#define devpriv ((struct s626_private *)dev->private)
#define diopriv ((struct dio_private *)s->private)
-/* ioctl routines */
-static int s626_ai_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
-static int s626_ai_insn_read(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
-static int s626_ai_cmdtest(struct comedi_device *dev,
- struct comedi_subdevice *s, struct comedi_cmd *cmd);
-static int s626_ai_cancel(struct comedi_device *dev,
- struct comedi_subdevice *s);
-static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_dio_insn_bits(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_dio_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
unsigned int mask);
static int s626_dio_clear_irq(struct comedi_device *dev);
-static int s626_enc_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_enc_insn_read(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
-static int s626_enc_insn_write(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data);
static int s626_ns_to_timer(int *nanosec, int round_mode);
-static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
-static int s626_ai_inttrig(struct comedi_device *dev,
- struct comedi_subdevice *s, unsigned int trignum);
-static irqreturn_t s626_irq_handler(int irq, void *d);
-static unsigned int s626_ai_reg_to_uint(int data);
-/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
-
-/* end ioctl routines */
/* internal routines */
-static void s626_dio_init(struct comedi_device *dev);
-static void ResetADC(struct comedi_device *dev, uint8_t * ppl);
-static void LoadTrimDACs(struct comedi_device *dev);
static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
uint8_t DacData);
static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
static void SendDAC(struct comedi_device *dev, uint32_t val);
-static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
static void DEBItransfer(struct comedi_device *dev);
static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
-static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
- uint16_t wdata);
-static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
- size_t bsize);
/* COUNTER OBJECT ------------------------------------------------ */
struct enc_private {
#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
-/* counters routines */
static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
int tick);
static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
uint16_t value);
-/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
uint16_t Trig);
static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
uint16_t IntSource);
static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
-/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
-/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
-/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
-/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
-/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
-/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */
-/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
-/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */
static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
static void Preload(struct comedi_device *dev, struct enc_private *k,
uint32_t value);
-static void CountersInit(struct comedi_device *dev);
-/* end internal routines */
/* Counter objects constructor. */
}
};
-static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
+static unsigned int s626_ai_reg_to_uint(int data)
{
-/* uint8_t PollList; */
-/* uint16_t AdcData; */
-/* uint16_t StartVal; */
-/* uint16_t index; */
-/* unsigned int data[16]; */
- int result;
- int i;
- int ret;
- resource_size_t resourceStart;
- dma_addr_t appdma;
- struct comedi_subdevice *s;
- struct pci_dev *pdev = NULL;
+ unsigned int tempdata;
- if (alloc_private(dev, sizeof(struct s626_private)) < 0)
- return -ENOMEM;
+ tempdata = (data >> 18);
+ if (tempdata & 0x2000)
+ tempdata &= 0x1fff;
+ else
+ tempdata += (1 << 13);
- for (i = 0; i < ARRAY_SIZE(s626_boards) && !pdev; i++) {
- do {
- pdev = pci_get_subsys(s626_boards[i].vendor_id,
- s626_boards[i].device_id,
- s626_boards[i].subvendor_id,
- s626_boards[i].subdevice_id,
- pdev);
+ return tempdata;
+}
- if ((it->options[0] || it->options[1]) && pdev) {
- /* matches requested bus/slot */
- if (pdev->bus->number == it->options[0] &&
- PCI_SLOT(pdev->devfn) == it->options[1])
- break;
- } else
- break;
- } while (1);
- }
- devpriv->pdev = pdev;
+/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
+/* return 0; */
+/* } */
- if (pdev == NULL) {
- printk(KERN_ERR "s626_attach: Board not present!!!\n");
- return -ENODEV;
- }
+static irqreturn_t s626_irq_handler(int irq, void *d)
+{
+ struct comedi_device *dev = d;
+ struct comedi_subdevice *s;
+ struct comedi_cmd *cmd;
+ struct enc_private *k;
+ unsigned long flags;
+ int32_t *readaddr;
+ uint32_t irqtype, irqstatus;
+ int i = 0;
+ short tempdata;
+ uint8_t group;
+ uint16_t irqbit;
- result = comedi_pci_enable(pdev, "s626");
- if (result < 0) {
- printk(KERN_ERR "s626_attach: comedi_pci_enable fails\n");
- return -ENODEV;
- }
- devpriv->got_regions = 1;
+ DEBUG("s626_irq_handler: interrupt request received!!!\n");
- resourceStart = pci_resource_start(devpriv->pdev, 0);
+ if (dev->attached == 0)
+ return IRQ_NONE;
+ /* lock to avoid race with comedi_poll */
+ spin_lock_irqsave(&dev->spinlock, flags);
- devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
- if (devpriv->base_addr == NULL) {
- printk(KERN_ERR "s626_attach: IOREMAP failed\n");
- return -ENODEV;
- }
+ /* save interrupt enable register state */
+ irqstatus = readl(devpriv->base_addr + P_IER);
- if (devpriv->base_addr) {
- /* disable master interrupt */
- writel(0, devpriv->base_addr + P_IER);
+ /* read interrupt type */
+ irqtype = readl(devpriv->base_addr + P_ISR);
- /* soft reset */
- writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
+ /* disable master interrupt */
+ writel(0, devpriv->base_addr + P_IER);
- /* DMA FIXME DMA// */
- DEBUG("s626_attach: DMA ALLOCATION\n");
+ /* clear interrupt */
+ writel(irqtype, devpriv->base_addr + P_ISR);
- /* adc buffer allocation */
- devpriv->allocatedBuf = 0;
+ /* do somethings */
+ DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
- devpriv->ANABuf.LogicalBase =
- pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
+ switch (irqtype) {
+ case IRQ_RPS1: /* end_of_scan occurs */
- if (devpriv->ANABuf.LogicalBase == NULL) {
- printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
- return -ENOMEM;
- }
+ DEBUG("s626_irq_handler: RPS1 irq detected\n");
- devpriv->ANABuf.PhysicalBase = appdma;
+ /* manage ai subdevice */
+ s = dev->subdevices;
+ cmd = &(s->async->cmd);
- DEBUG
- ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
- devpriv->ANABuf.LogicalBase, DMABUF_SIZE,
- (uint32_t) devpriv->ANABuf.PhysicalBase);
+ /* Init ptr to DMA buffer that holds new ADC data. We skip the
+ * first uint16_t in the buffer because it contains junk data from
+ * the final ADC of the previous poll list scan.
+ */
+ readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
- devpriv->allocatedBuf++;
+ /* get the data and hand it over to comedi */
+ for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
+ /* Convert ADC data to 16-bit integer values and copy to application */
+ /* buffer. */
+ tempdata = s626_ai_reg_to_uint((int)*readaddr);
+ readaddr++;
- devpriv->RPSBuf.LogicalBase =
- pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
+ /* put data into read buffer */
+ /* comedi_buf_put(s->async, tempdata); */
+ if (cfc_write_to_buffer(s, tempdata) == 0)
+ printk
+ ("s626_irq_handler: cfc_write_to_buffer error!\n");
- if (devpriv->RPSBuf.LogicalBase == NULL) {
- printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
- return -ENOMEM;
+ DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
+ i, tempdata);
}
- devpriv->RPSBuf.PhysicalBase = appdma;
-
- DEBUG
- ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
- devpriv->RPSBuf.LogicalBase, DMABUF_SIZE,
- (uint32_t) devpriv->RPSBuf.PhysicalBase);
+ /* end of scan occurs */
+ s->async->events |= COMEDI_CB_EOS;
- devpriv->allocatedBuf++;
+ if (!(devpriv->ai_continous))
+ devpriv->ai_sample_count--;
+ if (devpriv->ai_sample_count <= 0) {
+ devpriv->ai_cmd_running = 0;
- }
+ /* Stop RPS program. */
+ MC_DISABLE(P_MC1, MC1_ERPS1);
- dev->board_ptr = s626_boards;
- dev->board_name = thisboard->name;
+ /* send end of acquisition */
+ s->async->events |= COMEDI_CB_EOA;
- ret = comedi_alloc_subdevices(dev, 6);
- if (ret)
- return ret;
+ /* disable master interrupt */
+ irqstatus = 0;
+ }
- dev->iobase = (unsigned long)devpriv->base_addr;
- dev->irq = devpriv->pdev->irq;
+ if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
+ DEBUG
+ ("s626_irq_handler: enable interrupt on dio channel %d\n",
+ cmd->scan_begin_arg);
- /* set up interrupt handler */
- if (dev->irq == 0) {
- printk(KERN_ERR " unknown irq (bad)\n");
- } else {
- ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
- "s626", dev);
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
- if (ret < 0) {
- printk(KERN_ERR " irq not available\n");
- dev->irq = 0;
+ DEBUG("s626_irq_handler: External trigger is set!!!\n");
}
- }
-
- DEBUG("s626_attach: -- it opts %d,%d --\n",
- it->options[0], it->options[1]);
+ /* tell comedi that data is there */
+ DEBUG("s626_irq_handler: events %d\n", s->async->events);
+ comedi_event(dev, s);
+ break;
+ case IRQ_GPIO3: /* check dio and conter interrupt */
- s = dev->subdevices + 0;
- /* analog input subdevice */
- dev->read_subdev = s;
- /* we support single-ended (ground) and differential */
- s->type = COMEDI_SUBD_AI;
- s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
- s->n_chan = thisboard->ai_chans;
- s->maxdata = (0xffff >> 2);
- s->range_table = &s626_range_table;
- s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
- length that the board can
- handle */
- s->insn_config = s626_ai_insn_config;
- s->insn_read = s626_ai_insn_read;
- s->do_cmd = s626_ai_cmd;
- s->do_cmdtest = s626_ai_cmdtest;
- s->cancel = s626_ai_cancel;
+ DEBUG("s626_irq_handler: GPIO3 irq detected\n");
- s = dev->subdevices + 1;
- /* analog output subdevice */
- s->type = COMEDI_SUBD_AO;
- s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
- s->n_chan = thisboard->ao_chans;
- s->maxdata = (0x3fff);
- s->range_table = &range_bipolar10;
- s->insn_write = s626_ao_winsn;
- s->insn_read = s626_ao_rinsn;
+ /* manage ai subdevice */
+ s = dev->subdevices;
+ cmd = &(s->async->cmd);
- s = dev->subdevices + 2;
- /* digital I/O subdevice */
- s->type = COMEDI_SUBD_DIO;
- s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
- s->n_chan = S626_DIO_CHANNELS;
- s->maxdata = 1;
- s->io_bits = 0xffff;
- s->private = &dio_private_A;
- s->range_table = &range_digital;
- s->insn_config = s626_dio_insn_config;
- s->insn_bits = s626_dio_insn_bits;
+ /* s626_dio_clear_irq(dev); */
- s = dev->subdevices + 3;
- /* digital I/O subdevice */
- s->type = COMEDI_SUBD_DIO;
- s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
- s->n_chan = 16;
- s->maxdata = 1;
- s->io_bits = 0xffff;
- s->private = &dio_private_B;
- s->range_table = &range_digital;
- s->insn_config = s626_dio_insn_config;
- s->insn_bits = s626_dio_insn_bits;
+ for (group = 0; group < S626_DIO_BANKS; group++) {
+ irqbit = 0;
+ /* read interrupt type */
+ irqbit = DEBIread(dev,
+ ((struct dio_private *)(dev->
+ subdevices +
+ 2 +
+ group)->
+ private)->RDCapFlg);
- s = dev->subdevices + 4;
- /* digital I/O subdevice */
- s->type = COMEDI_SUBD_DIO;
- s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
- s->n_chan = 16;
- s->maxdata = 1;
- s->io_bits = 0xffff;
- s->private = &dio_private_C;
- s->range_table = &range_digital;
- s->insn_config = s626_dio_insn_config;
- s->insn_bits = s626_dio_insn_bits;
+ /* check if interrupt is generated from dio channels */
+ if (irqbit) {
+ s626_dio_reset_irq(dev, group, irqbit);
+ DEBUG
+ ("s626_irq_handler: check interrupt on dio group %d %d\n",
+ group, i);
+ if (devpriv->ai_cmd_running) {
+ /* check if interrupt is an ai acquisition start trigger */
+ if ((irqbit >> (cmd->start_arg -
+ (16 * group)))
+ == 1 && cmd->start_src == TRIG_EXT) {
+ DEBUG
+ ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
+ cmd->start_arg);
- s = dev->subdevices + 5;
- /* encoder (counter) subdevice */
- s->type = COMEDI_SUBD_COUNTER;
- s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
- s->n_chan = thisboard->enc_chans;
- s->private = enc_private_data;
- s->insn_config = s626_enc_insn_config;
- s->insn_read = s626_enc_insn_read;
- s->insn_write = s626_enc_insn_write;
- s->maxdata = 0xffffff;
- s->range_table = &range_unknown;
+ /* Start executing the RPS program. */
+ MC_ENABLE(P_MC1, MC1_ERPS1);
- /* stop ai_command */
- devpriv->ai_cmd_running = 0;
+ DEBUG
+ ("s626_irq_handler: acquisition start triggered!!!\n");
- if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
- dma_addr_t pPhysBuf;
- uint16_t chan;
+ if (cmd->scan_begin_src ==
+ TRIG_EXT) {
+ DEBUG
+ ("s626_ai_cmd: enable interrupt on dio channel %d\n",
+ cmd->
+ scan_begin_arg);
- /* enab DEBI and audio pins, enable I2C interface. */
- MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
- /* Configure DEBI operating mode. */
- WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
- /* bits wide. */
- | (DEBI_TOUT << DEBI_CFG_TOUT_BIT)
+ s626_dio_set_irq(dev,
+ cmd->scan_begin_arg);
- /* Declare DEBI */
- /* transfer timeout */
- /* interval. */
- |DEBI_SWAP /* Set up byte lane */
- /* steering. */
- | DEBI_CFG_INTEL); /* Intel-compatible */
- /* local bus (DEBI */
- /* never times out). */
- DEBUG("s626_attach: %d debi init -- %d\n",
- DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
- DEBI_SWAP | DEBI_CFG_INTEL,
- DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
- DEBI_CFG_16Q);
+ DEBUG
+ ("s626_irq_handler: External scan trigger is set!!!\n");
+ }
+ }
+ if ((irqbit >> (cmd->scan_begin_arg -
+ (16 * group)))
+ == 1
+ && cmd->scan_begin_src ==
+ TRIG_EXT) {
+ DEBUG
+ ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
+ cmd->scan_begin_arg);
- /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
- /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
- /* Paging is disabled. */
- WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
+ DEBUG
+ ("s626_irq_handler: scan triggered!!! %d\n",
+ devpriv->ai_sample_count);
+ if (cmd->convert_src ==
+ TRIG_EXT) {
- /* Init GPIO so that ADC Start* is negated. */
- WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
+ DEBUG
+ ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
+ cmd->convert_arg -
+ (16 * group),
+ group);
- /* IsBoardRevA is a boolean that indicates whether the board is RevA.
- *
- * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
- * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
- * is used to access the onboard serial EEPROM. The EEPROM's I2C
- * DeviceAddress is hardwired to a value that is dependent on the
- * 626 board revision. On all board revisions, the EEPROM stores
- * TrimDAC calibration constants for analog I/O. On RevB and
- * higher boards, the DeviceAddress is hardwired to 0 to enable
- * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
- * this is the address at which the SAA7146 expects a
- * configuration EEPROM to reside. On RevA boards, the EEPROM
- * device address, which is hardwired to 4, prevents the SAA7146
- * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
- * default values, instead.
- */
+ devpriv->ai_convert_count
+ = cmd->chanlist_len;
- /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
- /* DeviceType (0xA0) */
- /* and DeviceAddress<<1. */
+ s626_dio_set_irq(dev,
+ cmd->convert_arg);
- devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
- /* eeprom(revb) */
+ DEBUG
+ ("s626_irq_handler: External convert trigger is set!!!\n");
+ }
- /* Issue an I2C ABORT command to halt any I2C operation in */
- /* progress and reset BUSY flag. */
- WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
- /* Write I2C control: abort any I2C activity. */
- MC_ENABLE(P_MC2, MC2_UPLD_IIC);
- /* Invoke command upload */
- while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
- ;
- /* and wait for upload to complete. */
+ if (cmd->convert_src ==
+ TRIG_TIMER) {
+ k = &encpriv[5];
+ devpriv->ai_convert_count
+ = cmd->chanlist_len;
+ k->SetEnable(dev, k,
+ CLKENAB_ALWAYS);
+ }
+ }
+ if ((irqbit >> (cmd->convert_arg -
+ (16 * group)))
+ == 1
+ && cmd->convert_src == TRIG_EXT) {
+ DEBUG
+ ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
+ cmd->convert_arg);
- /* Per SAA7146 data sheet, write to STATUS reg twice to
- * reset all I2C error flags. */
- for (i = 0; i < 2; i++) {
- WR7146(P_I2CSTAT, I2C_CLKSEL);
- /* Write I2C control: reset error flags. */
- MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
- while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
- ;
- /* and wait for upload to complete. */
- }
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
- /* Init audio interface functional attributes: set DAC/ADC
- * serial clock rates, invert DAC serial clock so that
- * DAC data setup times are satisfied, enable DAC serial
- * clock out.
- */
+ DEBUG
+ ("s626_irq_handler: adc convert triggered!!!\n");
- WR7146(P_ACON2, ACON2_INIT);
+ devpriv->ai_convert_count--;
- /* Set up TSL1 slot list, which is used to control the
- * accumulation of ADC data: RSD1 = shift data in on SD1.
- * SIB_A1 = store data uint8_t at next available location in
- * FB BUFFER1 register. */
- WR7146(P_TSL1, RSD1 | SIB_A1);
- /* Fetch ADC high data uint8_t. */
- WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
- /* Fetch ADC low data uint8_t; end of TSL1. */
+ if (devpriv->ai_convert_count >
+ 0) {
- /* enab TSL1 slot list so that it executes all the time. */
- WR7146(P_ACON1, ACON1_ADCSTART);
+ DEBUG
+ ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
+ cmd->convert_arg -
+ (16 * group),
+ group);
- /* Initialize RPS registers used for ADC. */
+ s626_dio_set_irq(dev,
+ cmd->convert_arg);
- /* Physical start of RPS program. */
- WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
+ DEBUG
+ ("s626_irq_handler: External trigger is set!!!\n");
+ }
+ }
+ }
+ break;
+ }
+ }
- WR7146(P_RPSPAGE1, 0);
- /* RPS program performs no explicit mem writes. */
- WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
+ /* read interrupt type */
+ irqbit = DEBIread(dev, LP_RDMISC2);
- /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
- * to a known state by invoking ADCs until FB BUFFER 1
- * register shows that it is correctly receiving ADC data.
