#define SYNC_IOWAIT 0x0100 /* wait for all I/O to complete */
#define SYNC_SUPER 0x0200 /* flush superblock to disk */
+/*
+ * When remounting a filesystem read-only or freezing the filesystem,
+ * we have two phases to execute. This first phase is syncing the data
+ * before we quiesce the fielsystem, and the second is flushing all the
+ * inodes out after we've waited for all the transactions created by
+ * the first phase to complete. The second phase uses SYNC_INODE_QUIESCE
+ * to ensure that the inodes are written to their location on disk
+ * rather than just existing in transactions in the log. This means
+ * after a quiesce there is no log replay required to write the inodes
+ * to disk (this is the main difference between a sync and a quiesce).
+ */
+#define SYNC_DATA_QUIESCE (SYNC_DELWRI|SYNC_FSDATA|SYNC_WAIT|SYNC_IOWAIT)
+#define SYNC_INODE_QUIESCE (SYNC_REMOUNT|SYNC_ATTR|SYNC_WAIT)
+
#define SHUTDOWN_META_IO_ERROR 0x0001 /* write attempt to metadata failed */
#define SHUTDOWN_LOG_IO_ERROR 0x0002 /* write attempt to the log failed */
#define SHUTDOWN_FORCE_UMOUNT 0x0004 /* shutdown from a forced unmount */
* we can write the unmount record.
*/
do {
- xfs_syncsub(mp, SYNC_REMOUNT|SYNC_ATTR|SYNC_WAIT, NULL);
+ xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
if (!pincount) {
delay(50);
return 0;
}
+/*
+ * Second stage of a quiesce. The data is already synced, now we have to take
+ * care of the metadata. New transactions are already blocked, so we need to
+ * wait for any remaining transactions to drain out before proceding.
+ */
+STATIC void
+xfs_attr_quiesce(
+ xfs_mount_t *mp)
+{
+ /* wait for all modifications to complete */
+ while (atomic_read(&mp->m_active_trans) > 0)
+ delay(100);
+
+ /* flush inodes and push all remaining buffers out to disk */
+ xfs_quiesce_fs(mp);
+
+ ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
+
+ /* Push the superblock and write an unmount record */
+ xfs_log_sbcount(mp, 1);
+ xfs_log_unmount_write(mp);
+ xfs_unmountfs_writesb(mp);
+}
+
STATIC int
xfs_mntupdate(
bhv_desc_t *bdp,
mp->m_flags &= ~XFS_MOUNT_BARRIER;
}
} else if (!(vfsp->vfs_flag & VFS_RDONLY)) { /* rw -> ro */
- bhv_vfs_sync(vfsp, SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR, NULL);
- xfs_quiesce_fs(mp);
- xfs_log_sbcount(mp, 1);
- xfs_log_unmount_write(mp);
- xfs_unmountfs_writesb(mp);
+ bhv_vfs_sync(vfsp, SYNC_DATA_QUIESCE, NULL);
+ xfs_attr_quiesce(mp);
vfsp->vfs_flag |= VFS_RDONLY;
}
return 0;
}
/*
- * Second stage of a freeze. The data is already frozen, now we have to take
- * care of the metadata. New transactions are already blocked, so we need to
- * wait for any remaining transactions to drain out before proceding.
+ * Second stage of a freeze. The data is already frozen so we only
+ * need to take care of themetadata. Once that's done write a dummy
+ * record to dirty the log in case of a crash while frozen.
*/
STATIC void
xfs_freeze(
{
xfs_mount_t *mp = XFS_BHVTOM(bdp);
- /* wait for all modifications to complete */
- while (atomic_read(&mp->m_active_trans) > 0)
- delay(100);
-
- /* flush inodes and push all remaining buffers out to disk */
- xfs_quiesce_fs(mp);
-
- ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
-
- /* Push the superblock and write an unmount record */
- xfs_log_sbcount(mp, 1);
- xfs_log_unmount_write(mp);
- xfs_unmountfs_writesb(mp);
+ xfs_attr_quiesce(mp);
xfs_fs_log_dummy(mp);
}