]> git.karo-electronics.de Git - mv-sheeva.git/commitdiff
xfs: log timestamp updates
authorChristoph Hellwig <hch@infradead.org>
Wed, 29 Feb 2012 09:53:52 +0000 (09:53 +0000)
committerBen Myers <bpm@sgi.com>
Tue, 13 Mar 2012 22:01:15 +0000 (17:01 -0500)
Timestamps on regular files are the last metadata that XFS does not update
transactionally.  Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates.  Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.

Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
13 files changed:
fs/xfs/xfs_file.c
fs/xfs/xfs_iget.c
fs/xfs/xfs_inode.c
fs/xfs/xfs_inode.h
fs/xfs/xfs_inode_item.c
fs/xfs/xfs_inode_item.h
fs/xfs/xfs_iops.c
fs/xfs/xfs_itable.c
fs/xfs/xfs_super.c
fs/xfs/xfs_sync.c
fs/xfs/xfs_sync.h
fs/xfs/xfs_trace.h
fs/xfs/xfs_trans_inode.c

index 7e5bc872f2b4fb12d67f3da3796f3c5b86ac162c..78d8b0299592d10bcc1222414956197340ce874c 100644 (file)
@@ -163,7 +163,6 @@ xfs_file_fsync(
        struct inode            *inode = file->f_mapping->host;
        struct xfs_inode        *ip = XFS_I(inode);
        struct xfs_mount        *mp = ip->i_mount;
-       struct xfs_trans        *tp;
        int                     error = 0;
        int                     log_flushed = 0;
        xfs_lsn_t               lsn = 0;
@@ -194,75 +193,15 @@ xfs_file_fsync(
        }
 
        /*
-        * We always need to make sure that the required inode state is safe on
-        * disk.  The inode might be clean but we still might need to force the
-        * log because of committed transactions that haven't hit the disk yet.
-        * Likewise, there could be unflushed non-transactional changes to the
-        * inode core that have to go to disk and this requires us to issue
-        * a synchronous transaction to capture these changes correctly.
-        *
-        * This code relies on the assumption that if the i_update_core field
-        * of the inode is clear and the inode is unpinned then it is clean
-        * and no action is required.
+        * All metadata updates are logged, which means that we just have
+        * to flush the log up to the latest LSN that touched the inode.
         */
        xfs_ilock(ip, XFS_ILOCK_SHARED);
-
-       /*
-        * First check if the VFS inode is marked dirty.  All the dirtying
-        * of non-transactional updates do not go through mark_inode_dirty*,
-        * which allows us to distinguish between pure timestamp updates
-        * and i_size updates which need to be caught for fdatasync.
-        * After that also check for the dirty state in the XFS inode, which
-        * might gets cleared when the inode gets written out via the AIL
-        * or xfs_iflush_cluster.
-        */
-       if (((inode->i_state & I_DIRTY_DATASYNC) ||
-           ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
-           ip->i_update_core) {
-               /*
-                * Kick off a transaction to log the inode core to get the
-                * updates.  The sync transaction will also force the log.
-                */
-               xfs_iunlock(ip, XFS_ILOCK_SHARED);
-               tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
-               error = xfs_trans_reserve(tp, 0,
-                               XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
-               if (error) {
-                       xfs_trans_cancel(tp, 0);
-                       return -error;
-               }
-               xfs_ilock(ip, XFS_ILOCK_EXCL);
-
-               /*
-                * Note - it's possible that we might have pushed ourselves out
-                * of the way during trans_reserve which would flush the inode.
-                * But there's no guarantee that the inode buffer has actually
-                * gone out yet (it's delwri).  Plus the buffer could be pinned
-                * anyway if it's part of an inode in another recent
-                * transaction.  So we play it safe and fire off the
-                * transaction anyway.
-                */
-               xfs_trans_ijoin(tp, ip, 0);
-               xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
-               error = xfs_trans_commit(tp, 0);
-
+       if (xfs_ipincount(ip))
                lsn = ip->i_itemp->ili_last_lsn;
-               xfs_iunlock(ip, XFS_ILOCK_EXCL);
-       } else {
-               /*
-                * Timestamps/size haven't changed since last inode flush or
-                * inode transaction commit.  That means either nothing got
-                * written or a transaction committed which caught the updates.
-                * If the latter happened and the transaction hasn't hit the
-                * disk yet, the inode will be still be pinned.  If it is,
-                * force the log.
-                */
-               if (xfs_ipincount(ip))
-                       lsn = ip->i_itemp->ili_last_lsn;
-               xfs_iunlock(ip, XFS_ILOCK_SHARED);
-       }
+       xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
-       if (!error && lsn)
+       if (lsn)
                error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 
        /*
@@ -659,9 +598,6 @@ restart:
                return error;
        }
 
