int
nvkm_fb_bios_memtype(struct nvkm_bios *bios)
{
- const u8 ramcfg = (nv_rd32(bios, 0x101000) & 0x0000003c) >> 2;
+ struct nvkm_device *device = bios->subdev.device;
+ const u8 ramcfg = (nvkm_rd32(device, 0x101000) & 0x0000003c) >> 2;
struct nvbios_M0203E M0203E;
u8 ver, hdr;
static void
gf100_fb_intr(struct nvkm_subdev *subdev)
{
+ struct nvkm_device *device = subdev->device;
struct gf100_fb *fb = (void *)subdev;
- u32 intr = nv_rd32(fb, 0x000100);
+ u32 intr = nvkm_rd32(device, 0x000100);
if (intr & 0x08000000)
nv_debug(fb, "PFFB intr\n");
if (intr & 0x00002000)
gf100_fb_init(struct nvkm_object *object)
{
struct gf100_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->base.subdev.device;
int ret;
ret = nvkm_fb_init(&fb->base);
return ret;
if (fb->r100c10_page)
- nv_wr32(fb, 0x100c10, fb->r100c10 >> 8);
+ nvkm_wr32(device, 0x100c10, fb->r100c10 >> 8);
- nv_mask(fb, 0x100c80, 0x00000001, 0x00000000); /* 128KiB lpg */
+ nvkm_mask(device, 0x100c80, 0x00000001, 0x00000000); /* 128KiB lpg */
return 0;
}
gk20a_fb_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_fb_init(fb);
if (ret)
return ret;
- nv_mask(fb, 0x100c80, 0x00000001, 0x00000000); /* 128KiB lpg */
+ nvkm_mask(device, 0x100c80, 0x00000001, 0x00000000); /* 128KiB lpg */
return 0;
}
nv04_fb_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_fb_init(fb);
* nvidia reading PFB_CFG_0, then writing back its original value.
* (which was 0x701114 in this case)
*/
- nv_wr32(fb, NV04_PFB_CFG0, 0x1114);
+ nvkm_wr32(device, NV04_PFB_CFG0, 0x1114);
return 0;
}
void
nv10_fb_tile_prog(struct nvkm_fb *fb, int i, struct nvkm_fb_tile *tile)
{
- nv_wr32(fb, 0x100244 + (i * 0x10), tile->limit);
- nv_wr32(fb, 0x100248 + (i * 0x10), tile->pitch);
- nv_wr32(fb, 0x100240 + (i * 0x10), tile->addr);
- nv_rd32(fb, 0x100240 + (i * 0x10));
+ struct nvkm_device *device = fb->subdev.device;
+ nvkm_wr32(device, 0x100244 + (i * 0x10), tile->limit);
+ nvkm_wr32(device, 0x100248 + (i * 0x10), tile->pitch);
+ nvkm_wr32(device, 0x100240 + (i * 0x10), tile->addr);
+ nvkm_rd32(device, 0x100240 + (i * 0x10));
}
struct nvkm_oclass *
void
nv20_fb_tile_prog(struct nvkm_fb *fb, int i, struct nvkm_fb_tile *tile)
{
- nv_wr32(fb, 0x100244 + (i * 0x10), tile->limit);
- nv_wr32(fb, 0x100248 + (i * 0x10), tile->pitch);
- nv_wr32(fb, 0x100240 + (i * 0x10), tile->addr);
- nv_rd32(fb, 0x100240 + (i * 0x10));
- nv_wr32(fb, 0x100300 + (i * 0x04), tile->zcomp);
+ struct nvkm_device *device = fb->subdev.device;
+ nvkm_wr32(device, 0x100244 + (i * 0x10), tile->limit);
+ nvkm_wr32(device, 0x100248 + (i * 0x10), tile->pitch);
+ nvkm_wr32(device, 0x100240 + (i * 0x10), tile->addr);
+ nvkm_rd32(device, 0x100240 + (i * 0x10));
+ nvkm_wr32(device, 0x100300 + (i * 0x04), tile->zcomp);
}
struct nvkm_oclass *
{
struct nvkm_device *device = nv_device(fb);
int b = (device->chipset > 0x30 ?
