So 6 years ago we made the FPU fpstate dynamically allocated:
aa283f49276e ("x86, fpu: lazy allocation of FPU area - v5")
61c4628b5386 ("x86, fpu: split FPU state from task struct - v5")
In hindsight this was a mistake:
- it complicated context allocation failure handling, such as:
/* kthread execs. TODO: cleanup this horror. */
if (WARN_ON(fpstate_alloc_init(fpu)))
force_sig(SIGKILL, tsk);
- it caused us to enable irqs in fpu__restore():
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (fpstate_alloc_init(fpu)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
- it (slightly) slowed down task creation/destruction by adding
slab allocation/free pattens.
- it made access to context contents (slightly) slower by adding
one more pointer dereference.
The motivation for the dynamic allocation was two-fold:
- reduce memory consumption by non-FPU tasks
- allocate and handle only the necessary amount of context for
various XSAVE processors that have varying hardware frame
sizes.
These days, with glibc using SSE memcpy by default and GCC optimizing
for SSE/AVX by default, the scope of FPU using apps on an x86 system is
much larger than it was 6 years ago.
For example on a freshly installed Fedora 21 desktop system, with a
recent kernel, all non-kthread tasks have used the FPU shortly after
bootup.
Also, even modern embedded x86 CPUs try to support the latest vector
instruction set - so they'll too often use the larger xstate frame
sizes.
So remove the dynamic allocation complication by embedding the FPU
fpstate in task_struct again. This should make the FPU a lot more
accessible to all sorts of atomic contexts.
We could still optimize for the xstate frame size in the future,
by moving the state structure to the last element of task_struct,
and allocating only a part of that.
This change is kept minimal by still keeping the ctx_alloc()/free()
routines (that now do nothing substantial) - we'll remove them in
the following patches.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
static inline void fpu_fxsave(struct fpu *fpu)
{
if (config_enabled(CONFIG_X86_32))
- asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
+ asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
else if (config_enabled(CONFIG_AS_FXSAVEQ))
- asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave));
+ asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
else {
/* Using "rex64; fxsave %0" is broken because, if the memory
* operand uses any extended registers for addressing, a second
* an extended register is needed for addressing (fix submitted
* to mainline 2005-11-21).
*
- * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
+ * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
*
* This, however, we can work around by forcing the compiler to
* select an addressing mode that doesn't require extended
* registers.
*/
asm volatile( "rex64/fxsave (%[fx])"
- : "=m" (fpu->state->fxsave)
- : [fx] "R" (&fpu->state->fxsave));
+ : "=m" (fpu->state.fxsave)
+ : [fx] "R" (&fpu->state.fxsave));
}
}
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
{
if (likely(use_xsave())) {
- xsave_state(&fpu->state->xsave);
+ xsave_state(&fpu->state.xsave);
return 1;
}
* Legacy FPU register saving, FNSAVE always clears FPU registers,
* so we have to mark them inactive:
*/
- asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state->fsave));
+ asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave));
return 0;
}
static inline int fpu_restore_checking(struct fpu *fpu)
{
if (use_xsave())
- return fpu_xrstor_checking(&fpu->state->xsave);
+ return fpu_xrstor_checking(&fpu->state.xsave);
else if (use_fxsr())
- return fxrstor_checking(&fpu->state->fxsave);
+ return fxrstor_checking(&fpu->state.fxsave);
else
- return frstor_checking(&fpu->state->fsave);
+ return frstor_checking(&fpu->state.fsave);
}
static inline int restore_fpu_checking(struct fpu *fpu)
if (fpu.preload) {
new_fpu->counter++;
__fpregs_activate(new_fpu);
- prefetch(new_fpu->state);
+ prefetch(&new_fpu->state);
} else if (!use_eager_fpu())
stts();
} else {
if (fpu_want_lazy_restore(new_fpu, cpu))
fpu.preload = 0;
else
- prefetch(new_fpu->state);
+ prefetch(&new_fpu->state);
fpregs_activate(new_fpu);
}
}
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
if (cpu_has_fxsr) {
- return tsk->thread.fpu.state->fxsave.cwd;
