/* Decimal conversion is by far the most typical, and is used
* for /proc and /sys data. This directly impacts e.g. top performance
* with many processes running. We optimize it for speed
- * using code from
- * http://www.cs.uiowa.edu/~jones/bcd/decimal.html
- * (with permission from the author, Douglas W. Jones). */
+ * using ideas described at <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
+ * (with permission from the author, Douglas W. Jones).
+ */
-/* Formats correctly any integer in [0,99999].
- * Outputs from one to five digits depending on input.
- * On i386 gcc 4.1.2 -O2: ~250 bytes of code. */
+#if BITS_PER_LONG != 32 || (~(0ULL)>>1) != ((1ULL<<63)-1)
+/* Formats correctly any integer in [0, 999999999] */
static noinline_for_stack
-char *put_dec_trunc(char *buf, unsigned q)
+char *put_dec_full9(char *buf, unsigned q)
{
- unsigned d3, d2, d1, d0;
- d1 = (q>>4) & 0xf;
- d2 = (q>>8) & 0xf;
- d3 = (q>>12);
-
- d0 = 6*(d3 + d2 + d1) + (q & 0xf);
- q = (d0 * 0xcd) >> 11;
- d0 = d0 - 10*q;
- *buf++ = d0 + '0'; /* least significant digit */
- d1 = q + 9*d3 + 5*d2 + d1;
- if (d1 != 0) {
- q = (d1 * 0xcd) >> 11;
- d1 = d1 - 10*q;
- *buf++ = d1 + '0'; /* next digit */
-
- d2 = q + 2*d2;
- if ((d2 != 0) || (d3 != 0)) {
- q = (d2 * 0xd) >> 7;
- d2 = d2 - 10*q;
- *buf++ = d2 + '0'; /* next digit */
-
- d3 = q + 4*d3;
- if (d3 != 0) {
- q = (d3 * 0xcd) >> 11;
- d3 = d3 - 10*q;
- *buf++ = d3 + '0'; /* next digit */
- if (q != 0)
- *buf++ = q + '0'; /* most sign. digit */
- }
- }
- }
-
+ unsigned r;
+
+ /* Possible ways to approx. divide by 10
+ * (x * 0x1999999a) >> 32 x < 1073741829 (multiply must be 64-bit)
+ * (x * 0xcccd) >> 19 x < 81920 (x < 262149 when 64-bit mul)
+ * (x * 0x6667) >> 18 x < 43699
+ * (x * 0x3334) >> 17 x < 16389
+ * (x * 0x199a) >> 16 x < 16389
+ * (x * 0x0ccd) >> 15 x < 16389
+ * (x * 0x0667) >> 14 x < 2739
+ * (x * 0x0334) >> 13 x < 1029
+ * (x * 0x019a) >> 12 x < 1029
+ * (x * 0x00cd) >> 11 x < 1029 shorter code than * 0x67 (on i386)
+ * (x * 0x0067) >> 10 x < 179
+ * (x * 0x0034) >> 9 x < 69 same
+ * (x * 0x001a) >> 8 x < 69 same
+ * (x * 0x000d) >> 7 x < 69 same, shortest code (on i386)
+ * (x * 0x0007) >> 6 x < 19
+ * See <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
+ */
+ r = (q * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (q - 10 * r) + '0'; /* 1 */
+ q = (r * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (r - 10 * q) + '0'; /* 2 */
+ r = (q * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (q - 10 * r) + '0'; /* 3 */
+ q = (r * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (r - 10 * q) + '0'; /* 4 */
+ r = (q * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (q - 10 * r) + '0'; /* 5 */
+ /* Now value is under 10000, can avoid 64-bit multiply */
+ q = (r * 0x199a) >> 16;
+ *buf++ = (r - 10 * q) + '0'; /* 6 */
+ r = (q * 0xcd) >> 11;
+ *buf++ = (q - 10 * r) + '0'; /* 7 */
+ q = (r * 0xcd) >> 11;
+ *buf++ = (r - 10 * q) + '0'; /* 8 */
+ *buf++ = q + '0'; /* 9 */
return buf;
}
-/* Same with if's removed. Always emits five digits */
+#endif
+
+/* Similar to above but do not pad with zeros.