- * This is necessary because the SAA7146 ADC interface does
- * not start up in a defined state after a PCI reset.
- */
+ /* check interrupt on counters */
+ DEBUG("s626_irq_handler: check counters interrupt %d\n",
+ irqbit);
-/* PollList = EOPL; // Create a simple polling */
-/* // list for analog input */
-/* // channel 0. */
-/* ResetADC( dev, &PollList ); */
+ if (irqbit & IRQ_COINT1A) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 1A overflow\n");
+ k = &encpriv[0];
-/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
-/* //Get initial ADC */
-/* //value. */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
+ }
+ if (irqbit & IRQ_COINT2A) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 2A overflow\n");
+ k = &encpriv[1];
-/* StartVal = data[0]; */
-
-/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
-/* // Invoke ADCs until the new ADC value differs from the initial */
-/* // value or a timeout occurs. The timeout protects against the */
-/* // possibility that the driver is restarting and the ADC data is a */
-/* // fixed value resulting from the applied ADC analog input being */
-/* // unusually quiet or at the rail. */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
+ }
+ if (irqbit & IRQ_COINT3A) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 3A overflow\n");
+ k = &encpriv[2];
-/* for ( index = 0; index < 500; index++ ) */
-/* { */
-/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
-/* AdcData = data[0]; //ReadADC( &AdcData ); */
-/* if ( AdcData != StartVal ) */
-/* break; */
-/* } */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
+ }
+ if (irqbit & IRQ_COINT1B) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 1B overflow\n");
+ k = &encpriv[3];
- /* end initADC */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
+ }
+ if (irqbit & IRQ_COINT2B) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 2B overflow\n");
+ k = &encpriv[4];
- /* init the DAC interface */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
- /* Init Audio2's output DMAC attributes: burst length = 1
- * DWORD, threshold = 1 DWORD.
- */
- WR7146(P_PCI_BT_A, 0);
+ if (devpriv->ai_convert_count > 0) {
+ devpriv->ai_convert_count--;
+ if (devpriv->ai_convert_count == 0)
+ k->SetEnable(dev, k, CLKENAB_INDEX);
- /* Init Audio2's output DMA physical addresses. The protection
- * address is set to 1 DWORD past the base address so that a
- * single DWORD will be transferred each time a DMA transfer is
- * enabled. */
+ if (cmd->convert_src == TRIG_TIMER) {
+ DEBUG
+ ("s626_irq_handler: conver timer trigger!!! %d\n",
+ devpriv->ai_convert_count);
- pPhysBuf =
- devpriv->ANABuf.PhysicalBase +
- (DAC_WDMABUF_OS * sizeof(uint32_t));
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
+ }
+ }
+ }
+ if (irqbit & IRQ_COINT3B) {
+ DEBUG
+ ("s626_irq_handler: interrupt on counter 3B overflow\n");
+ k = &encpriv[5];
- WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
- WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
+ /* clear interrupt capture flag */
+ k->ResetCapFlags(dev, k);
- /* Cache Audio2's output DMA buffer logical address. This is
- * where DAC data is buffered for A2 output DMA transfers. */
- devpriv->pDacWBuf =
- (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS;
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ DEBUG
+ ("s626_irq_handler: scan timer trigger!!!\n");
- /* Audio2's output channels does not use paging. The protection
- * violation handling bit is set so that the DMAC will
- * automatically halt and its PCI address pointer will be reset
- * when the protection address is reached. */
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
+ }
- WR7146(P_PAGEA2_OUT, 8);
+ if (cmd->convert_src == TRIG_TIMER) {
+ DEBUG
+ ("s626_irq_handler: convert timer trigger is set\n");
+ k = &encpriv[4];
+ devpriv->ai_convert_count = cmd->chanlist_len;
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
+ }
+ }
+ }
- /* Initialize time slot list 2 (TSL2), which is used to control
- * the clock generation for and serialization of data to be sent
- * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
- * execution; this permits other slots to be safely modified
- * without first turning off the TSL sequencer (which is
- * apparently impossible to do). Also, SD3 (which is driven by a
- * pull-up resistor) is shifted in and stored to the MSB of
- * FB_BUFFER2 to be used as evidence that the slot sequence has
- * not yet finished executing.
- */
+ /* enable interrupt */
+ writel(irqstatus, devpriv->base_addr + P_IER);
- SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
- /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
+ DEBUG("s626_irq_handler: exit interrupt service routine.\n");
- /* Initialize slot 1, which is constant. Slot 1 causes a
- * DWORD to be transferred from audio channel 2's output FIFO
- * to the FIFO's output buffer so that it can be serialized
- * and sent to the DAC during subsequent slots. All remaining
- * slots are dynamically populated as required by the target
- * DAC device.
- */
- SETVECT(1, LF_A2);
- /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
+ spin_unlock_irqrestore(&dev->spinlock, flags);
+ return IRQ_HANDLED;
+}
- /* Start DAC's audio interface (TSL2) running. */
- WR7146(P_ACON1, ACON1_DACSTART);
+/*
+ * this functions build the RPS program for hardware driven acquistion
+ */
+static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
+{
+ register uint32_t *pRPS;
+ uint32_t JmpAdrs;
+ uint16_t i;
+ uint16_t n;
+ uint32_t LocalPPL;
+ struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
- /* end init DAC interface */
+ /* Stop RPS program in case it is currently running. */
+ MC_DISABLE(P_MC1, MC1_ERPS1);
- /* Init Trim DACs to calibrated values. Do it twice because the
- * SAA7146 audio channel does not always reset properly and
- * sometimes causes the first few TrimDAC writes to malfunction.
- */
+ /* Set starting logical address to write RPS commands. */
+ pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
- LoadTrimDACs(dev);
- LoadTrimDACs(dev); /* Insurance. */
+ /* Initialize RPS instruction pointer. */
+ WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
- /* Manually init all gate array hardware in case this is a soft
- * reset (we have no way of determining whether this is a warm
- * or cold start). This is necessary because the gate array will
- * reset only in response to a PCI hard reset; there is no soft
- * reset function. */
+ /* Construct RPS program in RPSBuf DMA buffer */
- /* Init all DAC outputs to 0V and init all DAC setpoint and
- * polarity images.
- */
- for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
- SetDAC(dev, chan, 0);
+ if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
+ DEBUG("ResetADC: scan_begin pause inserted\n");
+ /* Wait for Start trigger. */
+ *pRPS++ = RPS_PAUSE | RPS_SIGADC;
+ *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ }
- /* Init image of WRMISC2 Battery Charger Enabled control bit.
- * This image is used when the state of the charger control bit,
- * which has no direct hardware readback mechanism, is queried.
- */
- devpriv->ChargeEnabled = 0;
+ /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
+ * because the first RPS DEBI Write following a non-RPS DEBI write
+ * seems to always fail. If we don't do this dummy write, the ADC
+ * gain might not be set to the value required for the first slot in
+ * the poll list; the ADC gain would instead remain unchanged from
+ * the previously programmed value.
+ */
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
+ /* Write DEBI Write command and address to shadow RAM. */
- /* Init image of watchdog timer interval in WRMISC2. This image
- * maintains the value of the control bits of MISC2 are
- * continuously reset to zero as long as the WD timer is disabled.
- */
- devpriv->WDInterval = 0;
+ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
+ /* Write DEBI immediate data to shadow RAM: */
- /* Init Counter Interrupt enab mask for RDMISC2. This mask is
- * applied against MISC2 when testing to determine which timer
- * events are requesting interrupt service.
- */
- devpriv->CounterIntEnabs = 0;
+ *pRPS++ = GSEL_BIPOLAR5V;
+ /* arbitrary immediate data value. */
- /* Init counters. */
- CountersInit(dev);
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ /* Reset "shadow RAM uploaded" flag. */
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
- /* Without modifying the state of the Battery Backup enab, disable
- * the watchdog timer, set DIO channels 0-5 to operate in the
- * standard DIO (vs. counter overflow) mode, disable the battery
- * charger, and reset the watchdog interval selector to zero.
+ /* Digitize all slots in the poll list. This is implemented as a
+ * for loop to limit the slot count to 16 in case the application
+ * forgot to set the EOPL flag in the final slot.
+ */
+ for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
+ /* Convert application's poll list item to private board class
+ * format. Each app poll list item is an uint8_t with form
+ * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
+ * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
- WriteMISC2(dev, (uint16_t) (DEBIread(dev,
- LP_RDMISC2) &
- MISC2_BATT_ENABLE));
+ LocalPPL =
+ (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
+ GSEL_BIPOLAR10V);
- /* Initialize the digital I/O subsystem. */
- s626_dio_init(dev);
+ /* Switch ADC analog gain. */
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
+ /* and address to */
+ /* shadow RAM. */
+ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
+ /* immediate data to */
+ /* shadow RAM. */
+ *pRPS++ = LocalPPL;
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
+ /* flag. */
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
+ /* finish. */
- /* enable interrupt test */
- /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
- }
+ /* Select ADC analog input channel. */
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
+ /* Write DEBI command and address to shadow RAM. */
+ *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
+ /* Write DEBI immediate data to shadow RAM. */
+ *pRPS++ = LocalPPL;
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
+ /* Reset "shadow RAM uploaded" flag. */
- DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
- (uint32_t) devpriv->base_addr);
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI;
+ /* Invoke shadow RAM upload. */
- return 1;
-}
+ *pRPS++ = RPS_PAUSE | RPS_DEBI;
+ /* Wait for shadow upload to finish. */
-static unsigned int s626_ai_reg_to_uint(int data)
-{
- unsigned int tempdata;
+ /* Delay at least 10 microseconds for analog input settling.
+ * Instead of padding with NOPs, we use RPS_JUMP instructions
+ * here; this allows us to produce a longer delay than is
+ * possible with NOPs because each RPS_JUMP flushes the RPS'
+ * instruction prefetch pipeline.
+ */
+ JmpAdrs =
+ (uint32_t) devpriv->RPSBuf.PhysicalBase +
+ (uint32_t) ((unsigned long)pRPS -
+ (unsigned long)devpriv->RPSBuf.LogicalBase);
+ for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
+ JmpAdrs += 8; /* Repeat to implement time delay: */
+ *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
+ *pRPS++ = JmpAdrs;
+ }
- tempdata = (data >> 18);
- if (tempdata & 0x2000)
- tempdata &= 0x1fff;
- else
- tempdata += (1 << 13);
+ if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
+ DEBUG("ResetADC: convert pause inserted\n");
+ /* Wait for Start trigger. */
+ *pRPS++ = RPS_PAUSE | RPS_SIGADC;
+ *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ }
+ /* Start ADC by pulsing GPIO1. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
+ *pRPS++ = GPIO_BASE | GPIO1_LO;
+ *pRPS++ = RPS_NOP;
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
+ *pRPS++ = GPIO_BASE | GPIO1_HI;
- return tempdata;
-}
+ /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
+ * busy) and for data from previous conversion to shift into FB
+ * BUFFER 1 register.
+ */
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
-/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
-/* return 0; */
-/* } */
+ /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+ *pRPS++ =
+ (uint32_t) devpriv->ANABuf.PhysicalBase +
+ (devpriv->AdcItems << 2);
-static irqreturn_t s626_irq_handler(int irq, void *d)
-{
- struct comedi_device *dev = d;
- struct comedi_subdevice *s;
- struct comedi_cmd *cmd;
- struct enc_private *k;
- unsigned long flags;
- int32_t *readaddr;
- uint32_t irqtype, irqstatus;
- int i = 0;
- short tempdata;
- uint8_t group;
- uint16_t irqbit;
+ /* If this slot's EndOfPollList flag is set, all channels have */
+ /* now been processed. */
+ if (*ppl++ & EOPL) {
+ devpriv->AdcItems++; /* Adjust poll list item count. */
+ break; /* Exit poll list processing loop. */
+ }
+ }
+ DEBUG("ResetADC: ADC items %d\n", devpriv->AdcItems);
- DEBUG("s626_irq_handler: interrupt request received!!!\n");
+ /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
+ * ADC to stabilize for 2 microseconds before starting the final
+ * (dummy) conversion. This delay is necessary to allow sufficient
+ * time between last conversion finished and the start of the dummy
+ * conversion. Without this delay, the last conversion's data value
+ * is sometimes set to the previous conversion's data value.
+ */
+ for (n = 0; n < (2 * RPSCLK_PER_US); n++)
+ *pRPS++ = RPS_NOP;
- if (dev->attached == 0)
- return IRQ_NONE;
- /* lock to avoid race with comedi_poll */
- spin_lock_irqsave(&dev->spinlock, flags);
+ /* Start a dummy conversion to cause the data from the last
+ * conversion of interest to be shifted in.
+ */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
+ *pRPS++ = GPIO_BASE | GPIO1_LO;
+ *pRPS++ = RPS_NOP;
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
+ *pRPS++ = GPIO_BASE | GPIO1_HI;
- /* save interrupt enable register state */
- irqstatus = readl(devpriv->base_addr + P_IER);
+ /* Wait for the data from the last conversion of interest to arrive
+ * in FB BUFFER 1 register.
+ */
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
- /* read interrupt type */
- irqtype = readl(devpriv->base_addr + P_ISR);
+ /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
+ *pRPS++ =
+ (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
- /* disable master interrupt */
- writel(0, devpriv->base_addr + P_IER);
+ /* Indicate ADC scan loop is finished. */
+ /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
- /* clear interrupt */
- writel(irqtype, devpriv->base_addr + P_ISR);
+ /* invoke interrupt */
+ if (devpriv->ai_cmd_running == 1) {
+ DEBUG("ResetADC: insert irq in ADC RPS task\n");
+ *pRPS++ = RPS_IRQ;
+ }
+ /* Restart RPS program at its beginning. */
+ *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
+ *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
- /* do somethings */
- DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
+ /* End of RPS program build */
+}
- switch (irqtype) {
- case IRQ_RPS1: /* end_of_scan occurs */
+/* TO COMPLETE, IF NECESSARY */
+static int s626_ai_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
- DEBUG("s626_irq_handler: RPS1 irq detected\n");
+ return -EINVAL;
+}
- /* manage ai subdevice */
- s = dev->subdevices;
- cmd = &(s->async->cmd);
+/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
+/* { */
+/* register uint8_t i; */
+/* register int32_t *readaddr; */
- /* Init ptr to DMA buffer that holds new ADC data. We skip the
- * first uint16_t in the buffer because it contains junk data from
- * the final ADC of the previous poll list scan.
- */
- readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
+/* DEBUG("as626_ai_rinsn: ai_rinsn enter\n"); */
- /* get the data and hand it over to comedi */
- for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
- /* Convert ADC data to 16-bit integer values and copy to application */
- /* buffer. */
- tempdata = s626_ai_reg_to_uint((int)*readaddr);
- readaddr++;
+/* Trigger ADC scan loop start by setting RPS Signal 0. */
+/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
- /* put data into read buffer */
- /* comedi_buf_put(s->async, tempdata); */
- if (cfc_write_to_buffer(s, tempdata) == 0)
- printk
- ("s626_irq_handler: cfc_write_to_buffer error!\n");
+/* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
+/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
- DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
- i, tempdata);
- }
+/* Init ptr to DMA buffer that holds new ADC data. We skip the
+ * first uint16_t in the buffer because it contains junk data from
+ * the final ADC of the previous poll list scan.
+ */
+/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
- /* end of scan occurs */
- s->async->events |= COMEDI_CB_EOS;
+/* Convert ADC data to 16-bit integer values and copy to application buffer. */
+/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
+/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
+/* DEBUG("s626_ai_rinsn: data %d\n",*data); */
+/* data++; */
+/* } */
- if (!(devpriv->ai_continous))
- devpriv->ai_sample_count--;
- if (devpriv->ai_sample_count <= 0) {
- devpriv->ai_cmd_running = 0;
+/* DEBUG("s626_ai_rinsn: ai_rinsn escape\n"); */
+/* return i; */
+/* } */
- /* Stop RPS program. */
- MC_DISABLE(P_MC1, MC1_ERPS1);
+static int s626_ai_insn_read(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ uint16_t chan = CR_CHAN(insn->chanspec);
+ uint16_t range = CR_RANGE(insn->chanspec);
+ uint16_t AdcSpec = 0;
+ uint32_t GpioImage;
+ int n;
- /* send end of acquisition */
- s->async->events |= COMEDI_CB_EOA;
+ /* interrupt call test */
+/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
+ /* Writing a logical 1 into any of the RPS_PSR bits causes the
+ * corresponding interrupt to be generated if enabled
+ */
- /* disable master interrupt */
- irqstatus = 0;
- }
+ DEBUG("s626_ai_insn_read: entering\n");
- if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
- DEBUG
- ("s626_irq_handler: enable interrupt on dio channel %d\n",
- cmd->scan_begin_arg);
+ /* Convert application's ADC specification into form
+ * appropriate for register programming.