+ return tsk->thread.fpu.state.fxsave.cwd;
} else {
- return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
+ return (unsigned short)tsk->thread.fpu.state.fsave.cwd;
}
}
static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
if (cpu_has_fxsr) {
- return tsk->thread.fpu.state->fxsave.swd;
+ return tsk->thread.fpu.state.fxsave.swd;
} else {
- return (unsigned short)tsk->thread.fpu.state->fsave.swd;
+ return (unsigned short)tsk->thread.fpu.state.fsave.swd;
}
}
static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
if (cpu_has_xmm) {
- return tsk->thread.fpu.state->fxsave.mxcsr;
+ return tsk->thread.fpu.state.fxsave.mxcsr;
} else {
return MXCSR_DEFAULT;
}
unsigned int last_cpu;
unsigned int fpregs_active;
- union thread_xstate *state;
+ union thread_xstate state;
/*
* This counter contains the number of consecutive context switches
* during which the FPU stays used. If this is over a threshold, the
{
if (use_xsave()) {
if (unlikely(system_state == SYSTEM_BOOTING))
- xsave_state_booting(&fpu->state->xsave);
+ xsave_state_booting(&fpu->state.xsave);
else
- xsave_state(&fpu->state->xsave);
+ xsave_state(&fpu->state.xsave);
} else {
fpu_fxsave(fpu);
}
void fpstate_init(struct fpu *fpu)
{
if (!cpu_has_fpu) {
- finit_soft_fpu(&fpu->state->soft);
+ finit_soft_fpu(&fpu->state.soft);
return;
}
- memset(fpu->state, 0, xstate_size);
+ memset(&fpu->state, 0, xstate_size);
if (cpu_has_fxsr) {
- fx_finit(&fpu->state->fxsave);
+ fx_finit(&fpu->state.fxsave);
} else {
- struct i387_fsave_struct *fp = &fpu->state->fsave;
+ struct i387_fsave_struct *fp = &fpu->state.fsave;
fp->cwd = 0xffff037fu;
fp->swd = 0xffff0000u;
fp->twd = 0xffffffffu;
int fpstate_alloc(struct fpu *fpu)
{
- if (fpu->state)
- return 0;
-
- fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
- if (!fpu->state)
- return -ENOMEM;
-
/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
- WARN_ON((unsigned long)fpu->state & 15);
+ WARN_ON((unsigned long)&fpu->state & 15);
return 0;
}
void fpstate_free(struct fpu *fpu)
{
- if (fpu->state) {
- kmem_cache_free(task_xstate_cachep, fpu->state);
- fpu->state = NULL;
- }
}
EXPORT_SYMBOL_GPL(fpstate_free);
WARN_ON(src_fpu != ¤t->thread.fpu);
if (use_eager_fpu()) {
- memset(&dst_fpu->state->xsave, 0, xstate_size);
+ memset(&dst_fpu->state.xsave, 0, xstate_size);
__save_fpu(dst_fpu);
} else {
fpu__save(src_fpu);
- memcpy(dst_fpu->state, src_fpu->state, xstate_size);
+ memcpy(&dst_fpu->state, &src_fpu->state, xstate_size);
}
}
{
dst_fpu->counter = 0;
dst_fpu->fpregs_active = 0;
- dst_fpu->state = NULL;
dst_fpu->last_cpu = -1;
if (src_fpu->fpstate_active) {
sanitize_i387_state(target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
- &fpu->state->fxsave, 0, -1);
+ &fpu->state.fxsave, 0, -1);
}
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
sanitize_i387_state(target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
- &fpu->state->fxsave, 0, -1);
+ &fpu->state.fxsave, 0, -1);
/*
* mxcsr reserved bits must be masked to zero for security reasons.
*/
- fpu->state->fxsave.mxcsr &= mxcsr_feature_mask;
+ fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
/*
* update the header bits in the xsave header, indicating the
* presence of FP and SSE state.
*/
if (cpu_has_xsave)
- fpu->state->xsave.header.xfeatures |= XSTATE_FPSSE;
+ fpu->state.xsave.header.xfeatures |= XSTATE_FPSSE;
return ret;
}
if (ret)
return ret;
- xsave = &fpu->state->xsave;
+ xsave = &fpu->state.xsave;
/*
* Copy the 48bytes defined by the software first into the xstate
if (ret)
return ret;
- xsave = &fpu->state->xsave;
+ xsave = &fpu->state.xsave;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
/*
void
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
{
- struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
+ struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
int i;
const struct user_i387_ia32_struct *env)
{
- struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
+ struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
int i;
if (!cpu_has_fxsr)
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
- &fpu->state->fsave, 0,
+ &fpu->state.fsave, 0,
-1);
sanitize_i387_state(target);
if (!cpu_has_fxsr)
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
- &fpu->state->fsave, 0,
+ &fpu->state.fsave, 0,
-1);
if (pos > 0 || count < sizeof(env))
* presence of FP.
