* Since xchg() doesn't always do that, it would seem that following defintion
* is incorrect. But here's the rationale:
* SMP : Even xchg() takes the atomic_ops_lock, so OK.
- * LLSC: atomic_ops_lock are not relevent at all (even if SMP, since LLSC
+ * LLSC: atomic_ops_lock are not relevant at all (even if SMP, since LLSC
* is natively "SMP safe", no serialization required).
* UP : other atomics disable IRQ, so no way a difft ctxt atomic_xchg()
* could clobber them. atomic_xchg() itself would be 1 insn, so it
/* free up r9 as scratchpad */
PROLOG_FREEUP_REG r9, @int\LVL\()_saved_reg
- /* Which mode (user/kernel) was the system in when intr occured */
+ /* Which mode (user/kernel) was the system in when intr occurred */
lr r9, [status32_l\LVL\()]
SWITCH_TO_KERNEL_STK
* - Utilise some unused free bits to confine PTE flags to 12 bits
* This is a must for 4k pg-sz
*
- * vineetg: Mar 2011 - changes to accomodate MMU TLB Page Descriptor mods
+ * vineetg: Mar 2011 - changes to accommodate MMU TLB Page Descriptor mods
* -TLB Locking never really existed, except for initial specs
* -SILENT_xxx not needed for our port
* -Per my request, MMU V3 changes the layout of some of the bits
}
/* Another API expected by schedular, shows up in "ps" as Wait Channel
- * Ofcourse just returning schedule( ) would be pointless so unwind until
+ * Of course just returning schedule( ) would be pointless so unwind until
* the function is not in schedular code
*/
unsigned int get_wchan(struct task_struct *tsk)
#define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */
#define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */
-#define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */
-#define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
+#define TIMER_CTRL_IE (1 << 0) /* Interrupt when Count reaches limit */
+#define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
#define ARC_TIMER_MAX 0xFFFFFFFF
/*
* DMA ops for systems with both L1 and L2 caches, but without IOC
- * Both L1 and L2 lines need to be explicity flushed/invalidated
+ * Both L1 and L2 lines need to be explicitly flushed/invalidated
*/
static void __dma_cache_wback_inv_slc(unsigned long start, unsigned long sz)
{
/*
* HIGHMEM API:
*
- * kmap() API provides sleep semantics hence refered to as "permanent maps"
+ * kmap() API provides sleep semantics hence referred to as "permanent maps"
* It allows mapping LAST_PKMAP pages, using @last_pkmap_nr as the cursor
* for book-keeping
*
* in interrupt-safe region.
*
* Vineetg: April 23rd Bug #93131
- * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
+ * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
* flush is more than the size of TLB itself.
*
* Rahul Trivedi : Codito Technologies 2004
/* MMU v2 introduced the uTLB Flush command.
* There was however an obscure hardware bug, where uTLB flush would
* fail when a prior probe for J-TLB (both totally unrelated) would
- * return lkup err - because the entry didnt exist in MMU.
+ * return lkup err - because the entry didn't exist in MMU.
* The Workround was to set Index reg with some valid value, prior to
* flush. This was fixed in MMU v3 hence not needed any more
*/
/*
* Commit the Entry to MMU
- * It doesnt sound safe to use the TLBWriteNI cmd here
+ * It doesn't sound safe to use the TLBWriteNI cmd here
* which doesn't flush uTLBs. I'd rather be safe than sorry.
*/
write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
* support.
*
* Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
- * new bit "SZ" in TLB page desciptor to distinguish between them.
+ * new bit "SZ" in TLB page descriptor to distinguish between them.
* Super Page size is configurable in hardware (4K to 16M), but fixed once
* RTL builds.
*