct page *page, + void *object) +{ + setup_object_debug(s, page, object); + if (unlikely(s->ctor)) { + kasan_unpoison_object_data(s, object); + s->ctor(object); + kasan_poison_object_data(s, object); + } +} + /* * Slab allocation and freeing */ @@ -1336,6 +1347,8 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) struct page *page; struct kmem_cache_order_objects oo = s->oo; gfp_t alloc_gfp; + void *start, *p; + int idx, order; flags &= gfp_allowed_mask; @@ -1349,6 +1362,8 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) * so we fall-back to the minimum order allocation. */ alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; + if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min)) + alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT; page = alloc_slab_page(s, alloc_gfp, node, oo); if (unlikely(!page)) { @@ -1359,13 +1374,13 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) * Try a lower order alloc if possible */ page = alloc_slab_page(s, alloc_gfp, node, oo); - - if (page) - stat(s, ORDER_FALLBACK); + if (unlikely(!page)) + goto out; + stat(s, ORDER_FALLBACK); } - if (kmemcheck_enabled && page - && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { + if (kmemcheck_enabled && + !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { int pages = 1 << oo_order(oo); kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); @@ -1380,54 +1395,12 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) kmemcheck_mark_unallocated_pages(page, pages); } - if (flags & __GFP_WAIT) - local_irq_disable(); - if (!page) - return NULL; - page->objects = oo_objects(oo); - mod_zone_page_state(page_zone(page), - (s->flags & SLAB_RECLAIM_ACCOUNT) ? - NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, - 1 << oo_order(oo)); - - return page; -} - -static void setup_object(struct kmem_cache *s, struct page *page, - void *object) -{ - setup_object_debug(s, page, object); - if (unlikely(s->ctor)) { - kasan_unpoison_object_data(s, object); - s->ctor(object); - kasan_poison_object_data(s, object); - } -} - -static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) -{ - struct page *page; - void *start; - void *p; - int order; - int idx; - - if (unlikely(flags & GFP_SLAB_BUG_MASK)) { - pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); - BUG(); - } - - page = allocate_slab(s, - flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); - if (!page) - goto out; order = compound_order(page); - inc_slabs_node(s, page_to_nid(page), page->objects); page->slab_cache = s; __SetPageSlab(page); - if (page->pfmemalloc) + if (page_is_pfmemalloc(page)) SetPageSlabPfmemalloc(page); start = page_address(page); @@ -1448,10 +1421,34 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) page->freelist = start; page->inuse = page->objects; page->frozen = 1; + out: + if (flags & __GFP_WAIT) + local_irq_disable(); + if (!page) + return NULL; + + mod_zone_page_state(page_zone(page), + (s->flags & SLAB_RECLAIM_ACCOUNT) ? + NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, + 1 << oo_order(oo)); + + inc_slabs_node(s, page_to_nid(page), page->objects); + return page; } +static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) +{ + if (unlikely(flags & GFP_SLAB_BUG_MASK)) { + pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); + BUG(); + } + + return allocate_slab(s, + flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); +} + static void __free_slab(struct kmem_cache *s, struct page *page) { int order = compound_order(page); @@ -2712,7 +2709,7 @@ redo: * Determine the currently cpus per cpu slab. * The cpu may change afterward. However that does not matter since * data is retrieved via this pointer. If we are on the same cpu - * during the cmpxchg then the free will succedd. + * during the cmpxchg then the free will succeed. */ do { tid = this_cpu_read(s->cpu_slab->tid); @@ -2750,6 +2747,113 @@ void kmem_cache_free(struct kmem_cache *s, void *x) } EXPORT_SYMBOL(kmem_cache_free); +/* Note that interrupts must be enabled when calling this function. */ +void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) +{ + struct kmem_cache_cpu *c; + struct page *page; + int i; + + local_irq_disable(); + c = this_cpu_ptr(s->cpu_slab); + + for (i = 0; i < size; i++) { + void *object = p[i]; + + BUG_ON(!object); + /* kmem cache debug support */ + s = cache_from_obj(s, object); + if (unlikely(!s)) + goto exit; + slab_free_hook(s, object); + + page = virt_to_head_page(object); + + if (c->page == page) { + /* Fastpath: local CPU free */ + set_freepointer(s, object, c->freelist); + c->freelist = object; + } else { + c->tid = next_tid(c->tid); + local_irq_enable(); + /* Slowpath: overhead locked cmpxchg_double_slab */ + __slab_free(s, page, object, _RET_IP_); + local_irq_disable(); + c = this_cpu_ptr(s->cpu_slab); + } + } +exit: + c->tid = next_tid(c->tid); + local_irq_enable(); +} +EXPORT_SYMBOL(kmem_cache_free_bulk); + +/* Note that interrupts must be enabled when calling this function. */ +bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, + void **p) +{ + struct kmem_cache_cpu *c; + int i; + + /* + * Drain objects in the per cpu slab, while disabling local + * IRQs, which protects against PREEMPT and interrupts + * handlers invoking normal fastpath. + */ + local_irq_disable(); + c = this_cpu_ptr(s->cpu_slab); + + for (i = 0; i < size; i++) { + void *object = c->freelist; + + if (unlikely(!object)) { + local_irq_enable(); + /* + * Invoking slow path likely have side-effect + * of re-populating per CPU c->freelist + */ + p[i] = __slab_alloc(s, flags, NUMA_NO_NODE, + _RET_IP_, c); + if (unlikely(!p[i])) { + __kmem_cache_free_bulk(s, i, p); + return false; + } + local_irq_disable(); + c = this_cpu_ptr(s->cpu_slab); + continue; /* goto for-loop */ + } + + /* kmem_cache debug support */ + s = slab_pre_alloc_hook(s, flags); + if (unlikely(!s)) { + __kmem_cache_free_bulk(s, i, p); + c->tid = next_tid(c->tid); + local_irq_enable(); + return false; + } + + c->freelist = get_freepointer(s, object); + p[i] = object; + + /* kmem_cache debug support */ + slab_post_alloc_hook(s, flags, object); + } + c->tid = next_tid(c->tid); + local_irq_enable(); + + /* Clear memory outside IRQ disabled fastpath loop */ + if (unlikely(flags & __GFP_ZERO)) { + int j; + + for (j = 0; j < i; j++) + memset(p[j], 0, s->object_size); + } + + return true; +} +EXPORT_SYMBOL(kmem_cache_alloc_bulk); + + /* * Object placement in a slab is made very easy because we always start at * offset 0. If we tune the size of the object to the alignment then we can @@ -5181,7 +5285,7 @@ static int sysfs_slab_add(struct kmem_cache *s) s->kobj.kset = cache_kset(s); err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); if (err) - goto out_put_kobj; + goto out; err = sysfs_create_group(&s->kobj, &slab_attr_group); if (err) @@ -5208,8 +5312,6 @@ out: return err; out_del_kobj: kobject_del(&s->kobj); -out_put_kobj: - kobject_put(&s->kobj); goto out; }