+ * Code can be easily arranged to print 9 digits too, but our callers
+ * always call put_dec_full9() instead when the number has 9 decimal digits.
+ */
static noinline_for_stack
-char *put_dec_full(char *buf, unsigned q)
+char *put_dec_trunc8(char *buf, unsigned r)
{
- /* BTW, if q is in [0,9999], 8-bit ints will be enough, */
- /* but anyway, gcc produces better code with full-sized ints */
- unsigned d3, d2, d1, d0;
- d1 = (q>>4) & 0xf;
- d2 = (q>>8) & 0xf;
- d3 = (q>>12);
+ unsigned q;
+
+ /* Copy of previous function's body with added early returns */
+ q = (r * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (r - 10 * q) + '0'; /* 2 */
+ if (q == 0) return buf;
+ r = (q * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (q - 10 * r) + '0'; /* 3 */
+ if (r == 0) return buf;
+ q = (r * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (r - 10 * q) + '0'; /* 4 */
+ if (q == 0) return buf;
+ r = (q * (uint64_t)0x1999999a) >> 32;
+ *buf++ = (q - 10 * r) + '0'; /* 5 */
+ if (r == 0) return buf;
+ q = (r * 0x199a) >> 16;
+ *buf++ = (r - 10 * q) + '0'; /* 6 */
+ if (q == 0) return buf;
+ r = (q * 0xcd) >> 11;
+ *buf++ = (q - 10 * r) + '0'; /* 7 */
+ if (r == 0) return buf;
+ q = (r * 0xcd) >> 11;
+ *buf++ = (r - 10 * q) + '0'; /* 8 */
+ if (q == 0) return buf;
+ *buf++ = q + '0'; /* 9 */
+ return buf;
+}
- /*
- * Possible ways to approx. divide by 10
- * gcc -O2 replaces multiply with shifts and adds
- * (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386)
- * (x * 0x67) >> 10: 1100111
- * (x * 0x34) >> 9: 110100 - same
- * (x * 0x1a) >> 8: 11010 - same
- * (x * 0x0d) >> 7: 1101 - same, shortest code (on i386)
- */
- d0 = 6*(d3 + d2 + d1) + (q & 0xf);
- q = (d0 * 0xcd) >> 11;
- d0 = d0 - 10*q;
- *buf++ = d0 + '0';
- d1 = q + 9*d3 + 5*d2 + d1;
- q = (d1 * 0xcd) >> 11;
- d1 = d1 - 10*q;
- *buf++ = d1 + '0';
-
- d2 = q + 2*d2;
- q = (d2 * 0xd) >> 7;
- d2 = d2 - 10*q;
- *buf++ = d2 + '0';
-
- d3 = q + 4*d3;
- q = (d3 * 0xcd) >> 11; /* - shorter code */
- /* q = (d3 * 0x67) >> 10; - would also work */
- d3 = d3 - 10*q;
- *buf++ = d3 + '0';
- *buf++ = q + '0';
+/* There are two algorithms to print larger numbers.
+ * One is generic: divide by 1000000000 and repeatedly print
+ * groups of (up to) 9 digits. It's conceptually simple,
+ * but requires a (unsigned long long) / 1000000000 division.
+ *
+ * Second algorithm splits 64-bit unsigned long long into 16-bit chunks,
+ * manipulates them cleverly and generates groups of 4 decimal digits.
+ * It so happens that it does NOT require long long division.
+ *
+ * If long is > 32 bits, division of 64-bit values is relatively easy,
+ * and we will use the first algorithm.
+ * If long long is > 64 bits (strange architecture with VERY large long long),
+ * second algorithm can't be used, and we again use the first one.
+ *
+ * Else (if long is 32 bits and long long is 64 bits) we use second one.