-       if (likely(!(file->f_mode & FMODE_NOCMTIME)))
-               file_update_time(file);
-
        /*
         * If the offset is beyond the size of the file, we need to zero any
         * blocks that fall between the existing EOF and the start of this
@@ -684,6 +620,15 @@ restart:
        if (error)
                return error;
 
+       /*
+        * Updating the timestamps will grab the ilock again from
+        * xfs_fs_dirty_inode, so we have to call it after dropping the
+        * lock above.  Eventually we should look into a way to avoid
+        * the pointless lock roundtrip.
+        */
+       if (likely(!(file->f_mode & FMODE_NOCMTIME)))
+               file_update_time(file);
+
        /*
         * If we're writing the file then make sure to clear the setuid and
         * setgid bits if the process is not being run by root.  This keeps
index 37f22dad5f5930482df034927340c473b910a9bd..af3f30a3d9c2875c2304f0c109e1a0ea67234c68 100644 (file)
@@ -91,7 +91,6 @@ xfs_inode_alloc(
        ip->i_afp = NULL;
        memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
        ip->i_flags = 0;
-       ip->i_update_core = 0;
        ip->i_delayed_blks = 0;
        memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
 
index b21022499c2e8f302699f80ca2af344301fee941..7ce9ccbf17c4234aa1ba5ce8aab5934c537fe400 100644 (file)
@@ -1656,7 +1656,6 @@ retry:
                        iip = ip->i_itemp;
                        if (!iip || xfs_inode_clean(ip)) {
                                ASSERT(ip != free_ip);
-                               ip->i_update_core = 0;
                                xfs_ifunlock(ip);
                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
                                continue;
@@ -2451,7 +2450,6 @@ xfs_iflush(
         * to disk, because the log record didn't make it to disk!
         */
        if (XFS_FORCED_SHUTDOWN(mp)) {
-               ip->i_update_core = 0;
                if (iip)
                        iip->ili_format.ilf_fields = 0;
                xfs_ifunlock(ip);
@@ -2533,26 +2531,6 @@ xfs_iflush_int(
        /* set *dip = inode's place in the buffer */
        dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
-       /*
-        * Clear i_update_core before copying out the data.
-        * This is for coordination with our timestamp updates
-        * that don't hold the inode lock. They will always
-        * update the timestamps BEFORE setting i_update_core,
-        * so if we clear i_update_core after they set it we
-        * are guaranteed to see their updates to the timestamps.
-        * I believe that this depends on strongly ordered memory
-        * semantics, but we have that.  We use the SYNCHRONIZE
-        * macro to make sure that the compiler does not reorder
-        * the i_update_core access below the data copy below.
-        */
-       ip->i_update_core = 0;
-       SYNCHRONIZE();
-
-       /*
-        * Make sure to get the latest timestamps from the Linux inode.
-        */
-       xfs_synchronize_times(ip);
-
        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
@@ -2711,8 +2689,7 @@ xfs_iflush_int(
        } else {
                /*
                 * We're flushing an inode which is not in the AIL and has
-                * not been logged but has i_update_core set.  For this
-                * case we can use a B_DELWRI flush and immediately drop
+                * not been logged.  For this case we can immediately drop
                 * the inode flush lock because we can avoid the whole
                 * AIL state thing.  It's OK to drop the flush lock now,
                 * because we've already locked the buffer and to do anything
index 7f90469141d7263e0511593375613f6d57c40f74..f123dbe6d42a0e4203f1db43980dd29e097311f9 100644 (file)
@@ -241,7 +241,6 @@ typedef struct xfs_inode {
        spinlock_t              i_flags_lock;   /* inode i_flags lock */
        /* Miscellaneous state. */
        unsigned long           i_flags;        /* see defined flags below */
-       unsigned char           i_update_core;  /* timestamps/size is dirty */
        unsigned int            i_delayed_blks; /* count of delay alloc blks */
 