- nv_rd32(fb, 0x122c + 0x10 * k + 0x4 * j) >> (4 * (i ^ 1)) :
+ nvkm_rd32(device, 0x122c + 0x10 * k + 0x4 * j) >>
+ (4 * (i ^ 1)) :
0) & 0xf;
return 2 * (b & 0x8 ? b - 0x10 : b);
device->chipset == 0x35) {
/* Related to ROP count */
int n = (device->chipset == 0x31 ? 2 : 4);
- int l = nv_rd32(fb, 0x1003d0);
+ int l = nvkm_rd32(device, 0x1003d0);
for (i = 0; i < n; i++) {
for (j = 0; j < 3; j++)
- nv_wr32(fb, 0x10037c + 0xc * i + 0x4 * j,
- calc_ref(fb, l, 0, j));
+ nvkm_wr32(device, 0x10037c + 0xc * i + 0x4 * j,
+ calc_ref(fb, l, 0, j));
for (j = 0; j < 2; j++)
- nv_wr32(fb, 0x1003ac + 0x8 * i + 0x4 * j,
- calc_ref(fb, l, 1, j));
+ nvkm_wr32(device, 0x1003ac + 0x8 * i + 0x4 * j,
+ calc_ref(fb, l, 1, j));
}
}
nv40_fb_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_fb_init(fb);
if (ret)
return ret;
- nv_mask(fb, 0x10033c, 0x00008000, 0x00000000);
+ nvkm_mask(device, 0x10033c, 0x00008000, 0x00000000);
return 0;
}
void
nv41_fb_tile_prog(struct nvkm_fb *fb, int i, struct nvkm_fb_tile *tile)
{
- nv_wr32(fb, 0x100604 + (i * 0x10), tile->limit);
- nv_wr32(fb, 0x100608 + (i * 0x10), tile->pitch);
- nv_wr32(fb, 0x100600 + (i * 0x10), tile->addr);
- nv_rd32(fb, 0x100600 + (i * 0x10));
- nv_wr32(fb, 0x100700 + (i * 0x04), tile->zcomp);
+ struct nvkm_device *device = fb->subdev.device;
+ nvkm_wr32(device, 0x100604 + (i * 0x10), tile->limit);
+ nvkm_wr32(device, 0x100608 + (i * 0x10), tile->pitch);
+ nvkm_wr32(device, 0x100600 + (i * 0x10), tile->addr);
+ nvkm_rd32(device, 0x100600 + (i * 0x10));
+ nvkm_wr32(device, 0x100700 + (i * 0x04), tile->zcomp);
}
int
nv41_fb_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_fb_init(fb);
if (ret)
return ret;
- nv_wr32(fb, 0x100800, 0x00000001);
+ nvkm_wr32(device, 0x100800, 0x00000001);
return 0;
}
void
nv44_fb_tile_prog(struct nvkm_fb *fb, int i, struct nvkm_fb_tile *tile)
{
- nv_wr32(fb, 0x100604 + (i * 0x10), tile->limit);
- nv_wr32(fb, 0x100608 + (i * 0x10), tile->pitch);
- nv_wr32(fb, 0x100600 + (i * 0x10), tile->addr);
- nv_rd32(fb, 0x100600 + (i * 0x10));
+ struct nvkm_device *device = fb->subdev.device;
+ nvkm_wr32(device, 0x100604 + (i * 0x10), tile->limit);
+ nvkm_wr32(device, 0x100608 + (i * 0x10), tile->pitch);
+ nvkm_wr32(device, 0x100600 + (i * 0x10), tile->addr);
+ nvkm_rd32(device, 0x100600 + (i * 0x10));
}
int
nv44_fb_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_fb_init(fb);
if (ret)
return ret;
- nv_wr32(fb, 0x100850, 0x80000000);
- nv_wr32(fb, 0x100800, 0x00000001);
+ nvkm_wr32(device, 0x100850, 0x80000000);
+ nvkm_wr32(device, 0x100800, 0x00000001);
return 0;
}
u8 st0, st1, st2, st3;
int i;
- idx = nv_rd32(fb, 0x100c90);
+ idx = nvkm_rd32(device, 0x100c90);
if (!(idx & 0x80000000))
return;
idx &= 0x00ffffff;
for (i = 0; i < 6; i++) {
- nv_wr32(fb, 0x100c90, idx | i << 24);
- trap[i] = nv_rd32(fb, 0x100c94);
+ nvkm_wr32(device, 0x100c90, idx | i << 24);
+ trap[i] = nvkm_rd32(device, 0x100c94);
}
- nv_wr32(fb, 0x100c90, idx | 0x80000000);
+ nvkm_wr32(device, 0x100c90, idx | 0x80000000);
/* decode status bits into something more useful */
if (device->chipset < 0xa3 ||
{
struct nv50_fb_impl *impl = (void *)object->oclass;
struct nv50_fb *fb = (void *)object;
+ struct nvkm_device *device = fb->base.subdev.device;
int ret;
ret = nvkm_fb_init(&fb->base);
* scratch page, VRAM->GART blits with M2MF (as in DDX DFS)
* cause IOMMU "read from address 0" errors (rh#561267)
*/
- nv_wr32(fb, 0x100c08, fb->r100c08 >> 8);
+ nvkm_wr32(device, 0x100c08, fb->r100c08 >> 8);
/* This is needed to get meaningful information from 100c90
* on traps. No idea what these values mean exactly. */
- nv_wr32(fb, 0x100c90, impl->trap);
+ nvkm_wr32(device, 0x100c90, impl->trap);
return 0;
}
#ifndef __NVKM_FBRAM_FUC_H__
#define __NVKM_FBRAM_FUC_H__
+#include <subdev/fb.h>
#include <subdev/pmu.h>
struct ramfuc {
static inline u32
ramfuc_rd32(struct ramfuc *ram, struct ramfuc_reg *reg)
{
+ struct nvkm_device *device = ram->fb->subdev.device;
if (reg->sequence != ram->sequence)
