outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
returns immediately with an &EAGAIN; when no buffer is available. The
-&func-select; or &func-poll; function are always available.</para>
+&func-select; or &func-poll; functions are always available.</para>
<para>To start and stop capturing or output applications call the
&VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctl. Note
</footnote></para>
</section>
+ <section id="dmabuf">
+ <title>Streaming I/O (DMA buffer importing)</title>
+
+ <note>
+ <title>Experimental</title>
+ <para>This is an <link linkend="experimental"> experimental </link>
+ interface and may change in the future.</para>
+ </note>
+
+<para>The DMABUF framework provides a generic method for sharing buffers
+between multiple devices. Device drivers that support DMABUF can export a DMA
+buffer to userspace as a file descriptor (known as the exporter role), import a
+DMA buffer from userspace using a file descriptor previously exported for a
+different or the same device (known as the importer role), or both. This
+section describes the DMABUF importer role API in V4L2.</para>
+
+<para>Input and output devices support the streaming I/O method when the
+<constant>V4L2_CAP_STREAMING</constant> flag in the
+<structfield>capabilities</structfield> field of &v4l2-capability; returned by
+the &VIDIOC-QUERYCAP; ioctl is set. Whether importing DMA buffers through
+DMABUF file descriptors is supported is determined by calling the
+&VIDIOC-REQBUFS; ioctl with the memory type set to
+<constant>V4L2_MEMORY_DMABUF</constant>.</para>
+
+ <para>This I/O method is dedicated to sharing DMA buffers between different
+devices, which may be V4L devices or other video-related devices (e.g. DRM).
+Buffers (planes) are allocated by a driver on behalf of an application. Next,
+these buffers are exported to the application as file descriptors using an API
+which is specific for an allocator driver. Only such file descriptor are
+exchanged. The descriptors and meta-information are passed in &v4l2-buffer; (or
+in &v4l2-plane; in the multi-planar API case). The driver must be switched
+into DMABUF I/O mode by calling the &VIDIOC-REQBUFS; with the desired buffer
+type.</para>
+
+ <example>
+ <title>Initiating streaming I/O with DMABUF file descriptors</title>
+
+ <programlisting>
+&v4l2-requestbuffers; reqbuf;
+
+memset(&reqbuf, 0, sizeof (reqbuf));
+reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
+reqbuf.memory = V4L2_MEMORY_DMABUF;
+reqbuf.count = 1;
+
+if (ioctl(fd, &VIDIOC-REQBUFS;, &reqbuf) == -1) {
+ if (errno == EINVAL)
+ printf("Video capturing or DMABUF streaming is not supported\n");
+ else
+ perror("VIDIOC_REQBUFS");
+
+ exit(EXIT_FAILURE);
+}
+ </programlisting>
+ </example>
+
+ <para>The buffer (plane) file descriptor is passed on the fly with the
+&VIDIOC-QBUF; ioctl. In case of multiplanar buffers, every plane can be
+associated with a different DMABUF descriptor. Although buffers are commonly
+cycled, applications can pass a different DMABUF descriptor at each
+<constant>VIDIOC_QBUF</constant> call.</para>
+
+ <example>
+ <title>Queueing DMABUF using single plane API</title>
+
+ <programlisting>
+int buffer_queue(int v4lfd, int index, int dmafd)
+{
+ &v4l2-buffer; buf;
+
+ memset(&buf, 0, sizeof buf);
+ buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
+ buf.memory = V4L2_MEMORY_DMABUF;
+ buf.index = index;
+ buf.m.fd = dmafd;
+
+ if (ioctl(v4lfd, &VIDIOC-QBUF;, &buf) == -1) {
+ perror("VIDIOC_QBUF");
+ return -1;