+ */
+ if (range == 0)
+ AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
+ else
+ AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
- s626_dio_set_irq(dev, cmd->scan_begin_arg);
+ /* Switch ADC analog gain. */
+ DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
- DEBUG("s626_irq_handler: External trigger is set!!!\n");
- }
- /* tell comedi that data is there */
- DEBUG("s626_irq_handler: events %d\n", s->async->events);
- comedi_event(dev, s);
- break;
- case IRQ_GPIO3: /* check dio and conter interrupt */
+ /* Select ADC analog input channel. */
+ DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
- DEBUG("s626_irq_handler: GPIO3 irq detected\n");
+ for (n = 0; n < insn->n; n++) {
- /* manage ai subdevice */
- s = dev->subdevices;
- cmd = &(s->async->cmd);
+ /* Delay 10 microseconds for analog input settling. */
+ udelay(10);
- /* s626_dio_clear_irq(dev); */
+ /* Start ADC by pulsing GPIO1 low. */
+ GpioImage = RR7146(P_GPIO);
+ /* Assert ADC Start command */
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ /* and stretch it out. */
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ /* Negate ADC Start command. */
+ WR7146(P_GPIO, GpioImage | GPIO1_HI);
- for (group = 0; group < S626_DIO_BANKS; group++) {
- irqbit = 0;
- /* read interrupt type */
- irqbit = DEBIread(dev,
- ((struct dio_private *)(dev->
- subdevices +
- 2 +
- group)->
- private)->RDCapFlg);
-
- /* check if interrupt is generated from dio channels */
- if (irqbit) {
- s626_dio_reset_irq(dev, group, irqbit);
- DEBUG
- ("s626_irq_handler: check interrupt on dio group %d %d\n",
- group, i);
- if (devpriv->ai_cmd_running) {
- /* check if interrupt is an ai acquisition start trigger */
- if ((irqbit >> (cmd->start_arg -
- (16 * group)))
- == 1 && cmd->start_src == TRIG_EXT) {
- DEBUG
- ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
- cmd->start_arg);
+ /* Wait for ADC to complete (GPIO2 is asserted high when */
+ /* ADC not busy) and for data from previous conversion to */
+ /* shift into FB BUFFER 1 register. */
- /* Start executing the RPS program. */
- MC_ENABLE(P_MC1, MC1_ERPS1);
+ /* Wait for ADC done. */
+ while (!(RR7146(P_PSR) & PSR_GPIO2))
+ ;
- DEBUG
- ("s626_irq_handler: acquisition start triggered!!!\n");
+ /* Fetch ADC data. */
+ if (n != 0)
+ data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
- if (cmd->scan_begin_src ==
- TRIG_EXT) {
- DEBUG
- ("s626_ai_cmd: enable interrupt on dio channel %d\n",
- cmd->
- scan_begin_arg);
+ /* Allow the ADC to stabilize for 4 microseconds before
+ * starting the next (final) conversion. This delay is
+ * necessary to allow sufficient time between last
+ * conversion finished and the start of the next
+ * conversion. Without this delay, the last conversion's
+ * data value is sometimes set to the previous
+ * conversion's data value.
+ */
+ udelay(4);
+ }
- s626_dio_set_irq(dev,
- cmd->scan_begin_arg);
+ /* Start a dummy conversion to cause the data from the
+ * previous conversion to be shifted in. */
+ GpioImage = RR7146(P_GPIO);
- DEBUG
- ("s626_irq_handler: External scan trigger is set!!!\n");
- }
- }
- if ((irqbit >> (cmd->scan_begin_arg -
- (16 * group)))
- == 1
- && cmd->scan_begin_src ==
- TRIG_EXT) {
- DEBUG
- ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
- cmd->scan_begin_arg);
+ /* Assert ADC Start command */
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ /* and stretch it out. */
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+ /* Negate ADC Start command. */
+ WR7146(P_GPIO, GpioImage | GPIO1_HI);
- /* Trigger ADC scan loop start by setting RPS Signal 0. */
- MC_ENABLE(P_MC2, MC2_ADC_RPS);
+ /* Wait for the data to arrive in FB BUFFER 1 register. */
- DEBUG
- ("s626_irq_handler: scan triggered!!! %d\n",
- devpriv->ai_sample_count);
- if (cmd->convert_src ==
- TRIG_EXT) {
+ /* Wait for ADC done. */
+ while (!(RR7146(P_PSR) & PSR_GPIO2))
+ ;
- DEBUG
- ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
- cmd->convert_arg -
- (16 * group),
- group);
+ /* Fetch ADC data from audio interface's input shift register. */
- devpriv->ai_convert_count
- = cmd->chanlist_len;
+ /* Fetch ADC data. */
+ if (n != 0)
+ data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
- s626_dio_set_irq(dev,
- cmd->convert_arg);
+ DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
- DEBUG
- ("s626_irq_handler: External convert trigger is set!!!\n");
- }
+ return n;
+}
- if (cmd->convert_src ==
- TRIG_TIMER) {
- k = &encpriv[5];
- devpriv->ai_convert_count
- = cmd->chanlist_len;
- k->SetEnable(dev, k,
- CLKENAB_ALWAYS);
- }
- }
- if ((irqbit >> (cmd->convert_arg -
- (16 * group)))
- == 1
- && cmd->convert_src == TRIG_EXT) {
- DEBUG
- ("s626_irq_handler: Edge capture interrupt received from channel %d\n",
- cmd->convert_arg);
+static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
+{
- /* Trigger ADC scan loop start by setting RPS Signal 0. */
- MC_ENABLE(P_MC2, MC2_ADC_RPS);
+ int n;
- DEBUG
- ("s626_irq_handler: adc convert triggered!!!\n");
+ for (n = 0; n < cmd->chanlist_len; n++) {
+ if (CR_RANGE((cmd->chanlist)[n]) == 0)
+ ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
+ else
+ ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
+ }
+ if (n != 0)
+ ppl[n - 1] |= EOPL;
- devpriv->ai_convert_count--;
+ return n;
+}
- if (devpriv->ai_convert_count >
- 0) {
+static int s626_ai_inttrig(struct comedi_device *dev,
+ struct comedi_subdevice *s, unsigned int trignum)
+{
+ if (trignum != 0)
+ return -EINVAL;
- DEBUG
- ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
- cmd->convert_arg -
- (16 * group),
- group);
+ DEBUG("s626_ai_inttrig: trigger adc start...");
- s626_dio_set_irq(dev,
- cmd->convert_arg);
+ /* Start executing the RPS program. */
+ MC_ENABLE(P_MC1, MC1_ERPS1);
- DEBUG
- ("s626_irq_handler: External trigger is set!!!\n");
- }
- }
- }
- break;
- }
- }
+ s->async->inttrig = NULL;
- /* read interrupt type */
- irqbit = DEBIread(dev, LP_RDMISC2);
+ DEBUG(" done\n");
- /* check interrupt on counters */
- DEBUG("s626_irq_handler: check counters interrupt %d\n",
- irqbit);
+ return 1;
+}
- if (irqbit & IRQ_COINT1A) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 1A overflow\n");
- k = &encpriv[0];
+/* TO COMPLETE */
+static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
+{
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
- }
- if (irqbit & IRQ_COINT2A) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 2A overflow\n");
- k = &encpriv[1];
+ uint8_t ppl[16];
+ struct comedi_cmd *cmd = &s->async->cmd;
+ struct enc_private *k;
+ int tick;
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
- }
- if (irqbit & IRQ_COINT3A) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 3A overflow\n");
- k = &encpriv[2];
+ DEBUG("s626_ai_cmd: entering command function\n");
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
- }
- if (irqbit & IRQ_COINT1B) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 1B overflow\n");
- k = &encpriv[3];
+ if (devpriv->ai_cmd_running) {
+ printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
+ dev->minor);
+ return -EBUSY;
+ }
+ /* disable interrupt */
+ writel(0, devpriv->base_addr + P_IER);
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
- }
- if (irqbit & IRQ_COINT2B) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 2B overflow\n");
- k = &encpriv[4];
+ /* clear interrupt request */
+ writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
+ /* clear any pending interrupt */
+ s626_dio_clear_irq(dev);
+ /* s626_enc_clear_irq(dev); */
- if (devpriv->ai_convert_count > 0) {
- devpriv->ai_convert_count--;
- if (devpriv->ai_convert_count == 0)
- k->SetEnable(dev, k, CLKENAB_INDEX);
+ /* reset ai_cmd_running flag */
+ devpriv->ai_cmd_running = 0;
- if (cmd->convert_src == TRIG_TIMER) {
- DEBUG
- ("s626_irq_handler: conver timer trigger!!! %d\n",
- devpriv->ai_convert_count);
+ /* test if cmd is valid */
+ if (cmd == NULL) {
+ DEBUG("s626_ai_cmd: NULL command\n");
+ return -EINVAL;
+ } else {
+ DEBUG("s626_ai_cmd: command received!!!\n");
+ }
- /* Trigger ADC scan loop start by setting RPS Signal 0. */
- MC_ENABLE(P_MC2, MC2_ADC_RPS);
- }
- }
- }
- if (irqbit & IRQ_COINT3B) {
- DEBUG
- ("s626_irq_handler: interrupt on counter 3B overflow\n");
- k = &encpriv[5];
+ if (dev->irq == 0) {
+ comedi_error(dev,
+ "s626_ai_cmd: cannot run command without an irq");
+ return -EIO;
+ }
- /* clear interrupt capture flag */
- k->ResetCapFlags(dev, k);
+ s626_ai_load_polllist(ppl, cmd);
+ devpriv->ai_cmd_running = 1;
+ devpriv->ai_convert_count = 0;
- if (cmd->scan_begin_src == TRIG_TIMER) {
- DEBUG
- ("s626_irq_handler: scan timer trigger!!!\n");
+ switch (cmd->scan_begin_src) {
+ case TRIG_FOLLOW:
+ break;
+ case TRIG_TIMER:
+ /* set a conter to generate adc trigger at scan_begin_arg interval */
+ k = &encpriv[5];
+ tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
+ cmd->flags & TRIG_ROUND_MASK);
- /* Trigger ADC scan loop start by setting RPS Signal 0. */
- MC_ENABLE(P_MC2, MC2_ADC_RPS);
- }
+ /* load timer value and enable interrupt */
+ s626_timer_load(dev, k, tick);
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
- if (cmd->convert_src == TRIG_TIMER) {
- DEBUG
- ("s626_irq_handler: convert timer trigger is set\n");
- k = &encpriv[4];
- devpriv->ai_convert_count = cmd->chanlist_len;
- k->SetEnable(dev, k, CLKENAB_ALWAYS);
- }
- }
- }
+ DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
+ tick);
- /* enable interrupt */
- writel(irqstatus, devpriv->base_addr + P_IER);
+ break;
+ case TRIG_EXT:
+ /* set the digital line and interrupt for scan trigger */
+ if (cmd->start_src != TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
- DEBUG("s626_irq_handler: exit interrupt service routine.\n");
+ DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
- spin_unlock_irqrestore(&dev->spinlock, flags);
- return IRQ_HANDLED;
-}
+ break;
+ }
-static void s626_detach(struct comedi_device *dev)
-{
- if (devpriv) {
- /* stop ai_command */
- devpriv->ai_cmd_running = 0;
+ switch (cmd->convert_src) {
+ case TRIG_NOW:
+ break;
+ case TRIG_TIMER:
+ /* set a conter to generate adc trigger at convert_arg interval */
+ k = &encpriv[4];
+ tick = s626_ns_to_timer((int *)&cmd->convert_arg,
+ cmd->flags & TRIG_ROUND_MASK);
- if (devpriv->base_addr) {
- /* interrupt mask */
- WR7146(P_IER, 0); /* Disable master interrupt. */
- WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
+ /* load timer value and enable interrupt */
+ s626_timer_load(dev, k, tick);
+ k->SetEnable(dev, k, CLKENAB_INDEX);
- /* Disable the watchdog timer and battery charger. */
- WriteMISC2(dev, 0);
+ DEBUG
+ ("s626_ai_cmd: convert trigger timer is set with value %d\n",
+ tick);
+ break;
+ case TRIG_EXT:
+ /* set the digital line and interrupt for convert trigger */
+ if (cmd->scan_begin_src != TRIG_EXT
+ && cmd->start_src == TRIG_EXT)
+ s626_dio_set_irq(dev, cmd->convert_arg);
- /* Close all interfaces on 7146 device. */
- WR7146(P_MC1, MC1_SHUTDOWN);
- WR7146(P_ACON1, ACON1_BASE);
+ DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
- CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
- CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
- }
+ break;
+ }
- if (dev->irq)
- free_irq(dev->irq, dev);
- if (devpriv->base_addr)
- iounmap(devpriv->base_addr);
- if (devpriv->pdev) {
- if (devpriv->got_regions)
- comedi_pci_disable(devpriv->pdev);
- pci_dev_put(devpriv->pdev);
- }
+ switch (cmd->stop_src) {
+ case TRIG_COUNT:
+ /* data arrives as one packet */
+ devpriv->ai_sample_count = cmd->stop_arg;
+ devpriv->ai_continous = 0;
+ break;
+ case TRIG_NONE:
+ /* continous acquisition */
+ devpriv->ai_continous = 1;
+ devpriv->ai_sample_count = 0;
+ break;
}
-}
-/*
- * this functions build the RPS program for hardware driven acquistion
- */
-static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
-{
- register uint32_t *pRPS;
- uint32_t JmpAdrs;
- uint16_t i;
- uint16_t n;
- uint32_t LocalPPL;
- struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
+ ResetADC(dev, ppl);
- /* Stop RPS program in case it is currently running. */
- MC_DISABLE(P_MC1, MC1_ERPS1);
+ switch (cmd->start_src) {
+ case TRIG_NOW:
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
+ /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
- /* Set starting logical address to write RPS commands. */
- pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
+ /* Start executing the RPS program. */
+ MC_ENABLE(P_MC1, MC1_ERPS1);
- /* Initialize RPS instruction pointer. */
- WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
+ DEBUG("s626_ai_cmd: ADC triggered\n");
+ s->async->inttrig = NULL;
+ break;
+ case TRIG_EXT:
+ /* configure DIO channel for acquisition trigger */
+ s626_dio_set_irq(dev, cmd->start_arg);
- /* Construct RPS program in RPSBuf DMA buffer */
+ DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
- if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
- DEBUG("ResetADC: scan_begin pause inserted\n");
- /* Wait for Start trigger. */
- *pRPS++ = RPS_PAUSE | RPS_SIGADC;
- *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+ s->async->inttrig = NULL;
+ break;
+ case TRIG_INT:
+ s->async->inttrig = s626_ai_inttrig;
+ break;
}
- /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
- * because the first RPS DEBI Write following a non-RPS DEBI write
- * seems to always fail. If we don't do this dummy write, the ADC
- * gain might not be set to the value required for the first slot in
- * the poll list; the ADC gain would instead remain unchanged from
- * the previously programmed value.
- */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
- /* Write DEBI Write command and address to shadow RAM. */
+ /* enable interrupt */
+ writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
- *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
- /* Write DEBI immediate data to shadow RAM: */
+ DEBUG("s626_ai_cmd: command function terminated\n");
- *pRPS++ = GSEL_BIPOLAR5V;
- /* arbitrary immediate data value. */
+ return 0;
+}
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
- /* Reset "shadow RAM uploaded" flag. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
+static int s626_ai_cmdtest(struct comedi_device *dev,
+ struct comedi_subdevice *s, struct comedi_cmd *cmd)
+{
+ int err = 0;
+ int tmp;
- /* Digitize all slots in the poll list. This is implemented as a
- * for loop to limit the slot count to 16 in case the application
- * forgot to set the EOPL flag in the final slot.
- */
- for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
- /* Convert application's poll list item to private board class
- * format. Each app poll list item is an uint8_t with form
- * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
- * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
- */
- LocalPPL =
- (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
- GSEL_BIPOLAR10V);
+ /* cmdtest tests a particular command to see if it is valid. Using
+ * the cmdtest ioctl, a user can create a valid cmd and then have it
+ * executes by the cmd ioctl.
+ *
+ * cmdtest returns 1,2,3,4 or 0, depending on which tests the
+ * command passes. */
- /* Switch ADC analog gain. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
- /* and address to */
- /* shadow RAM. */
- *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
- /* immediate data to */
- /* shadow RAM. */
- *pRPS++ = LocalPPL;
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
- /* flag. */
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
- *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
- /* finish. */
+ /* step 1: make sure trigger sources are trivially valid */
- /* Select ADC analog input channel. */
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
- /* Write DEBI command and address to shadow RAM. */
- *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
- /* Write DEBI immediate data to shadow RAM. */
- *pRPS++ = LocalPPL;
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
- /* Reset "shadow RAM uploaded" flag. */
+ tmp = cmd->start_src;
+ cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
+ if (!cmd->start_src || tmp != cmd->start_src)
+ err++;
- *pRPS++ = RPS_UPLOAD | RPS_DEBI;
- /* Invoke shadow RAM upload. */
+ tmp = cmd->scan_begin_src;
+ cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
+ if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
+ err++;
- *pRPS++ = RPS_PAUSE | RPS_DEBI;
- /* Wait for shadow upload to finish. */
+ tmp = cmd->convert_src;
+ cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
+ if (!cmd->convert_src || tmp != cmd->convert_src)
+ err++;
- /* Delay at least 10 microseconds for analog input settling.
- * Instead of padding with NOPs, we use RPS_JUMP instructions
- * here; this allows us to produce a longer delay than is
- * possible with NOPs because each RPS_JUMP flushes the RPS'
- * instruction prefetch pipeline.
- */
- JmpAdrs =
- (uint32_t) devpriv->RPSBuf.PhysicalBase +
- (uint32_t) ((unsigned long)pRPS -
- (unsigned long)devpriv->RPSBuf.LogicalBase);
- for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
- JmpAdrs += 8; /* Repeat to implement time delay: */
- *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
- *pRPS++ = JmpAdrs;
- }
+ tmp = cmd->scan_end_src;
+ cmd->scan_end_src &= TRIG_COUNT;
+ if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
+ err++;
- if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
- DEBUG("ResetADC: convert pause inserted\n");
- /* Wait for Start trigger. */
- *pRPS++ = RPS_PAUSE | RPS_SIGADC;
- *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
- }
- /* Start ADC by pulsing GPIO1. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_LO;
- *pRPS++ = RPS_NOP;
- /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_HI;
+ tmp = cmd->stop_src;
+ cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
+ if (!cmd->stop_src || tmp != cmd->stop_src)
+ err++;
- /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
- * busy) and for data from previous conversion to shift into FB
- * BUFFER 1 register.
- */
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ if (err)
+ return 1;
- /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
- *pRPS++ =
- (uint32_t) devpriv->ANABuf.PhysicalBase +
- (devpriv->AdcItems << 2);
+ /* step 2: make sure trigger sources are unique and mutually
+ compatible */
- /* If this slot's EndOfPollList flag is set, all channels have */
- /* now been processed. */
- if (*ppl++ & EOPL) {
- devpriv->AdcItems++; /* Adjust poll list item count. */
- break; /* Exit poll list processing loop. */
- }
+ /* note that mutual compatibility is not an issue here */
+ if (cmd->scan_begin_src != TRIG_TIMER &&
+ cmd->scan_begin_src != TRIG_EXT
+ && cmd->scan_begin_src != TRIG_FOLLOW)
+ err++;
+ if (cmd->convert_src != TRIG_TIMER &&
+ cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
+ err++;
+ if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
+ err++;
+
+ if (err)
+ return 2;
+
+ /* step 3: make sure arguments are trivially compatible */
+
+ if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
+ cmd->start_arg = 0;
+ err++;
}
- DEBUG("ResetADC: ADC items %d\n", devpriv->AdcItems);
- /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
- * ADC to stabilize for 2 microseconds before starting the final
- * (dummy) conversion. This delay is necessary to allow sufficient
- * time between last conversion finished and the start of the dummy
- * conversion. Without this delay, the last conversion's data value
- * is sometimes set to the previous conversion's data value.