- reg->data = nv_rd32(ram->fb, reg->addr);
+ reg->data = nvkm_rd32(device, reg->addr);
return reg->data;
}
{
struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
struct nvkm_fb *fb = nvkm_fb(ram);
- u32 part = nv_rd32(fb, 0x022438), i;
- u32 mask = nv_rd32(fb, 0x022554);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 part = nvkm_rd32(device, 0x022438), i;
+ u32 mask = nvkm_rd32(device, 0x022554);
u32 addr = 0x110974;
ram_wr32(fuc, 0x10f910, magic);
void **pobject)
{
struct nvkm_fb *fb = nvkm_fb(parent);
- struct nvkm_bios *bios = nvkm_bios(fb);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
struct nvkm_ram *ram;
const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
- u32 parts = nv_rd32(fb, 0x022438);
- u32 pmask = nv_rd32(fb, maskaddr);
- u32 bsize = nv_rd32(fb, 0x10f20c);
+ u32 parts = nvkm_rd32(device, 0x022438);
+ u32 pmask = nvkm_rd32(device, maskaddr);
+ u32 bsize = nvkm_rd32(device, 0x10f20c);
u32 offset, length;
bool uniform = true;
int ret, part;
if (ret)
return ret;
- nv_debug(fb, "0x100800: 0x%08x\n", nv_rd32(fb, 0x100800));
+ nv_debug(fb, "0x100800: 0x%08x\n", nvkm_rd32(device, 0x100800));
nv_debug(fb, "parts 0x%08x mask 0x%08x\n", parts, pmask);
ram->type = nvkm_fb_bios_memtype(bios);
- ram->ranks = (nv_rd32(fb, 0x10f200) & 0x00000004) ? 2 : 1;
+ ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
/* read amount of vram attached to each memory controller */
for (part = 0; part < parts; part++) {
if (!(pmask & (1 << part))) {
- u32 psize = nv_rd32(fb, 0x11020c + (part * 0x1000));
- if (psize != bsize) {
- if (psize < bsize)
- bsize = psize;
+ u32 size = nvkm_rd32(device, 0x11020c + (part * 0x1000));
+ if (size != bsize) {
+ if (size < bsize)
+ bsize = size;
uniform = false;
}
- nv_debug(fb, "%d: mem_amount 0x%08x\n", part, psize);
- ram->size += (u64)psize << 20;
+ nv_debug(fb, "%d: mem_amount 0x%08x\n", part, size);
+ ram->size += (u64)size << 20;
}
}
gf100_ram_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = (void *)object->parent;
+ struct nvkm_device *device = fb->subdev.device;
struct gf100_ram *ram = (void *)object;
int ret, i;
};
for (i = 0; i < 0x30; i++) {
- nv_wr32(fb, 0x10f968, 0x00000000 | (i << 8));
- nv_wr32(fb, 0x10f96c, 0x00000000 | (i << 8));
- nv_wr32(fb, 0x10f920, 0x00000100 | train0[i % 12]);
- nv_wr32(fb, 0x10f924, 0x00000100 | train0[i % 12]);
- nv_wr32(fb, 0x10f918, train1[i % 12]);
- nv_wr32(fb, 0x10f91c, train1[i % 12]);
- nv_wr32(fb, 0x10f920, 0x00000000 | train0[i % 12]);
- nv_wr32(fb, 0x10f924, 0x00000000 | train0[i % 12]);
- nv_wr32(fb, 0x10f918, train1[i % 12]);
- nv_wr32(fb, 0x10f91c, train1[i % 12]);
+ nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
+ nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
+ nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
+ nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
+ nvkm_wr32(device, 0x10f918, train1[i % 12]);
+ nvkm_wr32(device, 0x10f91c, train1[i % 12]);
+ nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
+ nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
+ nvkm_wr32(device, 0x10f918, train1[i % 12]);
+ nvkm_wr32(device, 0x10f91c, train1[i % 12]);
}
} break;
default:
gk104_ram_nuts(struct gk104_ram *ram, struct ramfuc_reg *reg,
u32 _mask, u32 _data, u32 _copy)
{
- struct gk104_fb *fb = (void *)nvkm_fb(ram);
+ struct nvkm_fb *fb = nvkm_fb(ram);
struct ramfuc *fuc = &ram->fuc.base;
+ struct nvkm_device *device = fb->subdev.device;
u32 addr = 0x110000 + (reg->addr & 0xfff);
u32 mask = _mask | _copy;
u32 data = (_data & _mask) | (reg->data & _copy);
for (i = 0; i < 16; i++, addr += 0x1000) {
if (ram->pnuts & (1 << i)) {
- u32 prev = nv_rd32(fb, addr);
+ u32 prev = nvkm_rd32(device, addr);
u32 next = (prev & ~mask) | data;
nvkm_memx_wr32(fuc->memx, addr, next);
}
static void
gk104_ram_prog_0(struct nvkm_fb *fb, u32 freq)
{
+ struct nvkm_device *device = fb->subdev.device;
struct gk104_ram *ram = (void *)fb->ram;
struct nvkm_ram_data *cfg;
u32 mhz = freq / 1000;