        xfs_icdinode_t          i_d;            /* most of ondisk inode */
@@ -534,10 +533,6 @@ void               xfs_promote_inode(struct xfs_inode *);
 void           xfs_lock_inodes(xfs_inode_t **, int, uint);
 void           xfs_lock_two_inodes(xfs_inode_t *, xfs_inode_t *, uint);
 
-void           xfs_synchronize_times(xfs_inode_t *);
-void           xfs_mark_inode_dirty(xfs_inode_t *);
-void           xfs_mark_inode_dirty_sync(xfs_inode_t *);
-
 #define IHOLD(ip) \
 do { \
        ASSERT(atomic_read(&VFS_I(ip)->i_count) > 0) ; \
index adc8a261b5d0ffffe22c4dc93826f4b79b5190b4..7a60da64f31df9e889a2ca6155a0df95a3032e4e 100644 (file)
@@ -254,42 +254,6 @@ xfs_inode_item_format(
        vecp++;
        nvecs        = 1;
 
-       /*
-        * Clear i_update_core if the timestamps (or any other
-        * non-transactional modification) need flushing/logging
-        * and we're about to log them with the rest of the core.
-        *
-        * This is the same logic as xfs_iflush() but this code can't
-        * run at the same time as xfs_iflush because we're in commit
-        * processing here and so we have the inode lock held in
-        * exclusive mode.  Although it doesn't really matter
-        * for the timestamps if both routines were to grab the
-        * timestamps or not.  That would be ok.
-        *
-        * We clear i_update_core before copying out the data.
-        * This is for coordination with our timestamp updates
-        * that don't hold the inode lock. They will always
-        * update the timestamps BEFORE setting i_update_core,
-        * so if we clear i_update_core after they set it we
-        * are guaranteed to see their updates to the timestamps
-        * either here.  Likewise, if they set it after we clear it
-        * here, we'll see it either on the next commit of this
-        * inode or the next time the inode gets flushed via
-        * xfs_iflush().  This depends on strongly ordered memory
-        * semantics, but we have that.  We use the SYNCHRONIZE
-        * macro to make sure that the compiler does not reorder
-        * the i_update_core access below the data copy below.
-        */
-       if (ip->i_update_core)  {
-               ip->i_update_core = 0;
-               SYNCHRONIZE();
-       }
-
-       /*
-        * Make sure to get the latest timestamps from the Linux inode.
-        */
-       xfs_synchronize_times(ip);
-
        vecp->i_addr = &ip->i_d;
        vecp->i_len  = sizeof(struct xfs_icdinode);
        vecp->i_type = XLOG_REG_TYPE_ICORE;
index d3dee61e6d91fde1671157b3ee2deeee8df49fcd..25784b066568395d34ef177bc51434b0cc6f38eb 100644 (file)
@@ -148,9 +148,8 @@ typedef struct xfs_inode_log_item {
 
 static inline int xfs_inode_clean(xfs_inode_t *ip)
 {
-       return (!ip->i_itemp ||
-               !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
-              !ip->i_update_core;
+       return !ip->i_itemp ||
+               !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL);
 }
 
 extern void xfs_inode_item_init(struct xfs_inode *, struct xfs_mount *);
index ab302539e5b9603b8a67bb9f4399c03625fe1fd7..7c01cda1672754c0ecf185daaa9ac0464552f770 100644 (file)
 #include <linux/fiemap.h>
 #include <linux/slab.h>
 