- */
- for (n = 0; n < (2 * RPSCLK_PER_US); n++)
- *pRPS++ = RPS_NOP;
+ if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
+ cmd->start_arg = 39;
+ err++;
+ }
- /* Start a dummy conversion to cause the data from the last
- * conversion of interest to be shifted in.
- */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_LO;
- *pRPS++ = RPS_NOP;
- /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
- *pRPS++ = GPIO_BASE | GPIO1_HI;
+ if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
+ cmd->scan_begin_arg = 39;
+ err++;
+ }
- /* Wait for the data from the last conversion of interest to arrive
- * in FB BUFFER 1 register.
- */
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
+ if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
+ cmd->convert_arg = 39;
+ err++;
+ }
+#define MAX_SPEED 200000 /* in nanoseconds */
+#define MIN_SPEED 2000000000 /* in nanoseconds */
- /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
- *pRPS++ =
- (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ if (cmd->scan_begin_arg < MAX_SPEED) {
+ cmd->scan_begin_arg = MAX_SPEED;
+ err++;
+ }
+ if (cmd->scan_begin_arg > MIN_SPEED) {
+ cmd->scan_begin_arg = MIN_SPEED;
+ err++;
+ }
+ } else {
+ /* external trigger */
+ /* should be level/edge, hi/lo specification here */
+ /* should specify multiple external triggers */
+/* if(cmd->scan_begin_arg>9){ */
+/* cmd->scan_begin_arg=9; */
+/* err++; */
+/* } */
+ }
+ if (cmd->convert_src == TRIG_TIMER) {
+ if (cmd->convert_arg < MAX_SPEED) {
+ cmd->convert_arg = MAX_SPEED;
+ err++;
+ }
+ if (cmd->convert_arg > MIN_SPEED) {
+ cmd->convert_arg = MIN_SPEED;
+ err++;
+ }
+ } else {
+ /* external trigger */
+ /* see above */
+/* if(cmd->convert_arg>9){ */
+/* cmd->convert_arg=9; */
+/* err++; */
+/* } */
+ }
- /* Indicate ADC scan loop is finished. */
- /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
+ if (cmd->scan_end_arg != cmd->chanlist_len) {
+ cmd->scan_end_arg = cmd->chanlist_len;
+ err++;
+ }
+ if (cmd->stop_src == TRIG_COUNT) {
+ if (cmd->stop_arg > 0x00ffffff) {
+ cmd->stop_arg = 0x00ffffff;
+ err++;
+ }
+ } else {
+ /* TRIG_NONE */
+ if (cmd->stop_arg != 0) {
+ cmd->stop_arg = 0;
+ err++;
+ }
+ }
- /* invoke interrupt */
- if (devpriv->ai_cmd_running == 1) {
- DEBUG("ResetADC: insert irq in ADC RPS task\n");
- *pRPS++ = RPS_IRQ;
+ if (err)
+ return 3;
+
+ /* step 4: fix up any arguments */
+
+ if (cmd->scan_begin_src == TRIG_TIMER) {
+ tmp = cmd->scan_begin_arg;
+ s626_ns_to_timer((int *)&cmd->scan_begin_arg,
+ cmd->flags & TRIG_ROUND_MASK);
+ if (tmp != cmd->scan_begin_arg)
+ err++;
+ }
+ if (cmd->convert_src == TRIG_TIMER) {
+ tmp = cmd->convert_arg;
+ s626_ns_to_timer((int *)&cmd->convert_arg,
+ cmd->flags & TRIG_ROUND_MASK);
+ if (tmp != cmd->convert_arg)
+ err++;
+ if (cmd->scan_begin_src == TRIG_TIMER &&
+ cmd->scan_begin_arg <
+ cmd->convert_arg * cmd->scan_end_arg) {
+ cmd->scan_begin_arg =
+ cmd->convert_arg * cmd->scan_end_arg;
+ err++;
+ }
}
- /* Restart RPS program at its beginning. */
- *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
- *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
- /* End of RPS program build */
+ if (err)
+ return 4;
+
+ return 0;
}
-/* TO COMPLETE, IF NECESSARY */
-static int s626_ai_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
+ /* Stop RPS program in case it is currently running. */
+ MC_DISABLE(P_MC1, MC1_ERPS1);
- return -EINVAL;
-}
-
-/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
-/* { */
-/* register uint8_t i; */
-/* register int32_t *readaddr; */
+ /* disable master interrupt */
+ writel(0, devpriv->base_addr + P_IER);
-/* DEBUG("as626_ai_rinsn: ai_rinsn enter\n"); */
+ devpriv->ai_cmd_running = 0;
-/* Trigger ADC scan loop start by setting RPS Signal 0. */
-/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
+ return 0;
+}
-/* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
-/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
+/* This function doesn't require a particular form, this is just what
+ * happens to be used in some of the drivers. It should convert ns
+ * nanoseconds to a counter value suitable for programming the device.
+ * Also, it should adjust ns so that it cooresponds to the actual time
+ * that the device will use. */
+static int s626_ns_to_timer(int *nanosec, int round_mode)
+{
+ int divider, base;
-/* Init ptr to DMA buffer that holds new ADC data. We skip the
- * first uint16_t in the buffer because it contains junk data from
- * the final ADC of the previous poll list scan.
- */
-/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
+ base = 500; /* 2MHz internal clock */
-/* Convert ADC data to 16-bit integer values and copy to application buffer. */
-/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
-/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
-/* DEBUG("s626_ai_rinsn: data %d\n",*data); */
-/* data++; */
-/* } */
+ switch (round_mode) {
+ case TRIG_ROUND_NEAREST:
+ default:
+ divider = (*nanosec + base / 2) / base;
+ break;
+ case TRIG_ROUND_DOWN:
+ divider = (*nanosec) / base;
+ break;
+ case TRIG_ROUND_UP:
+ divider = (*nanosec + base - 1) / base;
+ break;
+ }
-/* DEBUG("s626_ai_rinsn: ai_rinsn escape\n"); */
-/* return i; */
-/* } */
+ *nanosec = base * divider;
+ return divider - 1;
+}
-static int s626_ai_insn_read(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
{
+
+ int i;
uint16_t chan = CR_CHAN(insn->chanspec);
- uint16_t range = CR_RANGE(insn->chanspec);
- uint16_t AdcSpec = 0;
- uint32_t GpioImage;
- int n;
+ int16_t dacdata;
- /* interrupt call test */
-/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
- /* Writing a logical 1 into any of the RPS_PSR bits causes the
- * corresponding interrupt to be generated if enabled
- */
-
- DEBUG("s626_ai_insn_read: entering\n");
-
- /* Convert application's ADC specification into form
- * appropriate for register programming.
- */
- if (range == 0)
- AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
- else
- AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
+ for (i = 0; i < insn->n; i++) {
+ dacdata = (int16_t) data[i];
+ devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
+ dacdata -= (0x1fff);
- /* Switch ADC analog gain. */
- DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
+ SetDAC(dev, chan, dacdata);
+ }
- /* Select ADC analog input channel. */
- DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
+ return i;
+}
- for (n = 0; n < insn->n; n++) {
+static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ int i;
- /* Delay 10 microseconds for analog input settling. */
- udelay(10);
+ for (i = 0; i < insn->n; i++)
+ data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
- /* Start ADC by pulsing GPIO1 low. */
- GpioImage = RR7146(P_GPIO);
- /* Assert ADC Start command */
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- /* and stretch it out. */
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- /* Negate ADC Start command. */
- WR7146(P_GPIO, GpioImage | GPIO1_HI);
+ return i;
+}
- /* Wait for ADC to complete (GPIO2 is asserted high when */
- /* ADC not busy) and for data from previous conversion to */
- /* shift into FB BUFFER 1 register. */
+/* *************** DIGITAL I/O FUNCTIONS ***************
+ * All DIO functions address a group of DIO channels by means of
+ * "group" argument. group may be 0, 1 or 2, which correspond to DIO
+ * ports A, B and C, respectively.
+ */
- /* Wait for ADC done. */
- while (!(RR7146(P_PSR) & PSR_GPIO2))
- ;
+static void s626_dio_init(struct comedi_device *dev)
+{
+ uint16_t group;
+ struct comedi_subdevice *s;
- /* Fetch ADC data. */
- if (n != 0)
- data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
+ /* Prepare to treat writes to WRCapSel as capture disables. */
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
- /* Allow the ADC to stabilize for 4 microseconds before
- * starting the next (final) conversion. This delay is
- * necessary to allow sufficient time between last
- * conversion finished and the start of the next
- * conversion. Without this delay, the last conversion's
- * data value is sometimes set to the previous
- * conversion's data value.
- */
- udelay(4);
+ /* For each group of sixteen channels ... */
+ for (group = 0; group < S626_DIO_BANKS; group++) {
+ s = dev->subdevices + 2 + group;
+ DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
+ DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
+ /* captures. */
+ DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
+ /* default edge */
+ /* polarity. */
+ DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
+ /* to inactive state. */
}
+ DEBUG("s626_dio_init: DIO initialized\n");
+}
- /* Start a dummy conversion to cause the data from the
- * previous conversion to be shifted in. */
- GpioImage = RR7146(P_GPIO);
-
- /* Assert ADC Start command */
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- /* and stretch it out. */
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
- /* Negate ADC Start command. */
- WR7146(P_GPIO, GpioImage | GPIO1_HI);
-
- /* Wait for the data to arrive in FB BUFFER 1 register. */
+/* DIO devices are slightly special. Although it is possible to
+ * implement the insn_read/insn_write interface, it is much more
+ * useful to applications if you implement the insn_bits interface.
+ * This allows packed reading/writing of the DIO channels. The comedi
+ * core can convert between insn_bits and insn_read/write */
- /* Wait for ADC done. */
- while (!(RR7146(P_PSR) & PSR_GPIO2))
- ;
+static int s626_dio_insn_bits(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ /*
+ * The insn data consists of a mask in data[0] and the new data in
+ * data[1]. The mask defines which bits we are concerning about.
+ * The new data must be anded with the mask. Each channel
+ * corresponds to a bit.
+ */
+ if (data[0]) {
+ /* Check if requested ports are configured for output */
+ if ((s->io_bits & data[0]) != data[0])
+ return -EIO;
- /* Fetch ADC data from audio interface's input shift register. */
+ s->state &= ~data[0];
+ s->state |= data[0] & data[1];
- /* Fetch ADC data. */
- if (n != 0)
- data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
+ /* Write out the new digital output lines */
- DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
+ DEBIwrite(dev, diopriv->WRDOut, s->state);
+ }
+ data[1] = DEBIread(dev, diopriv->RDDIn);
- return n;
+ return insn->n;
}
-static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
+static int s626_dio_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
{
- int n;
-
- for (n = 0; n < cmd->chanlist_len; n++) {
- if (CR_RANGE((cmd->chanlist)[n]) == 0)
- ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
- else
- ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
+ switch (data[0]) {
+ case INSN_CONFIG_DIO_QUERY:
+ data[1] =
+ (s->
+ io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
+ COMEDI_INPUT;
+ return insn->n;
+ break;
+ case COMEDI_INPUT:
+ s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
+ break;
+ case COMEDI_OUTPUT:
+ s->io_bits |= 1 << CR_CHAN(insn->chanspec);
+ break;
+ default:
+ return -EINVAL;
+ break;
}
- if (n != 0)
- ppl[n - 1] |= EOPL;
+ DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
- return n;
+ return 1;
}
-static int s626_ai_inttrig(struct comedi_device *dev,
- struct comedi_subdevice *s, unsigned int trignum)
+static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
- if (trignum != 0)
- return -EINVAL;
+ unsigned int group;
+ unsigned int bitmask;
+ unsigned int status;
- DEBUG("s626_ai_inttrig: trigger adc start...");
+ /* select dio bank */
+ group = chan / 16;
+ bitmask = 1 << (chan - (16 * group));
+ DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
+ chan - (16 * group), group);
- /* Start executing the RPS program. */
- MC_ENABLE(P_MC1, MC1_ERPS1);
+ /* set channel to capture positive edge */
+ status = DEBIread(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->RDEdgSel);
+ DEBIwrite(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->WREdgSel,
+ bitmask | status);
- s->async->inttrig = NULL;
+ /* enable interrupt on selected channel */
+ status = DEBIread(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->RDIntSel);
+ DEBIwrite(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->WRIntSel,
+ bitmask | status);
- DEBUG(" done\n");
+ /* enable edge capture write command */
+ DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
- return 1;
+ /* enable edge capture on selected channel */
+ status = DEBIread(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->RDCapSel);
+ DEBIwrite(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->WRCapSel,
+ bitmask | status);
+
+ return 0;
}
-/* TO COMPLETE */
-static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
+static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
+ unsigned int mask)
{
+ DEBUG
+ ("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n",
+ mask, group);
- uint8_t ppl[16];
- struct comedi_cmd *cmd = &s->async->cmd;
- struct enc_private *k;
- int tick;
+ /* disable edge capture write command */
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
- DEBUG("s626_ai_cmd: entering command function\n");
+ /* enable edge capture on selected channel */
+ DEBIwrite(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->WRCapSel, mask);
- if (devpriv->ai_cmd_running) {
- printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
- dev->minor);
- return -EBUSY;
- }
- /* disable interrupt */
- writel(0, devpriv->base_addr + P_IER);
+ return 0;
+}
- /* clear interrupt request */
- writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
+static int s626_dio_clear_irq(struct comedi_device *dev)
+{
+ unsigned int group;
- /* clear any pending interrupt */
- s626_dio_clear_irq(dev);
- /* s626_enc_clear_irq(dev); */
+ /* disable edge capture write command */
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
- /* reset ai_cmd_running flag */
- devpriv->ai_cmd_running = 0;
-
- /* test if cmd is valid */
- if (cmd == NULL) {
- DEBUG("s626_ai_cmd: NULL command\n");
- return -EINVAL;
- } else {
- DEBUG("s626_ai_cmd: command received!!!\n");
- }
-
- if (dev->irq == 0) {
- comedi_error(dev,
- "s626_ai_cmd: cannot run command without an irq");
- return -EIO;
+ for (group = 0; group < S626_DIO_BANKS; group++) {
+ /* clear pending events and interrupt */
+ DEBIwrite(dev,
+ ((struct dio_private *)(dev->subdevices + 2 +
+ group)->private)->WRCapSel,
+ 0xffff);
}
- s626_ai_load_polllist(ppl, cmd);
- devpriv->ai_cmd_running = 1;
- devpriv->ai_convert_count = 0;
-
- switch (cmd->scan_begin_src) {
- case TRIG_FOLLOW:
- break;
- case TRIG_TIMER:
- /* set a conter to generate adc trigger at scan_begin_arg interval */
- k = &encpriv[5];
- tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
- cmd->flags & TRIG_ROUND_MASK);
-
- /* load timer value and enable interrupt */
- s626_timer_load(dev, k, tick);
- k->SetEnable(dev, k, CLKENAB_ALWAYS);
-
- DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
- tick);
+ return 0;
+}
- break;
- case TRIG_EXT:
- /* set the digital line and interrupt for scan trigger */
- if (cmd->start_src != TRIG_EXT)
- s626_dio_set_irq(dev, cmd->scan_begin_arg);
+/* Now this function initializes the value of the counter (data[0])
+ and set the subdevice. To complete with trigger and interrupt
+ configuration */
+static int s626_enc_insn_config(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
+ /* index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB);
+ /* uint16_t DisableIntSrc=TRUE; */
+ /* uint32_t Preloadvalue; //Counter initial value */
+ uint16_t valueSrclatch = LATCHSRC_AB_READ;
+ uint16_t enab = CLKENAB_ALWAYS;
+ struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
- DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
+ DEBUG("s626_enc_insn_config: encoder config\n");
- break;
- }
+ /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
- switch (cmd->convert_src) {
- case TRIG_NOW:
- break;
- case TRIG_TIMER:
- /* set a conter to generate adc trigger at convert_arg interval */
- k = &encpriv[4];
- tick = s626_ns_to_timer((int *)&cmd->convert_arg,
- cmd->flags & TRIG_ROUND_MASK);
+ k->SetMode(dev, k, Setup, TRUE);
+ Preload(dev, k, *(insn->data));
+ k->PulseIndex(dev, k);
+ SetLatchSource(dev, k, valueSrclatch);
+ k->SetEnable(dev, k, (uint16_t) (enab != 0));
- /* load timer value and enable interrupt */
- s626_timer_load(dev, k, tick);
- k->SetEnable(dev, k, CLKENAB_INDEX);
+ return insn->n;
+}
- DEBUG
- ("s626_ai_cmd: convert trigger timer is set with value %d\n",
- tick);
- break;
- case TRIG_EXT:
- /* set the digital line and interrupt for convert trigger */
- if (cmd->scan_begin_src != TRIG_EXT
- && cmd->start_src == TRIG_EXT)
- s626_dio_set_irq(dev, cmd->convert_arg);
+static int s626_enc_insn_read(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
- DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
+ int n;
+ struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
- break;
- }
+ DEBUG("s626_enc_insn_read: encoder read channel %d\n",
+ CR_CHAN(insn->chanspec));
- switch (cmd->stop_src) {
- case TRIG_COUNT:
- /* data arrives as one packet */
- devpriv->ai_sample_count = cmd->stop_arg;
- devpriv->ai_continous = 0;
- break;
- case TRIG_NONE:
- /* continous acquisition */
- devpriv->ai_continous = 1;
- devpriv->ai_sample_count = 0;
- break;
- }
+ for (n = 0; n < insn->n; n++)
+ data[n] = ReadLatch(dev, k);
- ResetADC(dev, ppl);
+ DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
- switch (cmd->start_src) {
- case TRIG_NOW:
- /* Trigger ADC scan loop start by setting RPS Signal 0. */
- /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
+ return n;
+}
- /* Start executing the RPS program. */
- MC_ENABLE(P_MC1, MC1_ERPS1);
+static int s626_enc_insn_write(struct comedi_device *dev,
+ struct comedi_subdevice *s,
+ struct comedi_insn *insn, unsigned int *data)
+{
- DEBUG("s626_ai_cmd: ADC triggered\n");
- s->async->inttrig = NULL;
- break;
- case TRIG_EXT:
- /* configure DIO channel for acquisition trigger */
- s626_dio_set_irq(dev, cmd->start_arg);
+ struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
- DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
+ DEBUG("s626_enc_insn_write: encoder write channel %d\n",
+ CR_CHAN(insn->chanspec));
- s->async->inttrig = NULL;
- break;
- case TRIG_INT:
- s->async->inttrig = s626_ai_inttrig;
- break;
- }
+ /* Set the preload register */
+ Preload(dev, k, data[0]);
- /* enable interrupt */
- writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
+ /* Software index pulse forces the preload register to load */
+ /* into the counter */
+ k->SetLoadTrig(dev, k, 0);
+ k->PulseIndex(dev, k);
+ k->SetLoadTrig(dev, k, 2);
- DEBUG("s626_ai_cmd: command function terminated\n");
+ DEBUG("s626_enc_insn_write: End encoder write\n");
- return 0;
+ return 1;
}
-static int s626_ai_cmdtest(struct comedi_device *dev,
- struct comedi_subdevice *s, struct comedi_cmd *cmd)
+static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
+ int tick)
{
- int err = 0;
- int tmp;
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
+ /* index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB);
+ uint16_t valueSrclatch = LATCHSRC_A_INDXA;
+ /* uint16_t enab=CLKENAB_ALWAYS; */
- /* cmdtest tests a particular command to see if it is valid. Using
- * the cmdtest ioctl, a user can create a valid cmd and then have it
- * executes by the cmd ioctl.