data |= cfg->bios.rammap_11_09_01ff;
mask |= 0x000001ff;
}
- nv_mask(fb, 0x10f468, mask, data);
+ nvkm_mask(device, 0x10f468, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0a_0400) {
data |= cfg->bios.rammap_11_0a_0400;
mask |= 0x00000001;
}
- nv_mask(fb, 0x10f420, mask, data);
+ nvkm_mask(device, 0x10f420, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0a_0800) {
data |= cfg->bios.rammap_11_0a_0800;
mask |= 0x00000001;
}
- nv_mask(fb, 0x10f430, mask, data);
+ nvkm_mask(device, 0x10f430, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0b_01f0) {
data |= cfg->bios.rammap_11_0b_01f0;
mask |= 0x0000001f;
}
- nv_mask(fb, 0x10f400, mask, data);
+ nvkm_mask(device, 0x10f400, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0b_0200) {
data |= cfg->bios.rammap_11_0b_0200 << 9;
mask |= 0x00000200;
}
- nv_mask(fb, 0x10f410, mask, data);
+ nvkm_mask(device, 0x10f410, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0d) {
data |= cfg->bios.rammap_11_0d << 16;
data |= cfg->bios.rammap_11_0f << 8;
mask |= 0x0000ff00;
}
- nv_mask(fb, 0x10f440, mask, data);
+ nvkm_mask(device, 0x10f440, mask, data);
if (mask = 0, data = 0, ram->diff.rammap_11_0e) {
data |= cfg->bios.rammap_11_0e << 8;
data |= cfg->bios.rammap_11_0b_0400 << 5;
mask |= 0x00000020;
}
- nv_mask(fb, 0x10f444, mask, data);
+ nvkm_mask(device, 0x10f444, mask, data);
}
static int
static int
gk104_ram_train_init_0(struct nvkm_fb *fb, struct gk104_ram_train *train)
{
+ struct nvkm_device *device = fb->subdev.device;
int i, j;
if ((train->mask & 0x03d3) != 0x03d3) {
for (i = 0; i < 0x30; i++) {
for (j = 0; j < 8; j += 4) {
- nv_wr32(fb, 0x10f968 + j, 0x00000000 | (i << 8));
- nv_wr32(fb, 0x10f920 + j, 0x00000000 |
+ nvkm_wr32(device, 0x10f968 + j, 0x00000000 | (i << 8));
+ nvkm_wr32(device, 0x10f920 + j, 0x00000000 |
train->type08.data[i] << 4 |
train->type06.data[i]);
- nv_wr32(fb, 0x10f918 + j, train->type00.data[i]);
- nv_wr32(fb, 0x10f920 + j, 0x00000100 |
+ nvkm_wr32(device, 0x10f918 + j, train->type00.data[i]);
+ nvkm_wr32(device, 0x10f920 + j, 0x00000100 |
train->type09.data[i] << 4 |
train->type07.data[i]);
- nv_wr32(fb, 0x10f918 + j, train->type01.data[i]);
+ nvkm_wr32(device, 0x10f918 + j, train->type01.data[i]);
}
}
for (j = 0; j < 8; j += 4) {
for (i = 0; i < 0x100; i++) {
- nv_wr32(fb, 0x10f968 + j, i);
- nv_wr32(fb, 0x10f900 + j, train->type04.data[i]);
+ nvkm_wr32(device, 0x10f968 + j, i);
+ nvkm_wr32(device, 0x10f900 + j, train->type04.data[i]);
}
}
{
struct nvkm_fb *fb = (void *)object->parent;
struct gk104_ram *ram = (void *)object;
- struct nvkm_bios *bios = nvkm_bios(fb);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
u8 ver, hdr, cnt, len, snr, ssz;
u32 data, save;
int ret, i;
cnt = nv_ro08(bios, data + 0x14); /* guess at count */
data = nv_ro32(bios, data + 0x10); /* guess u32... */
- save = nv_rd32(fb, 0x10f65c) & 0x000000f0;
+ save = nvkm_rd32(device, 0x10f65c) & 0x000000f0;
for (i = 0; i < cnt; i++, data += 4) {
if (i != save >> 4) {
- nv_mask(fb, 0x10f65c, 0x000000f0, i << 4);
+ nvkm_mask(device, 0x10f65c, 0x000000f0, i << 4);
nvbios_exec(&(struct nvbios_init) {
.subdev = nv_subdev(fb),
.bios = bios,
});
}
}
- nv_mask(fb, 0x10f65c, 0x000000f0, save);
- nv_mask(fb, 0x10f584, 0x11000000, 0x00000000);
- nv_wr32(fb, 0x10ecc0, 0xffffffff);
- nv_mask(fb, 0x10f160, 0x00000010, 0x00000010);
+ nvkm_mask(device, 0x10f65c, 0x000000f0, save);
+ nvkm_mask(device, 0x10f584, 0x11000000, 0x00000000);
+ nvkm_wr32(device, 0x10ecc0, 0xffffffff);
+ nvkm_mask(device, 0x10f160, 0x00000010, 0x00000010);
return gk104_ram_train_init(fb);
}
struct nvkm_object **pobject)
{
struct nvkm_fb *fb = nvkm_fb(parent);
- struct nvkm_bios *bios = nvkm_bios(fb);
- struct nvkm_gpio *gpio = nvkm_gpio(fb);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
+ struct nvkm_gpio *gpio = device->gpio;
struct dcb_gpio_func func;
struct gk104_ram *ram;
int ret, i;
* already without having to treat some of them differently to
* the others....