+ }
+
+ return 0;
+}
+ </programlisting>
+ </example>
+
+ <example>
+ <title>Queueing DMABUF using multi plane API</title>
+
+ <programlisting>
+int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
+{
+ &v4l2-buffer; buf;
+ &v4l2-plane; planes[VIDEO_MAX_PLANES];
+ int i;
+
+ memset(&buf, 0, sizeof buf);
+ buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
+ buf.memory = V4L2_MEMORY_DMABUF;
+ buf.index = index;
+ buf.m.planes = planes;
+ buf.length = n_planes;
+
+ memset(&planes, 0, sizeof planes);
+
+ for (i = 0; i < n_planes; ++i)
+ buf.m.planes[i].m.fd = dmafd[i];
+
+ if (ioctl(v4lfd, &VIDIOC-QBUF;, &buf) == -1) {
+ perror("VIDIOC_QBUF");
+ return -1;
+ }
+
+ return 0;
+}
+ </programlisting>
+ </example>
+
+ <para>Captured or displayed buffers are dequeued with the
+&VIDIOC-DQBUF; ioctl. The driver can unlock the buffer at any
+time between the completion of the DMA and this ioctl. The memory is
+also unlocked when &VIDIOC-STREAMOFF; is called, &VIDIOC-REQBUFS;, or
+when the device is closed.</para>
+
+ <para>For capturing applications it is customary to enqueue a
+number of empty buffers, to start capturing and enter the read loop.
+Here the application waits until a filled buffer can be dequeued, and
+re-enqueues the buffer when the data is no longer needed. Output
+applications fill and enqueue buffers, when enough buffers are stacked
+up output is started. In the write loop, when the application
+runs out of free buffers it must wait until an empty buffer can be
+dequeued and reused. Two methods exist to suspend execution of the
+application until one or more buffers can be dequeued. By default
+<constant>VIDIOC_DQBUF</constant> blocks when no buffer is in the
+outgoing queue. When the <constant>O_NONBLOCK</constant> flag was
+given to the &func-open; function, <constant>VIDIOC_DQBUF</constant>
+returns immediately with an &EAGAIN; when no buffer is available. The
+&func-select; and &func-poll; functions are always available.</para>
+
+ <para>To start and stop capturing or displaying applications call the
+&VIDIOC-STREAMON; and &VIDIOC-STREAMOFF; ioctls. Note that
+<constant>VIDIOC_STREAMOFF</constant> removes all buffers from both queues and
+unlocks all buffers as a side effect. Since there is no notion of doing
+anything "now" on a multitasking system, if an application needs to synchronize
+with another event it should examine the &v4l2-buffer;
+<structfield>timestamp</structfield> of captured buffers, or set the field
+before enqueuing buffers for output.</para>
+
+ <para>Drivers implementing DMABUF importing I/O must support the
+<constant>VIDIOC_REQBUFS</constant>, <constant>VIDIOC_QBUF</constant>,
+<constant>VIDIOC_DQBUF</constant>, <constant>VIDIOC_STREAMON</constant> and
+<constant>VIDIOC_STREAMOFF</constant> ioctls, and the
+<function>select()</function> and <function>poll()</function> functions.</para>
+
+ </section>
+
<section id="async">
<title>Asynchronous I/O</title>
in the <structfield>length</structfield> field of this
<structname>v4l2_buffer</structname> structure.</entry>
</row>
+ <row>
+ <entry></entry>
+ <entry>int</entry>
+ <entry><structfield>fd</structfield></entry>
+ <entry>For the single-plane API and when
+<structfield>memory</structfield> is <constant>V4L2_MEMORY_DMABUF</constant> this
+is the file descriptor associated with a DMABUF buffer.</entry>
+ </row>
<row>
<entry>__u32</entry>
<entry><structfield>length</structfield></entry>
pointer to the memory allocated for this plane by an application.