- *
- * cmdtest returns 1,2,3,4 or 0, depending on which tests the
- * command passes. */
+ k->SetMode(dev, k, Setup, FALSE);
- /* step 1: make sure trigger sources are trivially valid */
+ /* Set the preload register */
+ Preload(dev, k, tick);
- tmp = cmd->start_src;
- cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
- if (!cmd->start_src || tmp != cmd->start_src)
- err++;
+ /* Software index pulse forces the preload register to load */
+ /* into the counter */
+ k->SetLoadTrig(dev, k, 0);
+ k->PulseIndex(dev, k);
- tmp = cmd->scan_begin_src;
- cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
- if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
- err++;
+ /* set reload on counter overflow */
+ k->SetLoadTrig(dev, k, 1);
- tmp = cmd->convert_src;
- cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
- if (!cmd->convert_src || tmp != cmd->convert_src)
- err++;
+ /* set interrupt on overflow */
+ k->SetIntSrc(dev, k, INTSRC_OVER);
- tmp = cmd->scan_end_src;
- cmd->scan_end_src &= TRIG_COUNT;
- if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
- err++;
+ SetLatchSource(dev, k, valueSrclatch);
+ /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
+}
- tmp = cmd->stop_src;
- cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
- if (!cmd->stop_src || tmp != cmd->stop_src)
- err++;
+/* *********** DAC FUNCTIONS *********** */
- if (err)
- return 1;
+/* Slot 0 base settings. */
+#define VECT0 (XSD2 | RSD3 | SIB_A2)
+/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
- /* step 2: make sure trigger sources are unique and mutually
- compatible */
+/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
+static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
- /* note that mutual compatibility is not an issue here */
- if (cmd->scan_begin_src != TRIG_TIMER &&
- cmd->scan_begin_src != TRIG_EXT
- && cmd->scan_begin_src != TRIG_FOLLOW)
- err++;
- if (cmd->convert_src != TRIG_TIMER &&
- cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
- err++;
- if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
- err++;
+/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
+static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
- if (err)
- return 2;
+static void LoadTrimDACs(struct comedi_device *dev)
+{
+ register uint8_t i;
- /* step 3: make sure arguments are trivially compatible */
+ /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
+ for (i = 0; i < ARRAY_SIZE(trimchan); i++)
+ WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
+}
- if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
- cmd->start_arg = 0;
- err++;
- }
-
- if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
- cmd->start_arg = 39;
- err++;
- }
-
- if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
- cmd->scan_begin_arg = 39;
- err++;
- }
-
- if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
- cmd->convert_arg = 39;
- err++;
- }
-#define MAX_SPEED 200000 /* in nanoseconds */
-#define MIN_SPEED 2000000000 /* in nanoseconds */
-
- if (cmd->scan_begin_src == TRIG_TIMER) {
- if (cmd->scan_begin_arg < MAX_SPEED) {
- cmd->scan_begin_arg = MAX_SPEED;
- err++;
- }
- if (cmd->scan_begin_arg > MIN_SPEED) {
- cmd->scan_begin_arg = MIN_SPEED;
- err++;
- }
- } else {
- /* external trigger */
- /* should be level/edge, hi/lo specification here */
- /* should specify multiple external triggers */
-/* if(cmd->scan_begin_arg>9){ */
-/* cmd->scan_begin_arg=9; */
-/* err++; */
-/* } */
- }
- if (cmd->convert_src == TRIG_TIMER) {
- if (cmd->convert_arg < MAX_SPEED) {
- cmd->convert_arg = MAX_SPEED;
- err++;
- }
- if (cmd->convert_arg > MIN_SPEED) {
- cmd->convert_arg = MIN_SPEED;
- err++;
- }
- } else {
- /* external trigger */
- /* see above */
-/* if(cmd->convert_arg>9){ */
-/* cmd->convert_arg=9; */
-/* err++; */
-/* } */
- }
+static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
+ uint8_t DacData)
+{
+ uint32_t chan;
- if (cmd->scan_end_arg != cmd->chanlist_len) {
- cmd->scan_end_arg = cmd->chanlist_len;
- err++;
- }
- if (cmd->stop_src == TRIG_COUNT) {
- if (cmd->stop_arg > 0x00ffffff) {
- cmd->stop_arg = 0x00ffffff;
- err++;
- }
- } else {
- /* TRIG_NONE */
- if (cmd->stop_arg != 0) {
- cmd->stop_arg = 0;
- err++;
- }
- }
+ /* Save the new setpoint in case the application needs to read it back later. */
+ devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
- if (err)
- return 3;
+ /* Map logical channel number to physical channel number. */
+ chan = (uint32_t) trimchan[LogicalChan];
- /* step 4: fix up any arguments */
+ /* Set up TSL2 records for TrimDac write operation. All slots shift
+ * 0xFF in from pulled-up SD3 so that the end of the slot sequence
+ * can be detected.
+ */
- if (cmd->scan_begin_src == TRIG_TIMER) {
- tmp = cmd->scan_begin_arg;
- s626_ns_to_timer((int *)&cmd->scan_begin_arg,
- cmd->flags & TRIG_ROUND_MASK);
- if (tmp != cmd->scan_begin_arg)
- err++;
- }
- if (cmd->convert_src == TRIG_TIMER) {
- tmp = cmd->convert_arg;
- s626_ns_to_timer((int *)&cmd->convert_arg,
- cmd->flags & TRIG_ROUND_MASK);
- if (tmp != cmd->convert_arg)
- err++;
- if (cmd->scan_begin_src == TRIG_TIMER &&
- cmd->scan_begin_arg <
- cmd->convert_arg * cmd->scan_end_arg) {
- cmd->scan_begin_arg =
- cmd->convert_arg * cmd->scan_end_arg;
- err++;
- }
- }
+ SETVECT(2, XSD2 | XFIFO_1 | WS3);
+ /* Slot 2: Send high uint8_t to target TrimDac. */
+ SETVECT(3, XSD2 | XFIFO_0 | WS3);
+ /* Slot 3: Send low uint8_t to target TrimDac. */
+ SETVECT(4, XSD2 | XFIFO_3 | WS1);
+ /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
+ SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
+ /* Slot 5: Send NOP low uint8_t to DAC0. */
- if (err)
- return 4;
+ /* Construct and transmit target DAC's serial packet:
+ * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
+ * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
+ * WORD value (that writes a channel 0 NOP command to a non-existent
+ * main DAC channel) that serves to keep the clock running after the
+ * packet has been sent to the target DAC.
+ */
- return 0;
+ /* Address the DAC channel within the trimdac device. */
+ SendDAC(dev, ((uint32_t) chan << 8)
+ | (uint32_t) DacData); /* Include DAC setpoint data. */
}
-static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
-{
- /* Stop RPS program in case it is currently running. */
- MC_DISABLE(P_MC1, MC1_ERPS1);
-
- /* disable master interrupt */
- writel(0, devpriv->base_addr + P_IER);
+/* ************** EEPROM ACCESS FUNCTIONS ************** */
+/* Read uint8_t from EEPROM. */
- devpriv->ai_cmd_running = 0;
+static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
+{
+ uint8_t rtnval;
- return 0;
-}
+ /* Send EEPROM target address. */
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
+ /* Byte2 = I2C command: write to I2C EEPROM device. */
+ | I2C_B1(I2C_ATTRSTOP, addr)
+ /* Byte1 = EEPROM internal target address. */
+ | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
+ /* Abort function and declare error if handshake failed. */
+ DEBUG("I2Cread: error handshake I2Cread a\n");
+ return 0;
+ }
+ /* Execute EEPROM read. */
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
-/* This function doesn't require a particular form, this is just what
- * happens to be used in some of the drivers. It should convert ns
- * nanoseconds to a counter value suitable for programming the device.
- * Also, it should adjust ns so that it cooresponds to the actual time
- * that the device will use. */
-static int s626_ns_to_timer(int *nanosec, int round_mode)
-{
- int divider, base;
+ /* Byte2 = I2C */
+ /* command: read */
+ /* from I2C EEPROM */
+ /* device. */
+ |I2C_B1(I2C_ATTRSTOP, 0)
- base = 500; /* 2MHz internal clock */
+ /* Byte1 receives */
+ /* uint8_t from */
+ /* EEPROM. */
+ |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
- switch (round_mode) {
- case TRIG_ROUND_NEAREST:
- default:
- divider = (*nanosec + base / 2) / base;
- break;
- case TRIG_ROUND_DOWN:
- divider = (*nanosec) / base;
- break;
- case TRIG_ROUND_UP:
- divider = (*nanosec + base - 1) / base;
- break;
+ /* Abort function and declare error if handshake failed. */
+ DEBUG("I2Cread: error handshake I2Cread b\n");
+ return 0;
}
-
- *nanosec = base * divider;
- return divider - 1;
+ /* Return copy of EEPROM value. */
+ rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
+ return rtnval;
}
-static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
{
+ /* Write I2C command to I2C Transfer Control shadow register. */
+ WR7146(P_I2CCTRL, val);
- int i;
- uint16_t chan = CR_CHAN(insn->chanspec);
- int16_t dacdata;
-
- for (i = 0; i < insn->n; i++) {
- dacdata = (int16_t) data[i];
- devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
- dacdata -= (0x1fff);
-
- SetDAC(dev, chan, dacdata);
- }
+ /* Upload I2C shadow registers into working registers and wait for */
+ /* upload confirmation. */
- return i;
-}
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC);
+ while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
+ ;
-static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
-{
- int i;
+ /* Wait until I2C bus transfer is finished or an error occurs. */
+ while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
+ ;
- for (i = 0; i < insn->n; i++)
- data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
+ /* Return non-zero if I2C error occurred. */
+ return RR7146(P_I2CCTRL) & I2C_ERR;
- return i;
}
-/* *************** DIGITAL I/O FUNCTIONS ***************
- * All DIO functions address a group of DIO channels by means of
- * "group" argument. group may be 0, 1 or 2, which correspond to DIO
- * ports A, B and C, respectively.
- */
+/* Private helper function: Write setpoint to an application DAC channel. */
-static void s626_dio_init(struct comedi_device *dev)
+static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
{
- uint16_t group;
- struct comedi_subdevice *s;
+ register uint16_t signmask;
+ register uint32_t WSImage;
- /* Prepare to treat writes to WRCapSel as capture disables. */
- DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+ /* Adjust DAC data polarity and set up Polarity Control Register */
+ /* image. */
+ signmask = 1 << chan;
+ if (dacdata < 0) {
+ dacdata = -dacdata;
+ devpriv->Dacpol |= signmask;
+ } else
+ devpriv->Dacpol &= ~signmask;
- /* For each group of sixteen channels ... */
- for (group = 0; group < S626_DIO_BANKS; group++) {
- s = dev->subdevices + 2 + group;
- DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
- DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
- /* captures. */
- DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
- /* default edge */
- /* polarity. */
- DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
- /* to inactive state. */
- }
- DEBUG("s626_dio_init: DIO initialized\n");
-}
-
-/* DIO devices are slightly special. Although it is possible to
- * implement the insn_read/insn_write interface, it is much more
- * useful to applications if you implement the insn_bits interface.
- * This allows packed reading/writing of the DIO channels. The comedi
- * core can convert between insn_bits and insn_read/write */
+ /* Limit DAC setpoint value to valid range. */
+ if ((uint16_t) dacdata > 0x1FFF)
+ dacdata = 0x1FFF;
-static int s626_dio_insn_bits(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
-{
- /*
- * The insn data consists of a mask in data[0] and the new data in
- * data[1]. The mask defines which bits we are concerning about.
- * The new data must be anded with the mask. Each channel
- * corresponds to a bit.
+ /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
+ * and V3 transmit the setpoint to the target DAC. V4 and V5 send
+ * data to a non-existent TrimDac channel just to keep the clock
+ * running after sending data to the target DAC. This is necessary
+ * to eliminate the clock glitch that would otherwise occur at the
+ * end of the target DAC's serial data stream. When the sequence
+ * restarts at V0 (after executing V5), the gate array automatically
+ * disables gating for the DAC clock and all DAC chip selects.
*/
- if (data[0]) {
- /* Check if requested ports are configured for output */
- if ((s->io_bits & data[0]) != data[0])
- return -EIO;
- s->state &= ~data[0];
- s->state |= data[0] & data[1];
-
- /* Write out the new digital output lines */
+ WSImage = (chan & 2) ? WS1 : WS2;
+ /* Choose DAC chip select to be asserted. */
+ SETVECT(2, XSD2 | XFIFO_1 | WSImage);
+ /* Slot 2: Transmit high data byte to target DAC. */
+ SETVECT(3, XSD2 | XFIFO_0 | WSImage);
+ /* Slot 3: Transmit low data byte to target DAC. */
+ SETVECT(4, XSD2 | XFIFO_3 | WS3);
+ /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
+ SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
+ /* Slot 5: running after writing target DAC's low data byte. */
- DEBIwrite(dev, diopriv->WRDOut, s->state);
- }
- data[1] = DEBIread(dev, diopriv->RDDIn);
+ /* Construct and transmit target DAC's serial packet:
+ * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
+ * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
+ * to a non-existent TrimDac channel) that serves to keep the clock
+ * running after the packet has been sent to the target DAC.
+ */
+ SendDAC(dev, 0x0F000000
+ /* Continue clock after target DAC data (write to non-existent trimdac). */
+ | 0x00004000
+ /* Address the two main dual-DAC devices (TSL's chip select enables
+ * target device). */
+ | ((uint32_t) (chan & 1) << 15)
+ /* Address the DAC channel within the device. */
+ | (uint32_t) dacdata); /* Include DAC setpoint data. */
- return insn->n;
}
-static int s626_dio_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
-{
+/* Private helper function: Transmit serial data to DAC via Audio
+ * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
+ * Dacpol contains valid target image.
+ */
- switch (data[0]) {
- case INSN_CONFIG_DIO_QUERY:
- data[1] =
- (s->
- io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
- COMEDI_INPUT;
- return insn->n;
- break;
- case COMEDI_INPUT:
- s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
- break;
- case COMEDI_OUTPUT:
- s->io_bits |= 1 << CR_CHAN(insn->chanspec);
- break;
- default:
- return -EINVAL;
- break;
- }
- DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
+static void SendDAC(struct comedi_device *dev, uint32_t val)
+{
- return 1;
-}
+ /* START THE SERIAL CLOCK RUNNING ------------- */
-static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
-{
- unsigned int group;
- unsigned int bitmask;
- unsigned int status;
+ /* Assert DAC polarity control and enable gating of DAC serial clock
+ * and audio bit stream signals. At this point in time we must be
+ * assured of being in time slot 0. If we are not in slot 0, the
+ * serial clock and audio stream signals will be disabled; this is
+ * because the following DEBIwrite statement (which enables signals
+ * to be passed through the gate array) would execute before the
+ * trailing edge of WS1/WS3 (which turns off the signals), thus
+ * causing the signals to be inactive during the DAC write.
+ */
+ DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
- /* select dio bank */
- group = chan / 16;
- bitmask = 1 << (chan - (16 * group));
- DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
- chan - (16 * group), group);
+ /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
- /* set channel to capture positive edge */
- status = DEBIread(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->RDEdgSel);
- DEBIwrite(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->WREdgSel,
- bitmask | status);
+ /* Copy DAC setpoint value to DAC's output DMA buffer. */
- /* enable interrupt on selected channel */
- status = DEBIread(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->RDIntSel);
- DEBIwrite(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->WRIntSel,
- bitmask | status);
+ /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
+ *devpriv->pDacWBuf = val;
- /* enable edge capture write command */
- DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
+ /* enab the output DMA transfer. This will cause the DMAC to copy
+ * the DAC's data value to A2's output FIFO. The DMA transfer will
+ * then immediately terminate because the protection address is
+ * reached upon transfer of the first DWORD value.
+ */
+ MC_ENABLE(P_MC1, MC1_A2OUT);
- /* enable edge capture on selected channel */
- status = DEBIread(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->RDCapSel);
- DEBIwrite(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->WRCapSel,
- bitmask | status);
+ /* While the DMA transfer is executing ... */
- return 0;
-}
+ /* Reset Audio2 output FIFO's underflow flag (along with any other
+ * FIFO underflow/overflow flags). When set, this flag will
+ * indicate that we have emerged from slot 0.
+ */
+ WR7146(P_ISR, ISR_AFOU);
-static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
- unsigned int mask)
-{
- DEBUG
- ("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n",
- mask, group);
+ /* Wait for the DMA transfer to finish so that there will be data
+ * available in the FIFO when time slot 1 tries to transfer a DWORD
+ * from the FIFO to the output buffer register. We test for DMA
+ * Done by polling the DMAC enable flag; this flag is automatically
+ * cleared when the transfer has finished.