*/
- ram->parts = nv_rd32(fb, 0x022438);
- ram->pmask = nv_rd32(fb, 0x022554);
+ ram->parts = nvkm_rd32(device, 0x022438);
+ ram->pmask = nvkm_rd32(device, 0x022554);
ram->pnuts = 0;
for (i = 0, tmp = 0; i < ram->parts; i++) {
if (!(ram->pmask & (1 << i))) {
- u32 cfg1 = nv_rd32(fb, 0x110204 + (i * 0x1000));
+ u32 cfg1 = nvkm_rd32(device, 0x110204 + (i * 0x1000));
if (tmp && tmp != cfg1) {
ram->pnuts |= (1 << i);
continue;
goto out;
/* Do this *after* calc, eliminates write in script */
- nv_wr32(fb, 0x111400, 0x00000000);
+ nvkm_wr32(device, 0x111400, 0x00000000);
/* XXX: Magic writes that improve train reliability? */
- nv_mask(fb, 0x100674, 0x0000ffff, 0x00000000);
- nv_mask(fb, 0x1005e4, 0x0000ffff, 0x00000000);
- nv_mask(fb, 0x100b0c, 0x000000ff, 0x00000000);
- nv_wr32(fb, 0x100c04, 0x00000400);
+ nvkm_mask(device, 0x100674, 0x0000ffff, 0x00000000);
+ nvkm_mask(device, 0x1005e4, 0x0000ffff, 0x00000000);
+ nvkm_mask(device, 0x100b0c, 0x000000ff, 0x00000000);
+ nvkm_wr32(device, 0x100c04, 0x00000400);
/* Now the training script */
r1700 = ram_rd32(fuc, 0x001700);
ram_exec(fuc, true);
/* Post-processing, avoids flicker */
- nv_mask(fb, 0x616308, 0x10, 0x10);
- nv_mask(fb, 0x616b08, 0x10, 0x10);
+ nvkm_mask(device, 0x616308, 0x10, 0x10);
+ nvkm_mask(device, 0x616b08, 0x10, 0x10);
gt215_clk_post(clk, f);
0x33333333, 0x55555555, 0x77777777, 0x66666666,
0x99999999, 0x88888888, 0xeeeeeeee, 0xbbbbbbbb,
};
- struct nvkm_bios *bios = nvkm_bios(fb);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
struct gt215_ram *ram = (void *)fb->ram;
struct gt215_ltrain *train = &ram->ltrain;
struct nvkm_mem *mem;
mem = ram->ltrain.mem;
- nv_wr32(fb, 0x100538, 0x10000000 | (mem->offset >> 16));
- nv_wr32(fb, 0x1005a8, 0x0000ffff);
- nv_mask(fb, 0x10f800, 0x00000001, 0x00000001);
+ nvkm_wr32(device, 0x100538, 0x10000000 | (mem->offset >> 16));
+ nvkm_wr32(device, 0x1005a8, 0x0000ffff);
+ nvkm_mask(device, 0x10f800, 0x00000001, 0x00000001);
for (i = 0; i < 0x30; i++) {
- nv_wr32(fb, 0x10f8c0, (i << 8) | i);
- nv_wr32(fb, 0x10f900, pattern[i % 16]);
+ nvkm_wr32(device, 0x10f8c0, (i << 8) | i);
+ nvkm_wr32(device, 0x10f900, pattern[i % 16]);
}
for (i = 0; i < 0x30; i++) {
- nv_wr32(fb, 0x10f8e0, (i << 8) | i);
- nv_wr32(fb, 0x10f920, pattern[i % 16]);
+ nvkm_wr32(device, 0x10f8e0, (i << 8) | i);
+ nvkm_wr32(device, 0x10f920, pattern[i % 16]);
}
/* And upload the pattern */
- r001700 = nv_rd32(fb, 0x1700);
- nv_wr32(fb, 0x1700, mem->offset >> 16);
+ r001700 = nvkm_rd32(device, 0x1700);
+ nvkm_wr32(device, 0x1700, mem->offset >> 16);
for (i = 0; i < 16; i++)
- nv_wr32(fb, 0x700000 + (i << 2), pattern[i]);
+ nvkm_wr32(device, 0x700000 + (i << 2), pattern[i]);
for (i = 0; i < 16; i++)
- nv_wr32(fb, 0x700100 + (i << 2), pattern[i]);
- nv_wr32(fb, 0x1700, r001700);
+ nvkm_wr32(device, 0x700100 + (i << 2), pattern[i]);
+ nvkm_wr32(device, 0x1700, r001700);
- train->r_100720 = nv_rd32(fb, 0x100720);
- train->r_1111e0 = nv_rd32(fb, 0x1111e0);
- train->r_111400 = nv_rd32(fb, 0x111400);
+ train->r_100720 = nvkm_rd32(device, 0x100720);
+ train->r_1111e0 = nvkm_rd32(device, 0x1111e0);
+ train->r_111400 = nvkm_rd32(device, 0x111400);
return 0;
}
static int
gt215_ram_timing_calc(struct nvkm_fb *fb, u32 *timing)
{
+ struct nvkm_device *device = fb->subdev.device;
struct gt215_ram *ram = (void *)fb->ram;
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
int tUNK_base, tUNK_40_0, prevCL;
u32 cur2, cur3, cur7, cur8;
- cur2 = nv_rd32(fb, 0x100228);
- cur3 = nv_rd32(fb, 0x10022c);
- cur7 = nv_rd32(fb, 0x10023c);
- cur8 = nv_rd32(fb, 0x100240);
+ cur2 = nvkm_rd32(device, 0x100228);
+ cur3 = nvkm_rd32(device, 0x10022c);
+ cur7 = nvkm_rd32(device, 0x10023c);
+ cur8 = nvkm_rd32(device, 0x100240);
switch ((!T(CWL)) * ram->base.type) {
bool exec = nvkm_boolopt(device->cfgopt, "NvMemExec", true);
if (exec) {
- nv_mask(fb, 0x001534, 0x2, 0x2);
+ nvkm_mask(device, 0x001534, 0x2, 0x2);
ram_exec(fuc, true);