-/*
- * Bring the timestamps in the XFS inode uptodate.
- *
- * Used before writing the inode to disk.
- */
-void
-xfs_synchronize_times(
-       xfs_inode_t     *ip)
-{
-       struct inode    *inode = VFS_I(ip);
-
-       ip->i_d.di_atime.t_sec = (__int32_t)inode->i_atime.tv_sec;
-       ip->i_d.di_atime.t_nsec = (__int32_t)inode->i_atime.tv_nsec;
-       ip->i_d.di_ctime.t_sec = (__int32_t)inode->i_ctime.tv_sec;
-       ip->i_d.di_ctime.t_nsec = (__int32_t)inode->i_ctime.tv_nsec;
-       ip->i_d.di_mtime.t_sec = (__int32_t)inode->i_mtime.tv_sec;
-       ip->i_d.di_mtime.t_nsec = (__int32_t)inode->i_mtime.tv_nsec;
-}
-
-/*
- * If the linux inode is valid, mark it dirty, else mark the dirty state
- * in the XFS inode to make sure we pick it up when reclaiming the inode.
- */
-void
-xfs_mark_inode_dirty_sync(
-       xfs_inode_t     *ip)
-{
-       struct inode    *inode = VFS_I(ip);
-
-       if (!(inode->i_state & (I_WILL_FREE|I_FREEING)))
-               mark_inode_dirty_sync(inode);
-       else {
-               barrier();
-               ip->i_update_core = 1;
-       }
-}
-
-void
-xfs_mark_inode_dirty(
-       xfs_inode_t     *ip)
-{
-       struct inode    *inode = VFS_I(ip);
-
-       if (!(inode->i_state & (I_WILL_FREE|I_FREEING)))
-               mark_inode_dirty(inode);
-       else {
-               barrier();
-               ip->i_update_core = 1;
-       }
-
-}
-
-
 int xfs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
                   void *fs_info)
 {
@@ -678,19 +625,16 @@ xfs_setattr_nonsize(
                inode->i_atime = iattr->ia_atime;
                ip->i_d.di_atime.t_sec = iattr->ia_atime.tv_sec;
                ip->i_d.di_atime.t_nsec = iattr->ia_atime.tv_nsec;
-               ip->i_update_core = 1;
        }
        if (mask & ATTR_CTIME) {
                inode->i_ctime = iattr->ia_ctime;
                ip->i_d.di_ctime.t_sec = iattr->ia_ctime.tv_sec;
                ip->i_d.di_ctime.t_nsec = iattr->ia_ctime.tv_nsec;
-               ip->i_update_core = 1;
        }
        if (mask & ATTR_MTIME) {
                inode->i_mtime = iattr->ia_mtime;
                ip->i_d.di_mtime.t_sec = iattr->ia_mtime.tv_sec;
                ip->i_d.di_mtime.t_nsec = iattr->ia_mtime.tv_nsec;
-               ip->i_update_core = 1;
        }
 
        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
@@ -918,13 +862,11 @@ xfs_setattr_size(
                inode->i_ctime = iattr->ia_ctime;
                ip->i_d.di_ctime.t_sec = iattr->ia_ctime.tv_sec;
                ip->i_d.di_ctime.t_nsec = iattr->ia_ctime.tv_nsec;
-               ip->i_update_core = 1;
        }
        if (mask & ATTR_MTIME) {
                inode->i_mtime = iattr->ia_mtime;
                ip->i_d.di_mtime.t_sec = iattr->ia_mtime.tv_sec;
                ip->i_d.di_mtime.t_nsec = iattr->ia_mtime.tv_nsec;
-               ip->i_update_core = 1;
        }
 