+ */
- return buf;
+#if BITS_PER_LONG != 32 || ((~0ULL)>>1) != ((1ULL<<63)-1)
+
+/* First algorithm: generic */
+
+static
+char *put_dec(char *buf, unsigned long long n)
+{
+ if (n >= 100*1000*1000) {
+ while (n >= 1000*1000*1000)
+ buf = put_dec_full9(buf, do_div(n, 1000*1000*1000));
+ if (n >= 100*1000*1000)
+ return put_dec_full9(buf, n);
+ }
+ return put_dec_trunc8(buf, n);
}
-/* No inlining helps gcc to use registers better */
+
+#else
+
+/* Second algorithm: valid only for 32-bit longs, 64-bit long longs */
+
static noinline_for_stack
-char *put_dec(char *buf, unsigned long long num)
+char *put_dec_full4(char *buf, unsigned q)
{
- while (1) {
- unsigned rem;
- if (num < 100000)
- return put_dec_trunc(buf, num);
- rem = do_div(num, 100000);
- buf = put_dec_full(buf, rem);
- }
+ unsigned r;
+ r = (q * 0xcccd) >> 19;
+ *buf++ = (q - 10 * r) + '0';
+ q = (r * 0x199a) >> 16;
+ *buf++ = (r - 10 * q) + '0';
+ r = (q * 0xcd) >> 11;
+ *buf++ = (q - 10 * r) + '0';
+ *buf++ = r + '0';
+ return buf;
+}
+
+/* Based on code by Douglas W. Jones found at
+ * <http://www.cs.uiowa.edu/~jones/bcd/decimal.html#sixtyfour>
+ * (with permission from the author).
+ * Performs no 64-bit division and hence should be fast on 32-bit machines.
+ */
+static
+char *put_dec(char *buf, unsigned long long n)
+{
+ uint32_t d3, d2, d1, q, h;
+
+ if (n < 100*1000*1000)
+ return put_dec_trunc8(buf, n);
+
+ d1 = ((uint32_t)n >> 16); /* implicit "& 0xffff" */
+ h = (n >> 32);
+ d2 = (h ) & 0xffff;
+ d3 = (h >> 16); /* implicit "& 0xffff" */
+
+ q = 656 * d3 + 7296 * d2 + 5536 * d1 + ((uint32_t)n & 0xffff);
+
+ buf = put_dec_full4(buf, q % 10000);
+ q = q / 10000;
+
+ d1 = q + 7671 * d3 + 9496 * d2 + 6 * d1;
+ buf = put_dec_full4(buf, d1 % 10000);
+ q = d1 / 10000;
+
+ d2 = q + 4749 * d3 + 42 * d2;
+ buf = put_dec_full4(buf, d2 % 10000);
+ q = d2 / 10000;
+
+ d3 = q + 281 * d3;
+ if (!d3)
+ goto done;
+ buf = put_dec_full4(buf, d3 % 10000);
+ q = d3 / 10000;
+ if (!q)
+ goto done;
+ buf = put_dec_full4(buf, q);
+ done:
+ while (buf[-1] == '0')
+ --buf;
+
+ return buf;
}
+#endif
/*
* Convert passed number to decimal string.
* Returns the length of string. On buffer overflow, returns 0.
*/
int num_to_str(char *buf, int size, unsigned long long num)
{
- char tmp[21]; /* Enough for 2^64 in decimal */
+ char tmp[sizeof(num) * 3];
int idx, len;
len = put_dec(tmp, num) - tmp;
return 0;
for (idx = 0; idx < len; ++idx)
buf[idx] = tmp[len - idx - 1];
- return len;
+ return len;
}
#define ZEROPAD 1 /* pad with zero */
/* generate full string in tmp[], in reverse order */
i = 0;
- if (num == 0)
- tmp[i++] = '0';
+ if (num < spec.base)
+ tmp[i++] = digits[num] | locase;
/* Generic code, for any base:
else do {
tmp[i++] = (digits[do_div(num,base)] | locase);
}
for (i = 0; i < 4; i++) {
char temp[3]; /* hold each IP quad in reverse order */
- int digits = put_dec_trunc(temp, addr[index]) - temp;
+ int digits = put_dec_trunc8(temp, addr[index]) - temp;
if (leading_zeros) {
if (digits < 3)
*p++ = '0';