/* Post-processing, avoids flicker */
- nv_mask(fb, 0x002504, 0x1, 0x0);
- nv_mask(fb, 0x001534, 0x2, 0x0);
+ nvkm_mask(device, 0x002504, 0x1, 0x0);
+ nvkm_mask(device, 0x001534, 0x2, 0x0);
- nv_mask(fb, 0x616308, 0x10, 0x10);
- nv_mask(fb, 0x616b08, 0x10, 0x10);
+ nvkm_mask(device, 0x616308, 0x10, 0x10);
+ nvkm_mask(device, 0x616b08, 0x10, 0x10);
} else {
ram_exec(fuc, false);
}
u32 rsvd_head = ( 256 * 1024); /* vga memory */
u32 rsvd_tail = (1024 * 1024); /* vbios etc */
struct nvkm_fb *fb = nvkm_fb(parent);
+ struct nvkm_device *device = fb->subdev.device;
struct mcp77_ram *ram;
int ret;
return ret;
ram->base.type = NV_MEM_TYPE_STOLEN;
- ram->base.stolen = (u64)nv_rd32(fb, 0x100e10) << 12;
- ram->base.size = (u64)nv_rd32(fb, 0x100e14) << 12;
+ ram->base.stolen = (u64)nvkm_rd32(device, 0x100e10) << 12;
+ ram->base.size = (u64)nvkm_rd32(device, 0x100e14) << 12;
rsvd_tail += 0x1000;
ram->poller_base = ram->base.size - rsvd_tail;
mcp77_ram_init(struct nvkm_object *object)
{
struct nvkm_fb *fb = nvkm_fb(object);
+ struct nvkm_device *device = fb->subdev.device;
struct mcp77_ram *ram = (void *)object;
int ret;
u64 dniso, hostnb, flush;
/* Enable NISO poller for various clients and set their associated
* read address, only for MCP77/78 and MCP79/7A. (fd#25701)
*/
- nv_wr32(fb, 0x100c18, dniso);
- nv_mask(fb, 0x100c14, 0x00000000, 0x00000001);
- nv_wr32(fb, 0x100c1c, hostnb);
- nv_mask(fb, 0x100c14, 0x00000000, 0x00000002);
- nv_wr32(fb, 0x100c24, flush);
- nv_mask(fb, 0x100c14, 0x00000000, 0x00010000);
+ nvkm_wr32(device, 0x100c18, dniso);
+ nvkm_mask(device, 0x100c14, 0x00000000, 0x00000001);
+ nvkm_wr32(device, 0x100c1c, hostnb);
+ nvkm_mask(device, 0x100c14, 0x00000000, 0x00000002);
+ nvkm_wr32(device, 0x100c24, flush);
+ nvkm_mask(device, 0x100c14, 0x00000000, 0x00010000);
return 0;
}
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nvkm_ram *ram;
- u32 boot0 = nv_rd32(fb, NV04_PFB_BOOT_0);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 boot0 = nvkm_rd32(device, NV04_PFB_BOOT_0);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nvkm_ram *ram;
- u32 cfg0 = nv_rd32(fb, 0x100200);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 cfg0 = nvkm_rd32(device, 0x100200);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
else
ram->type = NV_MEM_TYPE_SDRAM;
- ram->size = nv_rd32(fb, 0x10020c) & 0xff000000;
+ ram->size = nvkm_rd32(device, 0x10020c) & 0xff000000;
return 0;
}
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nvkm_ram *ram;
- u32 pbus1218 = nv_rd32(fb, 0x001218);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 pbus1218 = nvkm_rd32(device, 0x001218);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
case 0x00000200: ram->type = NV_MEM_TYPE_GDDR3; break;
case 0x00000300: ram->type = NV_MEM_TYPE_GDDR2; break;
}
- ram->size = (nv_rd32(fb, 0x10020c) & 0xff000000);
- ram->parts = (nv_rd32(fb, 0x100200) & 0x00000003) + 1;
- ram->tags = nv_rd32(fb, 0x100320);
+ ram->size = (nvkm_rd32(device, 0x10020c) & 0xff000000);
+ ram->parts = (nvkm_rd32(device, 0x100200) & 0x00000003) + 1;
+ ram->tags = nvkm_rd32(device, 0x100320);
return 0;
}
int
nv40_ram_prog(struct nvkm_fb *fb)
{
- struct nvkm_bios *bios = nvkm_bios(fb);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
struct nv40_ram *ram = (void *)fb->ram;
struct bit_entry M;
u32 crtc_mask = 0;
/* determine which CRTCs are active, fetch VGA_SR1 for each */
for (i = 0; i < 2; i++) {
- u32 vbl = nv_rd32(fb, 0x600808 + (i * 0x2000));
+ u32 vbl = nvkm_rd32(device, 0x600808 + (i * 0x2000));
u32 cnt = 0;
do {
- if (vbl != nv_rd32(fb, 0x600808 + (i * 0x2000))) {
- nv_wr08(fb, 0x0c03c4 + (i * 0x2000), 0x01);
- sr1[i] = nv_rd08(fb, 0x0c03c5 + (i * 0x2000));
+ if (vbl != nvkm_rd32(device, 0x600808 + (i * 0x2000))) {
+ nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
+ sr1[i] = nvkm_rd08(device, 0x0c03c5 + (i * 0x2000));
if (!(sr1[i] & 0x20))
crtc_mask |= (1 << i);
break;
continue;
