]> git.karo-electronics.de Git - karo-tx-linux.git/commit
perf/x86/intel: Implement cross-HT corruption bug workaround
authorMaria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Mon, 17 Nov 2014 19:06:58 +0000 (20:06 +0100)
committerIngo Molnar <mingo@kernel.org>
Thu, 2 Apr 2015 15:33:12 +0000 (17:33 +0200)
commite979121b1b1556e184492e6fc149bbe188fc83e6
tree905c6df26aaf39ebd1a6bbbf8253283c5aaad760
parent6f6539cad926f55d5eb6e79d05bbe99f0d54d56d
perf/x86/intel: Implement cross-HT corruption bug workaround

This patch implements a software workaround for a HW erratum
on Intel SandyBridge, IvyBridge and Haswell processors
with Hyperthreading enabled. The errata are documented for
each processor in their respective specification update
documents:

  - SandyBridge: BJ122
  - IvyBridge: BV98
  - Haswell: HSD29

The bug causes silent counter corruption across hyperthreads only
when measuring certain memory events (0xd0, 0xd1, 0xd2, 0xd3).
Counters measuring those events may leak counts to the sibling
counter. For instance, counter 0, thread 0 measuring event 0xd0,
may leak to counter 0, thread 1, regardless of the event measured
there. The size of the leak is not predictible. It all depends on
the workload and the state of each sibling hyper-thread. The
corrupting events do undercount as a consequence of the leak. The
leak is compensated automatically only when the sibling counter measures
the exact same corrupting event AND the workload is on the two threads
is the same. Given, there is no way to guarantee this, a work-around
is necessary. Furthermore, there is a serious problem if the leaked count
is added to a low-occurrence event. In that case the corruption on
the low occurrence event can be very large, e.g., orders of magnitude.

There is no HW or FW workaround for this problem.

The bug is very easy to reproduce on a loaded system.
Here is an example on a Haswell client, where CPU0, CPU4
are siblings. We load the CPUs with a simple triad app
streaming large floating-point vector. We use 0x81d0
corrupting event (MEM_UOPS_RETIRED:ALL_LOADS) and
0x20cc (ROB_MISC_EVENTS:LBR_INSERTS). Given we are not
using the LBR, the 0x20cc event should be zero.

  $ taskset -c 0 triad &
  $ taskset -c 4 triad &
  $ perf stat -a -C 0 -e r81d0 sleep 100 &
  $ perf stat -a -C 4 -r20cc sleep 10
  Performance counter stats for 'system wide':
        139 277 291      r20cc
       10,000969126 seconds time elapsed

In this example, 0x81d0 and r20cc ar eusing sinling counters
on CPU0 and CPU4. 0x81d0 leaks into 0x20cc and corrupts it
from 0 to 139 millions occurrences.

This patch provides a software workaround to this problem by modifying the
way events are scheduled onto counters by the kernel. The patch forces
cross-thread mutual exclusion between counters in case a corrupting event
is measured by one of the hyper-threads. If thread 0, counter 0 is measuring
event 0xd0, then nothing can be measured on counter 0, thread 1. If no corrupting
event is measured on any hyper-thread, event scheduling proceeds as before.

The same example run with the workaround enabled, yield the correct answer:

  $ taskset -c 0 triad &
  $ taskset -c 4 triad &
  $ perf stat -a -C 0 -e r81d0 sleep 100 &
  $ perf stat -a -C 4 -r20cc sleep 10
  Performance counter stats for 'system wide':
        0 r20cc
       10,000969126 seconds time elapsed

The patch does provide correctness for all non-corrupting events. It does not
"repatriate" the leaked counts back to the leaking counter. This is planned
for a second patch series. This patch series makes this repatriation more
easy by guaranteeing the sibling counter is not measuring any useful event.

The patch introduces dynamic constraints for events. That means that events which
did not have constraints, i.e., could be measured on any counters, may now be
constrained to a subset of the counters depending on what is going on the sibling
thread. The algorithm is similar to a cache coherency protocol. We call it XSU
in reference to Exclusive, Shared, Unused, the 3 possible states of a PMU
counter.

As a consequence of the workaround, users may see an increased amount of event
multiplexing, even in situtations where there are fewer events than counters
measured on a CPU.

Patch has been tested on all three impacted processors. Note that when
HT is off, there is no corruption. However, the workaround is still enabled,
yet not costing too much. Adding a dynamic detection of HT on turned out to
be complex are requiring too much to code to be justified.

This patch addresses the issue when PEBS is not used. A subsequent patch
fixes the problem when PEBS is used.

Signed-off-by: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
[spinlock_t -> raw_spinlock_t]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: bp@alien8.de
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1416251225-17721-7-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
arch/x86/kernel/cpu/perf_event.c
arch/x86/kernel/cpu/perf_event.h
arch/x86/kernel/cpu/perf_event_intel.c