+ */
+ while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
+ ;
- /* disable edge capture write command */
- DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+ /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
- /* enable edge capture on selected channel */
- DEBIwrite(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->WRCapSel, mask);
+ /* FIFO data is now available, so we enable execution of time slots
+ * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
+ * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
+ * detection.
+ */
+ SETVECT(0, XSD2 | RSD3 | SIB_A2);
- return 0;
-}
+ /* Wait for slot 1 to execute to ensure that the Packet will be
+ * transmitted. This is detected by polling the Audio2 output FIFO
+ * underflow flag, which will be set when slot 1 execution has
+ * finished transferring the DAC's data DWORD from the output FIFO
+ * to the output buffer register.
+ */
+ while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
+ ;
-static int s626_dio_clear_irq(struct comedi_device *dev)
-{
- unsigned int group;
+ /* Set up to trap execution at slot 0 when the TSL sequencer cycles
+ * back to slot 0 after executing the EOS in slot 5. Also,
+ * simultaneously shift out and in the 0x00 that is ALWAYS the value
+ * stored in the last byte to be shifted out of the FIFO's DWORD
+ * buffer register.
+ */
+ SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
- /* disable edge capture write command */
- DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+ /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
- for (group = 0; group < S626_DIO_BANKS; group++) {
- /* clear pending events and interrupt */
- DEBIwrite(dev,
- ((struct dio_private *)(dev->subdevices + 2 +
- group)->private)->WRCapSel,
- 0xffff);
+ /* Wait for the TSL to finish executing all time slots before
+ * exiting this function. We must do this so that the next DAC
+ * write doesn't start, thereby enabling clock/chip select signals:
+ *
+ * 1. Before the TSL sequence cycles back to slot 0, which disables
+ * the clock/cs signal gating and traps slot // list execution.
+ * we have not yet finished slot 5 then the clock/cs signals are
+ * still gated and we have not finished transmitting the stream.
+ *
+ * 2. While slots 2-5 are executing due to a late slot 0 trap. In
+ * this case, the slot sequence is currently repeating, but with
+ * clock/cs signals disabled. We must wait for slot 0 to trap
+ * execution before setting up the next DAC setpoint DMA transfer
+ * and enabling the clock/cs signals. To detect the end of slot 5,
+ * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
+ * the TSL has not yet finished executing slot 5 ...
+ */
+ if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
+ /* The trap was set on time and we are still executing somewhere
+ * in slots 2-5, so we now wait for slot 0 to execute and trap
+ * TSL execution. This is detected when FB_BUFFER2 MSB changes
+ * from 0xFF to 0x00, which slot 0 causes to happen by shifting
+ * out/in on SD2 the 0x00 that is always referenced by slot 5.
+ */
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
+ ;
}
+ /* Either (1) we were too late setting the slot 0 trap; the TSL
+ * sequencer restarted slot 0 before we could set the EOS trap flag,
+ * or (2) we were not late and execution is now trapped at slot 0.
+ * In either case, we must now change slot 0 so that it will store
+ * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
+ * In order to do this, we reprogram slot 0 so that it will shift in
+ * SD3, which is driven only by a pull-up resistor.
+ */
+ SETVECT(0, RSD3 | SIB_A2 | EOS);
- return 0;
+ /* Wait for slot 0 to execute, at which time the TSL is setup for
+ * the next DAC write. This is detected when FB_BUFFER2 MSB changes
+ * from 0x00 to 0xFF.
+ */
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
+ ;
}
-/* Now this function initializes the value of the counter (data[0])
- and set the subdevice. To complete with trigger and interrupt
- configuration */
-static int s626_enc_insn_config(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
{
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
- /* uint16_t DisableIntSrc=TRUE; */
- /* uint32_t Preloadvalue; //Counter initial value */
- uint16_t valueSrclatch = LATCHSRC_AB_READ;
- uint16_t enab = CLKENAB_ALWAYS;
- struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+ DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
+ /* MISC2 register. */
+ DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
+ DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
+}
- DEBUG("s626_enc_insn_config: encoder config\n");
+/* Initialize the DEBI interface for all transfers. */
- /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
+static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
+{
+ uint16_t retval;
- k->SetMode(dev, k, Setup, TRUE);
- Preload(dev, k, *(insn->data));
- k->PulseIndex(dev, k);
- SetLatchSource(dev, k, valueSrclatch);
- k->SetEnable(dev, k, (uint16_t) (enab != 0));
+ /* Set up DEBI control register value in shadow RAM. */
+ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
- return insn->n;
+ /* Execute the DEBI transfer. */
+ DEBItransfer(dev);
+
+ /* Fetch target register value. */
+ retval = (uint16_t) RR7146(P_DEBIAD);
+
+ /* Return register value. */
+ return retval;
}
-static int s626_enc_insn_read(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+/* Execute a DEBI transfer. This must be called from within a */
+/* critical section. */
+static void DEBItransfer(struct comedi_device *dev)
{
+ /* Initiate upload of shadow RAM to DEBI control register. */
+ MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
- int n;
- struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+ /* Wait for completion of upload from shadow RAM to DEBI control */
+ /* register. */
+ while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
+ ;
- DEBUG("s626_enc_insn_read: encoder read channel %d\n",
- CR_CHAN(insn->chanspec));
+ /* Wait until DEBI transfer is done. */
+ while (RR7146(P_PSR) & PSR_DEBI_S)
+ ;
+}
- for (n = 0; n < insn->n; n++)
- data[n] = ReadLatch(dev, k);
+/* Write a value to a gate array register. */
+static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
+{
- DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
+ /* Set up DEBI control register value in shadow RAM. */
+ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
+ WR7146(P_DEBIAD, wdata);
- return n;
+ /* Execute the DEBI transfer. */
+ DEBItransfer(dev);
}
-static int s626_enc_insn_write(struct comedi_device *dev,
- struct comedi_subdevice *s,
- struct comedi_insn *insn, unsigned int *data)
+/* Replace the specified bits in a gate array register. Imports: mask
+ * specifies bits that are to be preserved, wdata is new value to be
+ * or'd with the masked original.
+ */
+static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
+ uint16_t wdata)
{
- struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+ /* Copy target gate array register into P_DEBIAD register. */
+ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
+ /* Set up DEBI control reg value in shadow RAM. */
+ DEBItransfer(dev); /* Execute the DEBI Read transfer. */
- DEBUG("s626_enc_insn_write: encoder write channel %d\n",
- CR_CHAN(insn->chanspec));
+ /* Write back the modified image. */
+ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
+ /* Set up DEBI control reg value in shadow RAM. */
- /* Set the preload register */
- Preload(dev, k, data[0]);
+ WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
+ /* Modify the register image. */
+ DEBItransfer(dev); /* Execute the DEBI Write transfer. */
+}
- /* Software index pulse forces the preload register to load */
- /* into the counter */
- k->SetLoadTrig(dev, k, 0);
- k->PulseIndex(dev, k);
- k->SetLoadTrig(dev, k, 2);
+static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
+ size_t bsize)
+{
+ void *vbptr;
+ dma_addr_t vpptr;
- DEBUG("s626_enc_insn_write: End encoder write\n");
+ DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
+ if (pdma == NULL)
+ return;
+ /* find the matching allocation from the board struct */
- return 1;
+ vbptr = pdma->LogicalBase;
+ vpptr = pdma->PhysicalBase;
+ if (vbptr) {
+ pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
+ pdma->LogicalBase = NULL;
+ pdma->PhysicalBase = 0;
+
+ DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
+ vbptr, bsize, (uint32_t) vpptr);
+ }
}
-static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
- int tick)
+/* ****** COUNTER FUNCTIONS ******* */
+/* All counter functions address a specific counter by means of the
+ * "Counter" argument, which is a logical counter number. The Counter
+ * argument may have any of the following legal values: 0=0A, 1=1A,
+ * 2=2A, 3=0B, 4=1B, 5=2B.
+ */
+
+/* Forward declarations for functions that are common to both A and B counters: */
+
+/* ****** PRIVATE COUNTER FUNCTIONS ****** */
+
+/* Read a counter's output latch. */
+
+static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
{
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB);
- uint16_t valueSrclatch = LATCHSRC_A_INDXA;
- /* uint16_t enab=CLKENAB_ALWAYS; */
+ register uint32_t value;
+ /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
- k->SetMode(dev, k, Setup, FALSE);
+ /* Latch counts and fetch LSW of latched counts value. */
+ value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
- /* Set the preload register */
- Preload(dev, k, tick);
+ /* Fetch MSW of latched counts and combine with LSW. */
+ value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
- /* Software index pulse forces the preload register to load */
- /* into the counter */
- k->SetLoadTrig(dev, k, 0);
- k->PulseIndex(dev, k);
+ /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
+
+ /* Return latched counts. */
+ return value;
+}
- /* set reload on counter overflow */
- k->SetLoadTrig(dev, k, 1);
+/* Reset a counter's index and overflow event capture flags. */
- /* set interrupt on overflow */
- k->SetIntSrc(dev, k, INTSRC_OVER);
+static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
+{
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+}
- SetLatchSource(dev, k, valueSrclatch);
- /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
+static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
+{
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
}
-/* *********** DAC FUNCTIONS *********** */
+/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
+/* for both A and B counters. */
-/* Slot 0 base settings. */
-#define VECT0 (XSD2 | RSD3 | SIB_A2)
-/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
+static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
+{
+ register uint16_t cra;
+ register uint16_t crb;
+ register uint16_t setup;
-/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
-static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
+ /* Fetch CRA and CRB register images. */
+ cra = DEBIread(dev, k->MyCRA);
+ crb = DEBIread(dev, k->MyCRB);
-/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
-static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
+ /* Populate the standardized counter setup bit fields. Note: */
+ /* IndexSrc is restricted to ENC_X or IndxPol. */
+ setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
+ |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
+ |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
+ |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
+ |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
+ |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
-static void LoadTrimDACs(struct comedi_device *dev)
-{
- register uint8_t i;
+ /* Adjust mode-dependent parameters. */
+ if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
+ |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
+ |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
- /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
- for (i = 0; i < ARRAY_SIZE(trimchan); i++)
- WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
+ else /* If Counter mode (ClkSrcA<1> == 0): */
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
+ |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
+ |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
+ (MULT_X1 << STDBIT_CLKMULT) :
+ ((cra >> (CRABIT_CLKMULT_A -
+ STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
+
+ /* Return adjusted counter setup. */
+ return setup;
}
-static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
- uint8_t DacData)
+static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
{
- uint32_t chan;
+ register uint16_t cra;
+ register uint16_t crb;
+ register uint16_t setup;
- /* Save the new setpoint in case the application needs to read it back later. */
- devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
+ /* Fetch CRA and CRB register images. */
+ cra = DEBIread(dev, k->MyCRA);
+ crb = DEBIread(dev, k->MyCRB);
- /* Map logical channel number to physical channel number. */
- chan = (uint32_t) trimchan[LogicalChan];
+ /* Populate the standardized counter setup bit fields. Note: */
+ /* IndexSrc is restricted to ENC_X or IndxPol. */
+ setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
+ |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
+ |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
+ |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
+ |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
+ |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
- /* Set up TSL2 records for TrimDac write operation. All slots shift
- * 0xFF in from pulled-up SD3 so that the end of the slot sequence
- * can be detected.
- */
+ /* Adjust mode-dependent parameters. */
+ if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
+ setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
+ |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
+ |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
- SETVECT(2, XSD2 | XFIFO_1 | WS3);
- /* Slot 2: Send high uint8_t to target TrimDac. */
- SETVECT(3, XSD2 | XFIFO_0 | WS3);
- /* Slot 3: Send low uint8_t to target TrimDac. */
- SETVECT(4, XSD2 | XFIFO_3 | WS1);
- /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
- SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
- /* Slot 5: Send NOP low uint8_t to DAC0. */
+ else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
+ |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
+ |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
- /* Construct and transmit target DAC's serial packet:
- * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
- * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
- * WORD value (that writes a channel 0 NOP command to a non-existent
- * main DAC channel) that serves to keep the clock running after the
- * packet has been sent to the target DAC.
- */
+ else /* If Counter mode (ClkSrcB<1> == 0): */
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
+ |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
+ |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
- /* Address the DAC channel within the trimdac device. */
- SendDAC(dev, ((uint32_t) chan << 8)
- | (uint32_t) DacData); /* Include DAC setpoint data. */
+ /* Return adjusted counter setup. */
+ return setup;
}
-/* ************** EEPROM ACCESS FUNCTIONS ************** */
-/* Read uint8_t from EEPROM. */
+/*
+ * Set the operating mode for the specified counter. The setup
+ * parameter is treated as a COUNTER_SETUP data type. The following
+ * parameters are programmable (all other parms are ignored): ClkMult,
+ * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
+ */
-static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
+static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
+ uint16_t Setup, uint16_t DisableIntSrc)
{
- uint8_t rtnval;
-
- /* Send EEPROM target address. */
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
- /* Byte2 = I2C command: write to I2C EEPROM device. */
- | I2C_B1(I2C_ATTRSTOP, addr)
- /* Byte1 = EEPROM internal target address. */
- | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
- /* Abort function and declare error if handshake failed. */
- DEBUG("I2Cread: error handshake I2Cread a\n");
- return 0;
- }
- /* Execute EEPROM read. */
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
+ register uint16_t cra;
+ register uint16_t crb;
+ register uint16_t setup = Setup; /* Cache the Standard Setup. */
- /* Byte2 = I2C */
- /* command: read */
- /* from I2C EEPROM */
- /* device. */
- |I2C_B1(I2C_ATTRSTOP, 0)
+ /* Initialize CRA and CRB images. */
+ cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
+ |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
- /* Byte1 receives */
- /* uint8_t from */
- /* EEPROM. */
- |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
- /* Abort function and declare error if handshake failed. */
- DEBUG("I2Cread: error handshake I2Cread b\n");
- return 0;
- }
- /* Return copy of EEPROM value. */
- rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
- return rtnval;
-}
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
+ if (!DisableIntSrc)
+ cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
+ CRABIT_INTSRC_A));
-static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
-{
- /* Write I2C command to I2C Transfer Control shadow register. */
- WR7146(P_I2CCTRL, val);
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
+ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
+ case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
+ /* (Extender valid only for B counters). */
- /* Upload I2C shadow registers into working registers and wait for */
- /* upload confirmation. */
+ case CLKSRC_TIMER: /* Timer Mode: */
+ cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
+ |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
+ |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
+ |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
+ break;
- MC_ENABLE(P_MC2, MC2_UPLD_IIC);
- while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
- ;
+ default: /* Counter Mode: */
+ cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
+ |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
+ (MULT_X1 << CRABIT_CLKMULT_A) :
+ ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
+ STDBIT_CLKMULT))));
+ }
- /* Wait until I2C bus transfer is finished or an error occurs. */
- while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
- ;
+ /* Force positive index polarity if IndxSrc is software-driven only, */
+ /* otherwise pass it through. */
+ if (~setup & STDMSK_INDXSRC)
+ cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
+ STDBIT_INDXPOL));
- /* Return non-zero if I2C error occurred. */
- return RR7146(P_I2CCTRL) & I2C_ERR;
+ /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
+ /* enable mask to indicate the counter interrupt is disabled. */
+ if (DisableIntSrc)
+ devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+ /* While retaining CounterB and LatchSrc configurations, program the */
+ /* new counter operating mode. */
+ DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
+ DEBIreplace(dev, k->MyCRB,
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
}
-/* Private helper function: Write setpoint to an application DAC channel. */
-
-static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
+static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
+ uint16_t Setup, uint16_t DisableIntSrc)
{
- register uint16_t signmask;
- register uint32_t WSImage;
+ register uint16_t cra;
+ register uint16_t crb;
+ register uint16_t setup = Setup; /* Cache the Standard Setup. */
- /* Adjust DAC data polarity and set up Polarity Control Register */
- /* image. */
- signmask = 1 << chan;
- if (dacdata < 0) {
- dacdata = -dacdata;
- devpriv->Dacpol |= signmask;
- } else
- devpriv->Dacpol &= ~signmask;
+ /* Initialize CRA and CRB images. */
+ cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
+
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
+ |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
+
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
+ if (!DisableIntSrc)
+ crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
+ CRBBIT_INTSRC_B));
+
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
+ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
+ case CLKSRC_TIMER: /* Timer Mode: */
+ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
+ |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
+ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
+ |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
+ break;
- /* Limit DAC setpoint value to valid range. */
- if ((uint16_t) dacdata > 0x1FFF)
- dacdata = 0x1FFF;
+ case CLKSRC_EXTENDER: /* Extender Mode: */
+ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
+ |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
+ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
+ |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
+ break;
- /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
- * and V3 transmit the setpoint to the target DAC. V4 and V5 send
- * data to a non-existent TrimDac channel just to keep the clock
- * running after sending data to the target DAC. This is necessary
- * to eliminate the clock glitch that would otherwise occur at the
- * end of the target DAC's serial data stream. When the sequence
- * restarts at V0 (after executing V5), the gate array automatically
- * disables gating for the DAC clock and all DAC chip selects.
- */
+ default: /* Counter Mode: */
+ cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
+ crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
+ |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
+ (MULT_X1 << CRBBIT_CLKMULT_B) :
+ ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
+ STDBIT_CLKMULT))));
+ }
- WSImage = (chan & 2) ? WS1 : WS2;
- /* Choose DAC chip select to be asserted. */
- SETVECT(2, XSD2 | XFIFO_1 | WSImage);
- /* Slot 2: Transmit high data byte to target DAC. */
- SETVECT(3, XSD2 | XFIFO_0 | WSImage);
- /* Slot 3: Transmit low data byte to target DAC. */
- SETVECT(4, XSD2 | XFIFO_3 | WS3);
- /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
- SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
- /* Slot 5: running after writing target DAC's low data byte. */
+ /* Force positive index polarity if IndxSrc is software-driven only, */
+ /* otherwise pass it through. */
+ if (~setup & STDMSK_INDXSRC)
+ crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
+ CRBBIT_INDXPOL_B));
- /* Construct and transmit target DAC's serial packet:
- * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
- * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
- * to a non-existent TrimDac channel) that serves to keep the clock
- * running after the packet has been sent to the target DAC.
