Once special level interrupts are supported, we may take nested TLB
misses -- so allow the same thread to acquire the lock recursively.
The lock will not be effective against the nested TLB miss handler
trying to write the same entry as the interrupted TLB miss handler, but
that's also a problem on non-threaded CPUs that lack TLB write
conditional. This will be addressed in the patch that enables crit/mc
support by invalidating the TLB on return from level exceptions.
Signed-off-by: Scott Wood <scottwood@freescale.com>
extern int mmu_vmemmap_psize;
struct tlb_core_data {
+ /*
+ * Per-core spinlock for e6500 TLB handlers (no tlbsrx.)
+ * Must be the first struct element.
+ */
+ u8 lock;
+
/* For software way selection, as on Freescale TLB1 */
u8 esel_next, esel_max, esel_first;
-
- /* Per-core spinlock for e6500 TLB handlers (no tlbsrx.) */
- u8 lock;
};
#ifdef CONFIG_PPC64
{
int cpu;
+ BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
+
for_each_possible_cpu(cpu) {
int first = cpu_first_thread_sibling(cpu);
* r14 = page table base
* r13 = PACA
* r11 = tlb_per_core ptr
- * r10 = crap (free to use)
+ * r10 = cpu number
*/
tlb_miss_common_e6500:
/*
*
* MAS6:IND should be already set based on MAS4
*/
- addi r10,r11,TCD_LOCK
-1: lbarx r15,0,r10
+1: lbarx r15,0,r11
+ lhz r10,PACAPACAINDEX(r13)
cmpdi r15,0
+ cmpdi cr1,r15,1 /* set cr1.eq = 0 for non-recursive */
bne 2f
- li r15,1
- stbcx. r15,0,r10
+ stbcx. r10,0,r11
bne 1b
+3:
.subsection 1
-2: lbz r15,0(r10)
+2: cmpd cr1,r15,r10 /* recursive lock due to mcheck/crit/etc? */
+ beq cr1,3b /* unlock will happen if cr1.eq = 0 */
+ lbz r15,0(r11)
cmpdi r15,0
bne 2b
b 1b
tlb_miss_done_e6500:
.macro tlb_unlock_e6500
+ beq cr1,1f /* no unlock if lock was recursively grabbed */
li r15,0
isync
- stb r15,TCD_LOCK(r11)
+ stb r15,0(r11)
+1:
.endm
tlb_unlock_e6500