nv_wait(fb, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000);
nv_wait(fb, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
- nv_wr08(fb, 0x0c03c4 + (i * 0x2000), 0x01);
- nv_wr08(fb, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
+ nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
+ nvkm_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
}
/* prepare ram for reclocking */
- nv_wr32(fb, 0x1002d4, 0x00000001); /* precharge */
- nv_wr32(fb, 0x1002d0, 0x00000001); /* refresh */
- nv_wr32(fb, 0x1002d0, 0x00000001); /* refresh */
- nv_mask(fb, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
- nv_wr32(fb, 0x1002dc, 0x00000001); /* enable self-refresh */
+ nvkm_wr32(device, 0x1002d4, 0x00000001); /* precharge */
+ nvkm_wr32(device, 0x1002d0, 0x00000001); /* refresh */
+ nvkm_wr32(device, 0x1002d0, 0x00000001); /* refresh */
+ nvkm_mask(device, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
+ nvkm_wr32(device, 0x1002dc, 0x00000001); /* enable self-refresh */
/* change the PLL of each memory partition */
- nv_mask(fb, 0x00c040, 0x0000c000, 0x00000000);
- switch (nv_device(fb)->chipset) {
+ nvkm_mask(device, 0x00c040, 0x0000c000, 0x00000000);
+ switch (device->chipset) {
case 0x40:
case 0x45:
case 0x41:
case 0x42:
case 0x47:
- nv_mask(fb, 0x004044, 0xc0771100, ram->ctrl);
- nv_mask(fb, 0x00402c, 0xc0771100, ram->ctrl);
- nv_wr32(fb, 0x004048, ram->coef);
- nv_wr32(fb, 0x004030, ram->coef);
+ nvkm_mask(device, 0x004044, 0xc0771100, ram->ctrl);
+ nvkm_mask(device, 0x00402c, 0xc0771100, ram->ctrl);
+ nvkm_wr32(device, 0x004048, ram->coef);
+ nvkm_wr32(device, 0x004030, ram->coef);
case 0x43:
case 0x49:
case 0x4b:
- nv_mask(fb, 0x004038, 0xc0771100, ram->ctrl);
- nv_wr32(fb, 0x00403c, ram->coef);
+ nvkm_mask(device, 0x004038, 0xc0771100, ram->ctrl);
+ nvkm_wr32(device, 0x00403c, ram->coef);
default:
- nv_mask(fb, 0x004020, 0xc0771100, ram->ctrl);
- nv_wr32(fb, 0x004024, ram->coef);
+ nvkm_mask(device, 0x004020, 0xc0771100, ram->ctrl);
+ nvkm_wr32(device, 0x004024, ram->coef);
break;
}
udelay(100);
- nv_mask(fb, 0x00c040, 0x0000c000, 0x0000c000);
+ nvkm_mask(device, 0x00c040, 0x0000c000, 0x0000c000);
/* re-enable normal operation of memory controller */
- nv_wr32(fb, 0x1002dc, 0x00000000);
- nv_mask(fb, 0x100210, 0x80000000, 0x80000000);
+ nvkm_wr32(device, 0x1002dc, 0x00000000);
+ nvkm_mask(device, 0x100210, 0x80000000, 0x80000000);
udelay(100);
/* execute memory reset script from vbios */
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(fb, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
- nv_wr08(fb, 0x0c03c4 + (i * 0x2000), 0x01);
- nv_wr08(fb, 0x0c03c5 + (i * 0x2000), sr1[i]);
+ nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
+ nvkm_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i]);
}
return 0;
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nv40_ram *ram;
- u32 pbus1218 = nv_rd32(fb, 0x001218);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 pbus1218 = nvkm_rd32(device, 0x001218);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
case 0x00000300: ram->base.type = NV_MEM_TYPE_DDR2; break;
}
- ram->base.size = nv_rd32(fb, 0x10020c) & 0xff000000;
- ram->base.parts = (nv_rd32(fb, 0x100200) & 0x00000003) + 1;
- ram->base.tags = nv_rd32(fb, 0x100320);
+ ram->base.size = nvkm_rd32(device, 0x10020c) & 0xff000000;
+ ram->base.parts = (nvkm_rd32(device, 0x100200) & 0x00000003) + 1;
+ ram->base.tags = nvkm_rd32(device, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nv40_ram *ram;
- u32 fb474 = nv_rd32(fb, 0x100474);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 fb474 = nvkm_rd32(device, 0x100474);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
if (fb474 & 0x00000001)
ram->base.type = NV_MEM_TYPE_DDR1;
- ram->base.size = nv_rd32(fb, 0x10020c) & 0xff000000;
- ram->base.parts = (nv_rd32(fb, 0x100200) & 0x00000003) + 1;
- ram->base.tags = nv_rd32(fb, 0x100320);
+ ram->base.size = nvkm_rd32(device, 0x10020c) & 0xff000000;