- */
- SendDAC(dev, 0x0F000000
- /* Continue clock after target DAC data (write to non-existent trimdac). */
- | 0x00004000
- /* Address the two main dual-DAC devices (TSL's chip select enables
- * target device). */
- | ((uint32_t) (chan & 1) << 15)
- /* Address the DAC channel within the device. */
- | (uint32_t) dacdata); /* Include DAC setpoint data. */
+ /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
+ /* enable mask to indicate the counter interrupt is disabled. */
+ if (DisableIntSrc)
+ devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+ /* While retaining CounterA and LatchSrc configurations, program the */
+ /* new counter operating mode. */
+ DEBIreplace(dev, k->MyCRA,
+ (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
+ DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
}
-/* Private helper function: Transmit serial data to DAC via Audio
- * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
- * Dacpol contains valid target image.
- */
+/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
-static void SendDAC(struct comedi_device *dev, uint32_t val)
+static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
+ uint16_t enab)
{
+ DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
+ DEBIreplace(dev, k->MyCRB,
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
+ (uint16_t) (enab << CRBBIT_CLKENAB_A));
+}
- /* START THE SERIAL CLOCK RUNNING ------------- */
-
- /* Assert DAC polarity control and enable gating of DAC serial clock
- * and audio bit stream signals. At this point in time we must be
- * assured of being in time slot 0. If we are not in slot 0, the
- * serial clock and audio stream signals will be disabled; this is
- * because the following DEBIwrite statement (which enables signals
- * to be passed through the gate array) would execute before the
- * trailing edge of WS1/WS3 (which turns off the signals), thus
- * causing the signals to be inactive during the DAC write.
- */
- DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
+static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
+ uint16_t enab)
+{
+ DEBIreplace(dev, k->MyCRB,
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
+ (uint16_t) (enab << CRBBIT_CLKENAB_B));
+}
- /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
+static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
+}
- /* Copy DAC setpoint value to DAC's output DMA buffer. */
+static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
+}
- /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
- *devpriv->pDacWBuf = val;
+/* Return/set a counter pair's latch trigger source. 0: On read
+ * access, 1: A index latches A, 2: B index latches B, 3: A overflow
+ * latches B.
+ */
- /* enab the output DMA transfer. This will cause the DMAC to copy
- * the DAC's data value to A2's output FIFO. The DMA transfer will
- * then immediately terminate because the protection address is
- * reached upon transfer of the first DWORD value.
- */
- MC_ENABLE(P_MC1, MC1_A2OUT);
+static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
+ uint16_t value)
+{
+ DEBUG("SetLatchSource: SetLatchSource enter 3550\n");
+ DEBIreplace(dev, k->MyCRB,
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
+ (uint16_t) (value << CRBBIT_LATCHSRC));
- /* While the DMA transfer is executing ... */
+ DEBUG("SetLatchSource: SetLatchSource exit\n");
+}
- /* Reset Audio2 output FIFO's underflow flag (along with any other
- * FIFO underflow/overflow flags). When set, this flag will
- * indicate that we have emerged from slot 0.
- */
- WR7146(P_ISR, ISR_AFOU);
+/*
+ * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
+ * {
+ * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
+ * }
+ */
- /* Wait for the DMA transfer to finish so that there will be data
- * available in the FIFO when time slot 1 tries to transfer a DWORD
- * from the FIFO to the output buffer register. We test for DMA
- * Done by polling the DMAC enable flag; this flag is automatically
- * cleared when the transfer has finished.
- */
- while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
- ;
+/*
+ * Return/set the event that will trigger transfer of the preload
+ * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
+ * 2=OverflowA (B counters only), 3=disabled.
+ */
- /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
+static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
+ uint16_t Trig)
+{
+ DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
+ (uint16_t) (Trig << CRABIT_LOADSRC_A));
+}
- /* FIFO data is now available, so we enable execution of time slots
- * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
- * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
- * detection.
- */
- SETVECT(0, XSD2 | RSD3 | SIB_A2);
+static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
+ uint16_t Trig)
+{
+ DEBIreplace(dev, k->MyCRB,
+ (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
+ (uint16_t) (Trig << CRBBIT_LOADSRC_B));
+}
- /* Wait for slot 1 to execute to ensure that the Packet will be
- * transmitted. This is detected by polling the Audio2 output FIFO
- * underflow flag, which will be set when slot 1 execution has
- * finished transferring the DAC's data DWORD from the output FIFO
- * to the output buffer register.
- */
- while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
- ;
+static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
+}
- /* Set up to trap execution at slot 0 when the TSL sequencer cycles
- * back to slot 0 after executing the EOS in slot 5. Also,
- * simultaneously shift out and in the 0x00 that is ALWAYS the value
- * stored in the last byte to be shifted out of the FIFO's DWORD
- * buffer register.
- */
- SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
+static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
+}
- /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
+/* Return/set counter interrupt source and clear any captured
+ * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
+ * 2=IndexOnly, 3=IndexAndOverflow.
+ */
- /* Wait for the TSL to finish executing all time slots before
- * exiting this function. We must do this so that the next DAC
- * write doesn't start, thereby enabling clock/chip select signals:
- *
- * 1. Before the TSL sequence cycles back to slot 0, which disables
- * the clock/cs signal gating and traps slot // list execution.
- * we have not yet finished slot 5 then the clock/cs signals are
- * still gated and we have not finished transmitting the stream.
- *
- * 2. While slots 2-5 are executing due to a late slot 0 trap. In
- * this case, the slot sequence is currently repeating, but with
- * clock/cs signals disabled. We must wait for slot 0 to trap
- * execution before setting up the next DAC setpoint DMA transfer
- * and enabling the clock/cs signals. To detect the end of slot 5,
- * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
- * the TSL has not yet finished executing slot 5 ...
- */
- if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
- /* The trap was set on time and we are still executing somewhere
- * in slots 2-5, so we now wait for slot 0 to execute and trap
- * TSL execution. This is detected when FB_BUFFER2 MSB changes
- * from 0xFF to 0x00, which slot 0 causes to happen by shifting
- * out/in on SD2 the 0x00 that is always referenced by slot 5.
- */
- while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
- ;
- }
- /* Either (1) we were too late setting the slot 0 trap; the TSL
- * sequencer restarted slot 0 before we could set the EOS trap flag,
- * or (2) we were not late and execution is now trapped at slot 0.
- * In either case, we must now change slot 0 so that it will store
- * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
- * In order to do this, we reprogram slot 0 so that it will shift in
- * SD3, which is driven only by a pull-up resistor.
- */
- SETVECT(0, RSD3 | SIB_A2 | EOS);
+static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
+ uint16_t IntSource)
+{
+ /* Reset any pending counter overflow or index captures. */
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
- /* Wait for slot 0 to execute, at which time the TSL is setup for
- * the next DAC write. This is detected when FB_BUFFER2 MSB changes
- * from 0x00 to 0xFF.
- */
- while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
- ;
+ /* Program counter interrupt source. */
+ DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
+ (uint16_t) (IntSource << CRABIT_INTSRC_A));
+
+ /* Update MISC2 interrupt enable mask. */
+ devpriv->CounterIntEnabs =
+ (devpriv->CounterIntEnabs & ~k->
+ MyEventBits[3]) | k->MyEventBits[IntSource];
}
-static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
+static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
+ uint16_t IntSource)
{
- DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
- /* MISC2 register. */
- DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
- DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
+ uint16_t crb;
+
+ /* Cache writeable CRB register image. */
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
+
+ /* Reset any pending counter overflow or index captures. */
+ DEBIwrite(dev, k->MyCRB,
+ (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
+
+ /* Program counter interrupt source. */
+ DEBIwrite(dev, k->MyCRB,
+ (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
+ CRBBIT_INTSRC_B)));
+
+ /* Update MISC2 interrupt enable mask. */
+ devpriv->CounterIntEnabs =
+ (devpriv->CounterIntEnabs & ~k->
+ MyEventBits[3]) | k->MyEventBits[IntSource];
}
-/* Initialize the DEBI interface for all transfers. */
+static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
+{
+ return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
+}
-static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
+static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
{
- uint16_t retval;
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
+}
- /* Set up DEBI control register value in shadow RAM. */
- WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
+/* Return/set the clock multiplier. */
- /* Execute the DEBI transfer. */
- DEBItransfer(dev);
+/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
+/* { */
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
+/* } */
- /* Fetch target register value. */
- retval = (uint16_t) RR7146(P_DEBIAD);
+/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
+/* { */
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
+/* } */
- /* Return register value. */
- return retval;
-}
+/* Return/set the clock polarity. */
-/* Execute a DEBI transfer. This must be called from within a */
-/* critical section. */
-static void DEBItransfer(struct comedi_device *dev)
-{
- /* Initiate upload of shadow RAM to DEBI control register. */
- MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
+/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
+/* { */
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
+/* } */
- /* Wait for completion of upload from shadow RAM to DEBI control */
- /* register. */
- while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
- ;
+/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
+/* { */
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
+/* } */
- /* Wait until DEBI transfer is done. */
- while (RR7146(P_PSR) & PSR_DEBI_S)
- ;
-}
+/* Return/set the clock source. */
-/* Write a value to a gate array register. */
-static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
-{
+/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
+/* { */
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
+/* } */
- /* Set up DEBI control register value in shadow RAM. */
- WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
- WR7146(P_DEBIAD, wdata);
+/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
+/* { */
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
+/* } */
- /* Execute the DEBI transfer. */
- DEBItransfer(dev);
-}
+/* Return/set the index polarity. */
-/* Replace the specified bits in a gate array register. Imports: mask
- * specifies bits that are to be preserved, wdata is new value to be
- * or'd with the masked original.
- */
-static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
- uint16_t wdata)
-{
+/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
+/* { */
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
+/* } */
- /* Copy target gate array register into P_DEBIAD register. */
- WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
- /* Set up DEBI control reg value in shadow RAM. */
- DEBItransfer(dev); /* Execute the DEBI Read transfer. */
+/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
+/* { */
+/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
+/* } */
- /* Write back the modified image. */
- WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
- /* Set up DEBI control reg value in shadow RAM. */
+/* Return/set the index source. */
- WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
- /* Modify the register image. */
- DEBItransfer(dev); /* Execute the DEBI Write transfer. */
-}
+/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
+/* { */
+/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
+/* } */
-static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
- size_t bsize)
-{
- void *vbptr;
- dma_addr_t vpptr;
+/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
+/* { */
+/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
+/* } */
- DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
- if (pdma == NULL)
- return;
- /* find the matching allocation from the board struct */
+/* Generate an index pulse. */
- vbptr = pdma->LogicalBase;
- vpptr = pdma->PhysicalBase;
- if (vbptr) {
- pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
- pdma->LogicalBase = NULL;
- pdma->PhysicalBase = 0;
+static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
+{
+ register uint16_t cra;
- DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
- vbptr, bsize, (uint32_t) vpptr);
- }
+ DEBUG("PulseIndex_A: pulse index enter\n");
+
+ cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
+ DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
+ DEBUG("PulseIndex_A: pulse index step1\n");
+ DEBIwrite(dev, k->MyCRA, cra);
}
-/* ****** COUNTER FUNCTIONS ******* */
-/* All counter functions address a specific counter by means of the
- * "Counter" argument, which is a logical counter number. The Counter
- * argument may have any of the following legal values: 0=0A, 1=1A,
- * 2=2A, 3=0B, 4=1B, 5=2B.
- */
+static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
+{
+ register uint16_t crb;
-/* Forward declarations for functions that are common to both A and B counters: */
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
+ DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
+ DEBIwrite(dev, k->MyCRB, crb);
+}
-/* ****** PRIVATE COUNTER FUNCTIONS ****** */
+/* Write value into counter preload register. */
-/* Read a counter's output latch. */
+static void Preload(struct comedi_device *dev, struct enc_private *k,
+ uint32_t value)
+{
+ DEBUG("Preload: preload enter\n");
+ DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
+ DEBUG("Preload: preload step 1\n");
+ DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
+ (uint16_t) (value >> 16));
+}
-static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
+static void CountersInit(struct comedi_device *dev)
{
- register uint32_t value;
- /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
+ int chan;
+ struct enc_private *k;
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
+ /* index. */
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
+ (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
+ (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
- /* Latch counts and fetch LSW of latched counts value. */
- value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
+ /* Disable all counter interrupts and clear any captured counter events. */
+ for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
+ k = &encpriv[chan];
+ k->SetMode(dev, k, Setup, TRUE);
+ k->SetIntSrc(dev, k, 0);
+ k->ResetCapFlags(dev, k);
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
+ }
+ DEBUG("CountersInit: counters initialized\n");
- /* Fetch MSW of latched counts and combine with LSW. */
- value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
+}
- /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
+static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
+{
+/* uint8_t PollList; */
+/* uint16_t AdcData; */
+/* uint16_t StartVal; */
+/* uint16_t index; */
+/* unsigned int data[16]; */
+ int result;
+ int i;
+ int ret;
+ resource_size_t resourceStart;
+ dma_addr_t appdma;
+ struct comedi_subdevice *s;
+ struct pci_dev *pdev = NULL;
- /* Return latched counts. */
- return value;
-}
+ if (alloc_private(dev, sizeof(struct s626_private)) < 0)
+ return -ENOMEM;
-/* Reset a counter's index and overflow event capture flags. */
+ for (i = 0; i < ARRAY_SIZE(s626_boards) && !pdev; i++) {
+ do {
+ pdev = pci_get_subsys(s626_boards[i].vendor_id,
+ s626_boards[i].device_id,
+ s626_boards[i].subvendor_id,
+ s626_boards[i].subdevice_id,
+ pdev);
+
+ if ((it->options[0] || it->options[1]) && pdev) {
+ /* matches requested bus/slot */
+ if (pdev->bus->number == it->options[0] &&
+ PCI_SLOT(pdev->devfn) == it->options[1])
+ break;
+ } else
+ break;
+ } while (1);
+ }
+ devpriv->pdev = pdev;
-static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
-{
- DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
-}
+ if (pdev == NULL) {
+ printk(KERN_ERR "s626_attach: Board not present!!!\n");
+ return -ENODEV;
+ }
-static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
-{
- DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
-}
+ result = comedi_pci_enable(pdev, "s626");
+ if (result < 0) {
+ printk(KERN_ERR "s626_attach: comedi_pci_enable fails\n");
+ return -ENODEV;
+ }
+ devpriv->got_regions = 1;
-/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
-/* for both A and B counters. */
+ resourceStart = pci_resource_start(devpriv->pdev, 0);
-static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
-{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup;
+ devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
+ if (devpriv->base_addr == NULL) {
+ printk(KERN_ERR "s626_attach: IOREMAP failed\n");
+ return -ENODEV;
+ }
- /* Fetch CRA and CRB register images. */
- cra = DEBIread(dev, k->MyCRA);
- crb = DEBIread(dev, k->MyCRB);
+ if (devpriv->base_addr) {
+ /* disable master interrupt */
+ writel(0, devpriv->base_addr + P_IER);
- /* Populate the standardized counter setup bit fields. Note: */
- /* IndexSrc is restricted to ENC_X or IndxPol. */
- setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
- |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
- |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
- |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
- |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
- |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
+ /* soft reset */
+ writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
- /* Adjust mode-dependent parameters. */
- if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
- |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
+ /* DMA FIXME DMA// */
+ DEBUG("s626_attach: DMA ALLOCATION\n");
- else /* If Counter mode (ClkSrcA<1> == 0): */
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
- |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
- |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
- (MULT_X1 << STDBIT_CLKMULT) :
- ((cra >> (CRABIT_CLKMULT_A -
- STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
+ /* adc buffer allocation */
+ devpriv->allocatedBuf = 0;
- /* Return adjusted counter setup. */
- return setup;
-}
+ devpriv->ANABuf.LogicalBase =
+ pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
-static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
-{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup;
+ if (devpriv->ANABuf.LogicalBase == NULL) {
+ printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
+ return -ENOMEM;
+ }
- /* Fetch CRA and CRB register images. */
- cra = DEBIread(dev, k->MyCRA);
- crb = DEBIread(dev, k->MyCRB);
+ devpriv->ANABuf.PhysicalBase = appdma;
- /* Populate the standardized counter setup bit fields. Note: */
- /* IndexSrc is restricted to ENC_X or IndxPol. */
- setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
- |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
- |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
- |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
- |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
- |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
+ DEBUG
+ ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
+ devpriv->ANABuf.LogicalBase, DMABUF_SIZE,
+ (uint32_t) devpriv->ANABuf.PhysicalBase);
- /* Adjust mode-dependent parameters. */
- if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
- setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
- |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
- |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
+ devpriv->allocatedBuf++;
- else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
- |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
+ devpriv->RPSBuf.LogicalBase =
+ pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
- else /* If Counter mode (ClkSrcB<1> == 0): */
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
- |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
- |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
+ if (devpriv->RPSBuf.LogicalBase == NULL) {
+ printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
+ return -ENOMEM;
+ }
- /* Return adjusted counter setup. */
- return setup;
-}
+ devpriv->RPSBuf.PhysicalBase = appdma;
-/*
- * Set the operating mode for the specified counter. The setup
- * parameter is treated as a COUNTER_SETUP data type. The following
- * parameters are programmable (all other parms are ignored): ClkMult,
- * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
- */
+ DEBUG
+ ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
+ devpriv->RPSBuf.LogicalBase, DMABUF_SIZE,
+ (uint32_t) devpriv->RPSBuf.PhysicalBase);
-static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
- uint16_t Setup, uint16_t DisableIntSrc)
-{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup = Setup; /* Cache the Standard Setup. */
+ devpriv->allocatedBuf++;
- /* Initialize CRA and CRB images. */
- cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
- |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
+ }
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
+ dev->board_ptr = s626_boards;
+ dev->board_name = thisboard->name;
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
- if (!DisableIntSrc)
- cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
- CRABIT_INTSRC_A));
+ ret = comedi_alloc_subdevices(dev, 6);
+ if (ret)
+ return ret;
- /* Populate all mode-dependent attributes of CRA & CRB images. */
- switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
- /* (Extender valid only for B counters). */
+ dev->iobase = (unsigned long)devpriv->base_addr;
+ dev->irq = devpriv->pdev->irq;
- case CLKSRC_TIMER: /* Timer Mode: */
- cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
- |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
- |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
- |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
- break;
+ /* set up interrupt handler */
+ if (dev->irq == 0) {
+ printk(KERN_ERR " unknown irq (bad)\n");
+ } else {
+ ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
+ "s626", dev);
- default: /* Counter Mode: */
- cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
- | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
- |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
- (MULT_X1 << CRABIT_CLKMULT_A) :
- ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
- STDBIT_CLKMULT))));
+ if (ret < 0) {
+ printk(KERN_ERR " irq not available\n");
+ dev->irq = 0;
+ }
}
- /* Force positive index polarity if IndxSrc is software-driven only, */
- /* otherwise pass it through. */
- if (~setup & STDMSK_INDXSRC)
- cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
- STDBIT_INDXPOL));
+ DEBUG("s626_attach: -- it opts %d,%d --\n",
+ it->options[0], it->options[1]);
- /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
- /* enable mask to indicate the counter interrupt is disabled. */
- if (DisableIntSrc)
- devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+ s = dev->subdevices + 0;
+ /* analog input subdevice */
+ dev->read_subdev = s;
+ /* we support single-ended (ground) and differential */
+ s->type = COMEDI_SUBD_AI;
+ s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
+ s->n_chan = thisboard->ai_chans;
+ s->maxdata = (0xffff >> 2);
+ s->range_table = &s626_range_table;
+ s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
+ length that the board can
+ handle */
+ s->insn_config = s626_ai_insn_config;
+ s->insn_read = s626_ai_insn_read;
+ s->do_cmd = s626_ai_cmd;
+ s->do_cmdtest = s626_ai_cmdtest;
+ s->cancel = s626_ai_cancel;
- /* While retaining CounterB and LatchSrc configurations, program the */
- /* new counter operating mode. */
- DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
- DEBIreplace(dev, k->MyCRB,
- (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
-}
+ s = dev->subdevices + 1;
+ /* analog output subdevice */
+ s->type = COMEDI_SUBD_AO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = thisboard->ao_chans;
+ s->maxdata = (0x3fff);
+ s->range_table = &range_bipolar10;
+ s->insn_write = s626_ao_winsn;
+ s->insn_read = s626_ao_rinsn;
-static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
- uint16_t Setup, uint16_t DisableIntSrc)
-{
- register uint16_t cra;
- register uint16_t crb;
- register uint16_t setup = Setup; /* Cache the Standard Setup. */
+ s = dev->subdevices + 2;
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = S626_DIO_CHANNELS;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = &dio_private_A;
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
+
+ s = dev->subdevices + 3;
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = 16;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = &dio_private_B;
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
+
+ s = dev->subdevices + 4;
+ /* digital I/O subdevice */
+ s->type = COMEDI_SUBD_DIO;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+ s->n_chan = 16;
+ s->maxdata = 1;
+ s->io_bits = 0xffff;
+ s->private = &dio_private_C;
+ s->range_table = &range_digital;
+ s->insn_config = s626_dio_insn_config;
+ s->insn_bits = s626_dio_insn_bits;
- /* Initialize CRA and CRB images. */
- cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
+ s = dev->subdevices + 5;
+ /* encoder (counter) subdevice */
+ s->type = COMEDI_SUBD_COUNTER;
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
+ s->n_chan = thisboard->enc_chans;
+ s->private = enc_private_data;
+ s->insn_config = s626_enc_insn_config;
+ s->insn_read = s626_enc_insn_read;
+ s->insn_write = s626_enc_insn_write;
+ s->maxdata = 0xffffff;
+ s->range_table = &range_unknown;
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
- |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
+ /* stop ai_command */
+ devpriv->ai_cmd_running = 0;
- /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
- if (!DisableIntSrc)
- crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
- CRBBIT_INTSRC_B));
+ if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
+ dma_addr_t pPhysBuf;
+ uint16_t chan;
- /* Populate all mode-dependent attributes of CRA & CRB images. */
- switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
- case CLKSRC_TIMER: /* Timer Mode: */
- cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
- |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
- crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
- |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
- break;
+ /* enab DEBI and audio pins, enable I2C interface. */
+ MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
+ /* Configure DEBI operating mode. */
+ WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
+ /* bits wide. */
+ | (DEBI_TOUT << DEBI_CFG_TOUT_BIT)
- case CLKSRC_EXTENDER: /* Extender Mode: */
- cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
- |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
- crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
- |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
- break;
+ /* Declare DEBI */
+ /* transfer timeout */
+ /* interval. */
+ |DEBI_SWAP /* Set up byte lane */
+ /* steering. */
+ | DEBI_CFG_INTEL); /* Intel-compatible */
+ /* local bus (DEBI */
+ /* never times out). */
+ DEBUG("s626_attach: %d debi init -- %d\n",
+ DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
+ DEBI_SWAP | DEBI_CFG_INTEL,
+ DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
+ DEBI_CFG_16Q);
- default: /* Counter Mode: */
- cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
- crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
- |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
- (MULT_X1 << CRBBIT_CLKMULT_B) :
- ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
- STDBIT_CLKMULT))));
- }
+ /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
+ /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
- /* Force positive index polarity if IndxSrc is software-driven only, */
- /* otherwise pass it through. */
- if (~setup & STDMSK_INDXSRC)
- crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
- CRBBIT_INDXPOL_B));
+ /* Paging is disabled. */
+ WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
- /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
- /* enable mask to indicate the counter interrupt is disabled. */
- if (DisableIntSrc)
- devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+ /* Init GPIO so that ADC Start* is negated. */
+ WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
- /* While retaining CounterA and LatchSrc configurations, program the */
- /* new counter operating mode. */
- DEBIreplace(dev, k->MyCRA,
- (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
- DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
-}
+ /* IsBoardRevA is a boolean that indicates whether the board is RevA.