        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
index 751e94fe1f77e2694790da48952cf03f30a554e4..9720c54bbed0dd4a37e9ebc6bbb33bf9ee8fdbf7 100644 (file)
@@ -62,7 +62,6 @@ xfs_bulkstat_one_int(
 {
        struct xfs_icdinode     *dic;           /* dinode core info pointer */
        struct xfs_inode        *ip;            /* incore inode pointer */
-       struct inode            *inode;
        struct xfs_bstat        *buf;           /* return buffer */
        int                     error = 0;      /* error value */
 
@@ -86,7 +85,6 @@ xfs_bulkstat_one_int(
        ASSERT(ip->i_imap.im_blkno != 0);
 
        dic = &ip->i_d;
-       inode = VFS_I(ip);
 
        /* xfs_iget returns the following without needing
         * further change.
@@ -99,19 +97,12 @@ xfs_bulkstat_one_int(
        buf->bs_uid = dic->di_uid;
        buf->bs_gid = dic->di_gid;
        buf->bs_size = dic->di_size;
-
-       /*
-        * We need to read the timestamps from the Linux inode because
-        * the VFS keeps writing directly into the inode structure instead
-        * of telling us about the updates.
-        */
-       buf->bs_atime.tv_sec = inode->i_atime.tv_sec;
-       buf->bs_atime.tv_nsec = inode->i_atime.tv_nsec;
-       buf->bs_mtime.tv_sec = inode->i_mtime.tv_sec;
-       buf->bs_mtime.tv_nsec = inode->i_mtime.tv_nsec;
-       buf->bs_ctime.tv_sec = inode->i_ctime.tv_sec;
-       buf->bs_ctime.tv_nsec = inode->i_ctime.tv_nsec;
-
+       buf->bs_atime.tv_sec = dic->di_atime.t_sec;
+       buf->bs_atime.tv_nsec = dic->di_atime.t_nsec;
+       buf->bs_mtime.tv_sec = dic->di_mtime.t_sec;
+       buf->bs_mtime.tv_nsec = dic->di_mtime.t_nsec;
+       buf->bs_ctime.tv_sec = dic->di_ctime.t_sec;
+       buf->bs_ctime.tv_nsec = dic->di_ctime.t_nsec;
        buf->bs_xflags = xfs_ip2xflags(ip);
        buf->bs_extsize = dic->di_extsize << mp->m_sb.sb_blocklog;
        buf->bs_extents = dic->di_nextents;
index c7f7bc2855a43331ca699d59244fb45d4ab79ae6..e602c8c67c5c56dace404d4a2b1277a3cfbda248 100644 (file)
@@ -863,91 +863,58 @@ xfs_fs_inode_init_once(
 }
 