*/
if (cpu_has_xsave)
- fpu->state->xsave.header.xfeatures |= XSTATE_FP;
+ fpu->state.xsave.header.xfeatures |= XSTATE_FP;
return ret;
}
*/
void __sanitize_i387_state(struct task_struct *tsk)
{
- struct i387_fxsave_struct *fx = &tsk->thread.fpu.state->fxsave;
+ struct i387_fxsave_struct *fx = &tsk->thread.fpu.state.fxsave;
int feature_bit;
u64 xfeatures;
if (!fx)
return;
- xfeatures = tsk->thread.fpu.state->xsave.header.xfeatures;
+ xfeatures = tsk->thread.fpu.state.xsave.header.xfeatures;
/*
* None of the feature bits are in init state. So nothing else
static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
{
if (use_fxsr()) {
- struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
+ struct xsave_struct *xsave = &tsk->thread.fpu.state.xsave;
struct user_i387_ia32_struct env;
struct _fpstate_ia32 __user *fp = buf;
*/
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
{
- struct xsave_struct *xsave = ¤t->thread.fpu.state->xsave;
+ struct xsave_struct *xsave = ¤t->thread.fpu.state.xsave;
struct task_struct *tsk = current;
int ia32_fxstate = (buf != buf_fx);
struct user_i387_ia32_struct *ia32_env,
u64 xfeatures, int fx_only)
{
- struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
+ struct xsave_struct *xsave = &tsk->thread.fpu.state.xsave;
struct xstate_header *header = &xsave->header;
if (use_xsave()) {
*/
drop_fpu(fpu);
- if (__copy_from_user(&fpu->state->xsave, buf_fx, state_size) ||
+ if (__copy_from_user(&fpu->state.xsave, buf_fx, state_size) ||
__copy_from_user(&env, buf, sizeof(env))) {
fpstate_init(fpu);
err = -1;
* do an xsave and then pull it out of the xsave buffer.
*/
copy_fpregs_to_fpstate(&tsk->thread.fpu);
- xsave_buf = &(tsk->thread.fpu.state->xsave);
+ xsave_buf = &(tsk->thread.fpu.state.xsave);
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
if (!bndcsr)
goto exit_trap;
static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
{
- struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+ struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state.xsave;
u64 xstate_bv = xsave->header.xfeatures;
u64 valid;
static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
{
- struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+ struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state.xsave;
u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
u64 valid;
fill_xsave((u8 *) guest_xsave->region, vcpu);
} else {
memcpy(guest_xsave->region,
- &vcpu->arch.guest_fpu.state->fxsave,
+ &vcpu->arch.guest_fpu.state.fxsave,
sizeof(struct i387_fxsave_struct));
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
XSTATE_FPSSE;
} else {
if (xstate_bv & ~XSTATE_FPSSE)
return -EINVAL;
- memcpy(&vcpu->arch.guest_fpu.state->fxsave,
+ memcpy(&vcpu->arch.guest_fpu.state.fxsave,
guest_xsave->region, sizeof(struct i387_fxsave_struct));
}
return 0;
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct i387_fxsave_struct *fxsave =
- &vcpu->arch.guest_fpu.state->fxsave;
+ &vcpu->arch.guest_fpu.state.fxsave;
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct i387_fxsave_struct *fxsave =
- &vcpu->arch.guest_fpu.state->fxsave;
+ &vcpu->arch.guest_fpu.state.fxsave;
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fpstate_init(&vcpu->arch.guest_fpu);
if (cpu_has_xsaves)
- vcpu->arch.guest_fpu.state->xsave.header.xcomp_bv =
+ vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
host_xcr0 | XSTATE_COMPACTION_ENABLED;
/*
void finit(void)
{
- finit_soft_fpu(¤t->thread.fpu.state->soft);
+ finit_soft_fpu(¤t->thread.fpu.state.soft);
}
/*
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
- struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
+ struct i387_soft_struct *s387 = &target->thread.fpu.state.soft;
void *space = s387->st_space;
int ret;
int offset, other, i, tags, regnr, tag, newtop;
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
- struct i387_soft_struct *s387 = &target->thread.fpu.state->soft;
+ struct i387_soft_struct *s387 = &target->thread.fpu.state.soft;
const void *space = s387->st_space;
int ret;
int offset = (S387->ftop & 7) * 10, other = 80 - offset;
#define SEG_EXPAND_DOWN(s) (((s).b & ((1 << 11) | (1 << 10))) \
== (1 << 10))
-#define I387 (current->thread.fpu.state)
+#define I387 (¤t->thread.fpu.state)
#define FPU_info (I387->soft.info)
#define FPU_CS (*(unsigned short *) &(FPU_info->regs->cs))
* only accessible if we first do an xsave.
*/
copy_fpregs_to_fpstate(&tsk->thread.fpu);
- bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
+ bndcsr = get_xsave_addr(&tsk->thread.fpu.state.xsave, XSTATE_BNDCSR);
if (!bndcsr)
return MPX_INVALID_BOUNDS_DIR;