+ *
+ * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
+ * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
+ * is used to access the onboard serial EEPROM. The EEPROM's I2C
+ * DeviceAddress is hardwired to a value that is dependent on the
+ * 626 board revision. On all board revisions, the EEPROM stores
+ * TrimDAC calibration constants for analog I/O. On RevB and
+ * higher boards, the DeviceAddress is hardwired to 0 to enable
+ * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
+ * this is the address at which the SAA7146 expects a
+ * configuration EEPROM to reside. On RevA boards, the EEPROM
+ * device address, which is hardwired to 4, prevents the SAA7146
+ * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
+ * default values, instead.
+ */
-/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
+ /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
+ /* DeviceType (0xA0) */
+ /* and DeviceAddress<<1. */
-static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
- uint16_t enab)
-{
- DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
- DEBIreplace(dev, k->MyCRB,
- (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
- (uint16_t) (enab << CRBBIT_CLKENAB_A));
-}
+ devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
+ /* eeprom(revb) */
-static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
- uint16_t enab)
-{
- DEBIreplace(dev, k->MyCRB,
- (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
- (uint16_t) (enab << CRBBIT_CLKENAB_B));
-}
+ /* Issue an I2C ABORT command to halt any I2C operation in */
+ /* progress and reset BUSY flag. */
+ WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
+ /* Write I2C control: abort any I2C activity. */
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC);
+ /* Invoke command upload */
+ while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
+ ;
+ /* and wait for upload to complete. */
-static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
-}
+ /* Per SAA7146 data sheet, write to STATUS reg twice to
+ * reset all I2C error flags. */
+ for (i = 0; i < 2; i++) {
+ WR7146(P_I2CSTAT, I2C_CLKSEL);
+ /* Write I2C control: reset error flags. */
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
+ while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
+ ;
+ /* and wait for upload to complete. */
+ }
-static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
-}
+ /* Init audio interface functional attributes: set DAC/ADC
+ * serial clock rates, invert DAC serial clock so that
+ * DAC data setup times are satisfied, enable DAC serial
+ * clock out.
+ */
-/* Return/set a counter pair's latch trigger source. 0: On read
- * access, 1: A index latches A, 2: B index latches B, 3: A overflow
- * latches B.
- */
+ WR7146(P_ACON2, ACON2_INIT);
-static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
- uint16_t value)
-{
- DEBUG("SetLatchSource: SetLatchSource enter 3550\n");
- DEBIreplace(dev, k->MyCRB,
- (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
- (uint16_t) (value << CRBBIT_LATCHSRC));
+ /* Set up TSL1 slot list, which is used to control the
+ * accumulation of ADC data: RSD1 = shift data in on SD1.
+ * SIB_A1 = store data uint8_t at next available location in
+ * FB BUFFER1 register. */
+ WR7146(P_TSL1, RSD1 | SIB_A1);
+ /* Fetch ADC high data uint8_t. */
+ WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
+ /* Fetch ADC low data uint8_t; end of TSL1. */
- DEBUG("SetLatchSource: SetLatchSource exit\n");
-}
+ /* enab TSL1 slot list so that it executes all the time. */
+ WR7146(P_ACON1, ACON1_ADCSTART);
-/*
- * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
- * {
- * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
- * }
- */
+ /* Initialize RPS registers used for ADC. */
-/*
- * Return/set the event that will trigger transfer of the preload
- * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
- * 2=OverflowA (B counters only), 3=disabled.
- */
+ /* Physical start of RPS program. */
+ WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
-static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
- uint16_t Trig)
-{
- DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
- (uint16_t) (Trig << CRABIT_LOADSRC_A));
-}
+ WR7146(P_RPSPAGE1, 0);
+ /* RPS program performs no explicit mem writes. */
+ WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
-static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
- uint16_t Trig)
-{
- DEBIreplace(dev, k->MyCRB,
- (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
- (uint16_t) (Trig << CRBBIT_LOADSRC_B));
-}
+ /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
+ * to a known state by invoking ADCs until FB BUFFER 1
+ * register shows that it is correctly receiving ADC data.
+ * This is necessary because the SAA7146 ADC interface does
+ * not start up in a defined state after a PCI reset.
+ */
-static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
-}
+/* PollList = EOPL; // Create a simple polling */
+/* // list for analog input */
+/* // channel 0. */
+/* ResetADC( dev, &PollList ); */
-static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
-}
+/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
+/* //Get initial ADC */
+/* //value. */
-/* Return/set counter interrupt source and clear any captured
- * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
- * 2=IndexOnly, 3=IndexAndOverflow.
- */
+/* StartVal = data[0]; */
-static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
- uint16_t IntSource)
-{
- /* Reset any pending counter overflow or index captures. */
- DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
- CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
+/* // Invoke ADCs until the new ADC value differs from the initial */
+/* // value or a timeout occurs. The timeout protects against the */
+/* // possibility that the driver is restarting and the ADC data is a */
+/* // fixed value resulting from the applied ADC analog input being */
+/* // unusually quiet or at the rail. */
- /* Program counter interrupt source. */
- DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
- (uint16_t) (IntSource << CRABIT_INTSRC_A));
+/* for ( index = 0; index < 500; index++ ) */
+/* { */
+/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
+/* AdcData = data[0]; //ReadADC( &AdcData ); */
+/* if ( AdcData != StartVal ) */
+/* break; */
+/* } */
- /* Update MISC2 interrupt enable mask. */
- devpriv->CounterIntEnabs =
- (devpriv->CounterIntEnabs & ~k->
- MyEventBits[3]) | k->MyEventBits[IntSource];
-}
+ /* end initADC */
-static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
- uint16_t IntSource)
-{
- uint16_t crb;
+ /* init the DAC interface */
- /* Cache writeable CRB register image. */
- crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
+ /* Init Audio2's output DMAC attributes: burst length = 1
+ * DWORD, threshold = 1 DWORD.
+ */
+ WR7146(P_PCI_BT_A, 0);
- /* Reset any pending counter overflow or index captures. */
- DEBIwrite(dev, k->MyCRB,
- (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
+ /* Init Audio2's output DMA physical addresses. The protection
+ * address is set to 1 DWORD past the base address so that a
+ * single DWORD will be transferred each time a DMA transfer is
+ * enabled. */
- /* Program counter interrupt source. */
- DEBIwrite(dev, k->MyCRB,
- (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
- CRBBIT_INTSRC_B)));
+ pPhysBuf =
+ devpriv->ANABuf.PhysicalBase +
+ (DAC_WDMABUF_OS * sizeof(uint32_t));
- /* Update MISC2 interrupt enable mask. */
- devpriv->CounterIntEnabs =
- (devpriv->CounterIntEnabs & ~k->
- MyEventBits[3]) | k->MyEventBits[IntSource];
-}
+ WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
+ WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
-static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
-}
+ /* Cache Audio2's output DMA buffer logical address. This is
+ * where DAC data is buffered for A2 output DMA transfers. */
+ devpriv->pDacWBuf =
+ (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS;
-static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
-{
- return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
-}
+ /* Audio2's output channels does not use paging. The protection
+ * violation handling bit is set so that the DMAC will
+ * automatically halt and its PCI address pointer will be reset
+ * when the protection address is reached. */
-/* Return/set the clock multiplier. */
+ WR7146(P_PAGEA2_OUT, 8);
-/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
-/* } */
+ /* Initialize time slot list 2 (TSL2), which is used to control
+ * the clock generation for and serialization of data to be sent
+ * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
+ * execution; this permits other slots to be safely modified
+ * without first turning off the TSL sequencer (which is
+ * apparently impossible to do). Also, SD3 (which is driven by a
+ * pull-up resistor) is shifted in and stored to the MSB of
+ * FB_BUFFER2 to be used as evidence that the slot sequence has
+ * not yet finished executing.
+ */
-/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
-/* } */
+ SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
+ /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
-/* Return/set the clock polarity. */
+ /* Initialize slot 1, which is constant. Slot 1 causes a
+ * DWORD to be transferred from audio channel 2's output FIFO
+ * to the FIFO's output buffer so that it can be serialized
+ * and sent to the DAC during subsequent slots. All remaining
+ * slots are dynamically populated as required by the target
+ * DAC device.
+ */
+ SETVECT(1, LF_A2);
+ /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
-/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
-/* } */
+ /* Start DAC's audio interface (TSL2) running. */
+ WR7146(P_ACON1, ACON1_DACSTART);
-/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
-/* } */
+ /* end init DAC interface */
-/* Return/set the clock source. */
+ /* Init Trim DACs to calibrated values. Do it twice because the
+ * SAA7146 audio channel does not always reset properly and
+ * sometimes causes the first few TrimDAC writes to malfunction.
+ */
-/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
-/* } */
+ LoadTrimDACs(dev);
+ LoadTrimDACs(dev); /* Insurance. */
-/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
-/* } */
+ /* Manually init all gate array hardware in case this is a soft
+ * reset (we have no way of determining whether this is a warm
+ * or cold start). This is necessary because the gate array will
+ * reset only in response to a PCI hard reset; there is no soft
+ * reset function. */
-/* Return/set the index polarity. */
+ /* Init all DAC outputs to 0V and init all DAC setpoint and
+ * polarity images.
+ */
+ for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
+ SetDAC(dev, chan, 0);
-/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
-/* } */
+ /* Init image of WRMISC2 Battery Charger Enabled control bit.
+ * This image is used when the state of the charger control bit,
+ * which has no direct hardware readback mechanism, is queried.
+ */
+ devpriv->ChargeEnabled = 0;
-/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
-/* } */
+ /* Init image of watchdog timer interval in WRMISC2. This image
+ * maintains the value of the control bits of MISC2 are
+ * continuously reset to zero as long as the WD timer is disabled.
+ */
+ devpriv->WDInterval = 0;
-/* Return/set the index source. */
+ /* Init Counter Interrupt enab mask for RDMISC2. This mask is
+ * applied against MISC2 when testing to determine which timer
+ * events are requesting interrupt service.
+ */
+ devpriv->CounterIntEnabs = 0;
-/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
-/* { */
-/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
-/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
-/* } */
+ /* Init counters. */
+ CountersInit(dev);
-/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
-/* { */
-/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
-/* } */
+ /* Without modifying the state of the Battery Backup enab, disable
+ * the watchdog timer, set DIO channels 0-5 to operate in the
+ * standard DIO (vs. counter overflow) mode, disable the battery
+ * charger, and reset the watchdog interval selector to zero.
+ */
+ WriteMISC2(dev, (uint16_t) (DEBIread(dev,
+ LP_RDMISC2) &
+ MISC2_BATT_ENABLE));
-/* Generate an index pulse. */
+ /* Initialize the digital I/O subsystem. */
+ s626_dio_init(dev);
-static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
-{
- register uint16_t cra;
+ /* enable interrupt test */
+ /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
+ }
- DEBUG("PulseIndex_A: pulse index enter\n");
+ DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
+ (uint32_t) devpriv->base_addr);
- cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
- DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
- DEBUG("PulseIndex_A: pulse index step1\n");
- DEBIwrite(dev, k->MyCRA, cra);
+ return 1;
}
-static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
+static void s626_detach(struct comedi_device *dev)
{
- register uint16_t crb;
+ if (devpriv) {
+ /* stop ai_command */
+ devpriv->ai_cmd_running = 0;
- crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
- DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
- DEBIwrite(dev, k->MyCRB, crb);
-}
+ if (devpriv->base_addr) {
+ /* interrupt mask */
+ WR7146(P_IER, 0); /* Disable master interrupt. */
+ WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
-/* Write value into counter preload register. */
+ /* Disable the watchdog timer and battery charger. */
+ WriteMISC2(dev, 0);
-static void Preload(struct comedi_device *dev, struct enc_private *k,
- uint32_t value)
-{
- DEBUG("Preload: preload enter\n");
- DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
- DEBUG("Preload: preload step 1\n");
- DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
- (uint16_t) (value >> 16));
-}
+ /* Close all interfaces on 7146 device. */
+ WR7146(P_MC1, MC1_SHUTDOWN);
+ WR7146(P_ACON1, ACON1_BASE);
-static void CountersInit(struct comedi_device *dev)
-{
- int chan;
- struct enc_private *k;
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
- /* index. */
- (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
- (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
- (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
- (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
- (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
- (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
+ CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
+ CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
+ }
- /* Disable all counter interrupts and clear any captured counter events. */
- for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
- k = &encpriv[chan];
- k->SetMode(dev, k, Setup, TRUE);
- k->SetIntSrc(dev, k, 0);
- k->ResetCapFlags(dev, k);
- k->SetEnable(dev, k, CLKENAB_ALWAYS);
+ if (dev->irq)
+ free_irq(dev->irq, dev);
+ if (devpriv->base_addr)
+ iounmap(devpriv->base_addr);
+ if (devpriv->pdev) {
+ if (devpriv->got_regions)
+ comedi_pci_disable(devpriv->pdev);
+ pci_dev_put(devpriv->pdev);
+ }
}
- DEBUG("CountersInit: counters initialized\n");
-
}
static struct comedi_driver s626_driver = {