</entry>
</row>
+ <row>
+ <entry></entry>
+ <entry>int</entry>
+ <entry><structfield>fd</structfield></entry>
+ <entry>When the memory type in the containing &v4l2-buffer; is
+ <constant>V4L2_MEMORY_DMABUF</constant>, this is a file
+ descriptor associated with a DMABUF buffer, similar to the
+ <structfield>fd</structfield> field in &v4l2-buffer;.</entry>
+ </row>
<row>
<entry>__u32</entry>
<entry><structfield>data_offset</structfield></entry>
<entry>3</entry>
<entry>[to do]</entry>
</row>
+ <row>
+ <entry><constant>V4L2_MEMORY_DMABUF</constant></entry>
+ <entry>4</entry>
+ <entry>The buffer is used for <link linkend="dmabuf">DMA shared
+buffer</link> I/O.</entry>
+ </row>
</tbody>
</tgroup>
</table>
<refsect1>
<title>Description</title>
- <para>This ioctl is used to initiate <link linkend="mmap">memory
-mapped</link> or <link linkend="userp">user pointer</link>
-I/O. Memory mapped buffers are located in device memory and must be
-allocated with this ioctl before they can be mapped into the
-application's address space. User buffers are allocated by
-applications themselves, and this ioctl is merely used to switch the
-driver into user pointer I/O mode and to setup some internal structures.</para>
+<para>This ioctl is used to initiate <link linkend="mmap">memory mapped</link>,
+<link linkend="userp">user pointer</link> or <link
+linkend="dmabuf">DMABUF</link> based I/O. Memory mapped buffers are located in
+device memory and must be allocated with this ioctl before they can be mapped
+into the application's address space. User buffers are allocated by
+applications themselves, and this ioctl is merely used to switch the driver
+into user pointer I/O mode and to setup some internal structures.
+Similarly, DMABUF buffers are allocated by applications through a device
+driver, and this ioctl only configures the driver into DMABUF I/O mode without
+performing any direct allocation.</para>
- <para>To allocate device buffers applications initialize all
-fields of the <structname>v4l2_requestbuffers</structname> structure.
-They set the <structfield>type</structfield> field to the respective
-stream or buffer type, the <structfield>count</structfield> field to
-the desired number of buffers, <structfield>memory</structfield>
-must be set to the requested I/O method and the <structfield>reserved</structfield> array
-must be zeroed. When the ioctl
-is called with a pointer to this structure the driver will attempt to allocate
-the requested number of buffers and it stores the actual number
-allocated in the <structfield>count</structfield> field. It can be
-smaller than the number requested, even zero, when the driver runs out
-of free memory. A larger number is also possible when the driver requires
-more buffers to function correctly. For example video output requires at least two buffers,
-one displayed and one filled by the application.</para>
+ <para>To allocate device buffers applications initialize all fields of the
+<structname>v4l2_requestbuffers</structname> structure. They set the
+<structfield>type</structfield> field to the respective stream or buffer type,
+the <structfield>count</structfield> field to the desired number of buffers,
+<structfield>memory</structfield> must be set to the requested I/O method and
+the <structfield>reserved</structfield> array must be zeroed. When the ioctl is
+called with a pointer to this structure the driver will attempt to allocate the
+requested number of buffers and it stores the actual number allocated in the
+<structfield>count</structfield> field. It can be smaller than the number
+requested, even zero, when the driver runs out of free memory. A larger number
+is also possible when the driver requires more buffers to function correctly.
+For example video output requires at least two buffers, one displayed and one
+filled by the application.</para>
<para>When the I/O method is not supported the ioctl
returns an &EINVAL;.</para>
<entry>__u32</entry>
<entry><structfield>memory</structfield></entry>
<entry>Applications set this field to
-<constant>V4L2_MEMORY_MMAP</constant> or
+<constant>V4L2_MEMORY_MMAP</constant>,
+<constant>V4L2_MEMORY_DMABUF</constant> or
<constant>V4L2_MEMORY_USERPTR</constant>. See <xref linkend="v4l2-memory"
/>.</entry>
</row>