+ ram->base.parts = (nvkm_rd32(device, 0x100200) & 0x00000003) + 1;
+ ram->base.tags = nvkm_rd32(device, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nv40_ram *ram;
- u32 fb474 = nv_rd32(fb, 0x100474);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 fb474 = nvkm_rd32(device, 0x100474);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
if (fb474 & 0x00000001)
ram->base.type = NV_MEM_TYPE_DDR1;
- ram->base.size = nv_rd32(fb, 0x10020c) & 0xff000000;
+ ram->base.size = nvkm_rd32(device, 0x10020c) & 0xff000000;
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nv40_ram *ram;
- u32 fb914 = nv_rd32(fb, 0x100914);
+ struct nvkm_device *device = fb->subdev.device;
+ u32 fb914 = nvkm_rd32(device, 0x100914);
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
case 0x00000003: break;
}
- ram->base.size = nv_rd32(fb, 0x10020c) & 0xff000000;
- ram->base.parts = (nv_rd32(fb, 0x100200) & 0x00000003) + 1;
- ram->base.tags = nv_rd32(fb, 0x100320);
+ ram->base.size = nvkm_rd32(device, 0x10020c) & 0xff000000;
+ ram->base.parts = (nvkm_rd32(device, 0x100200) & 0x00000003) + 1;
+ ram->base.tags = nvkm_rd32(device, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
{
struct nvkm_fb *fb = nvkm_fb(parent);
struct nvkm_ram *ram;
+ struct nvkm_device *device = fb->subdev.device;
int ret;
ret = nvkm_ram_create(parent, engine, oclass, &ram);
if (ret)
return ret;
- ram->size = nv_rd32(fb, 0x10020c) & 0xff000000;
+ ram->size = nvkm_rd32(device, 0x10020c) & 0xff000000;
ram->type = NV_MEM_TYPE_STOLEN;
return 0;
}
static int
nv50_ram_timing_calc(struct nvkm_fb *fb, u32 *timing)
{
+ struct nvkm_device *device = fb->subdev.device;
struct nv50_ram *ram = (void *)fb->ram;
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
u32 cur2, cur4, cur7, cur8;
u8 unkt3b;
- cur2 = nv_rd32(fb, 0x100228);
- cur4 = nv_rd32(fb, 0x100230);
- cur7 = nv_rd32(fb, 0x10023c);
- cur8 = nv_rd32(fb, 0x100240);
+ cur2 = nvkm_rd32(device, 0x100228);
+ cur4 = nvkm_rd32(device, 0x100230);
+ cur7 = nvkm_rd32(device, 0x10023c);
+ cur8 = nvkm_rd32(device, 0x100240);
switch ((!T(CWL)) * ram->base.type) {
case NV_MEM_TYPE_DDR2:
static u32
nv50_fb_vram_rblock(struct nvkm_fb *fb, struct nvkm_ram *ram)
{
+ struct nvkm_device *device = fb->subdev.device;
int colbits, rowbitsa, rowbitsb, banks;
u64 rowsize, predicted;
u32 r0, r4, rt, rblock_size;
- r0 = nv_rd32(fb, 0x100200);
- r4 = nv_rd32(fb, 0x100204);
- rt = nv_rd32(fb, 0x100250);
+ r0 = nvkm_rd32(device, 0x100200);
+ r4 = nvkm_rd32(device, 0x100204);
+ rt = nvkm_rd32(device, 0x100250);
nv_debug(fb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n",
- r0, r4, rt, nv_rd32(fb, 0x001540));
+ r0, r4, rt, nvkm_rd32(device, 0x001540));
colbits = (r4 & 0x0000f000) >> 12;
rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
{
const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */
const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */
- struct nvkm_bios *bios = nvkm_bios(parent);
struct nvkm_fb *fb = nvkm_fb(parent);
+ struct nvkm_device *device = fb->subdev.device;
+ struct nvkm_bios *bios = device->bios;
struct nvkm_ram *ram;
int ret;
if (ret)
return ret;
- ram->size = nv_rd32(fb, 0x10020c);
+ ram->size = nvkm_rd32(device, 0x10020c);
ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32);
- ram->part_mask = (nv_rd32(fb, 0x001540) & 0x00ff0000) >> 16;
+ ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
ram->parts = hweight8(ram->part_mask);
- switch (nv_rd32(fb, 0x100714) & 0x00000007) {
+ switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
case 0: ram->type = NV_MEM_TYPE_DDR1; break;
case 1:
if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3)
if (ret)
return ret;
- ram->ranks = (nv_rd32(fb, 0x100200) & 0x4) ? 2 : 1;
- ram->tags = nv_rd32(fb, 0x100320);
+ ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
+ ram->tags = nvkm_rd32(device, 0x100320);
ram->get = nv50_ram_get;
ram->put = nv50_ram_put;
return 0;