 /*
- * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
- * we catch unlogged VFS level updates to the inode.
+ * This is called by the VFS when dirtying inode metadata.  This can happen
+ * for a few reasons, but we only care about timestamp updates, given that
+ * we handled the rest ourselves.  In theory no other calls should happen,
+ * but for example generic_write_end() keeps dirtying the inode after
+ * updating i_size.  Thus we check that the flags are exactly I_DIRTY_SYNC,
+ * and skip this call otherwise.
  *
- * We need the barrier() to maintain correct ordering between unlogged
- * updates and the transaction commit code that clears the i_update_core
- * field. This requires all updates to be completed before marking the
- * inode dirty.
+ * We'll hopefull get a different method just for updating timestamps soon,
+ * at which point this hack can go away, and maybe we'll also get real
+ * error handling here.
  */
 STATIC void
 xfs_fs_dirty_inode(
-       struct inode    *inode,
-       int             flags)
-{
-       barrier();
-       XFS_I(inode)->i_update_core = 1;
-}
-
-STATIC int
-xfs_fs_write_inode(
        struct inode            *inode,
-       struct writeback_control *wbc)
+       int                     flags)
 {
        struct xfs_inode        *ip = XFS_I(inode);
        struct xfs_mount        *mp = ip->i_mount;
-       int                     error = EAGAIN;
-
-       trace_xfs_write_inode(ip);
-
-       if (XFS_FORCED_SHUTDOWN(mp))
-               return -XFS_ERROR(EIO);
-
-       if (wbc->sync_mode == WB_SYNC_ALL || wbc->for_kupdate) {
-               /*
-                * Make sure the inode has made it it into the log.  Instead
-                * of forcing it all the way to stable storage using a
-                * synchronous transaction we let the log force inside the
-                * ->sync_fs call do that for thus, which reduces the number
-                * of synchronous log forces dramatically.
-                */
-               error = xfs_log_dirty_inode(ip, NULL, 0);
-               if (error)
-                       goto out;
-               return 0;
-       } else {
-               if (!ip->i_update_core)
-                       return 0;
+       struct xfs_trans        *tp;
+       int                     error;
 
-               /*
-                * We make this non-blocking if the inode is contended, return
-                * EAGAIN to indicate to the caller that they did not succeed.
-                * This prevents the flush path from blocking on inodes inside
-                * another operation right now, they get caught later by
-                * xfs_sync.
-                */
-               if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
-                       goto out;
+       if (flags != I_DIRTY_SYNC)
+               return;
 
-               if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
-                       goto out_unlock;
+       trace_xfs_dirty_inode(ip);
 
-               /*
-                * Now we have the flush lock and the inode is not pinned, we
-                * can check if the inode is really clean as we know that
-                * there are no pending transaction completions, it is not
-                * waiting on the delayed write queue and there is no IO in
-                * progress.
-                */
-               if (xfs_inode_clean(ip)) {
-                       xfs_ifunlock(ip);
-                       error = 0;
-                       goto out_unlock;
-               }
-               error = xfs_iflush(ip, SYNC_TRYLOCK);
+       tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
+       error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
+       if (error) {
+               xfs_trans_cancel(tp, 0);
+               goto trouble;
        }
-
- out_unlock:
-       xfs_iunlock(ip, XFS_ILOCK_SHARED);
- out:
+       xfs_ilock(ip, XFS_ILOCK_EXCL);
        /*
-        * if we failed to write out the inode then mark
-        * it dirty again so we'll try again later.
+        * Grab all the latest timestamps from the Linux inode.
         */
+       ip->i_d.di_atime.t_sec = (__int32_t)inode->i_atime.tv_sec;
+       ip->i_d.di_atime.t_nsec = (__int32_t)inode->i_atime.tv_nsec;
+       ip->i_d.di_ctime.t_sec = (__int32_t)inode->i_ctime.tv_sec;
+       ip->i_d.di_ctime.t_nsec = (__int32_t)inode->i_ctime.tv_nsec;
+       ip->i_d.di_mtime.t_sec = (__int32_t)inode->i_mtime.tv_sec;
+       ip->i_d.di_mtime.t_nsec = (__int32_t)inode->i_mtime.tv_nsec;
+
+       xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+       xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+       error = xfs_trans_commit(tp, 0);
        if (error)
-               xfs_mark_inode_dirty_sync(ip);
-       return -error;
+               goto trouble;
+       return;
+
+trouble:
+       xfs_warn(mp, "failed to update timestamps for inode 0x%llx", ip->i_ino);
 }
 
 STATIC void
@@ -1466,7 +1433,6 @@ static const struct super_operations xfs_super_operations = {
        .alloc_inode            = xfs_fs_alloc_inode,
        .destroy_inode          = xfs_fs_destroy_inode,
        .dirty_inode            = xfs_fs_dirty_inode,
-       .write_inode            = xfs_fs_write_inode,
        .evict_inode            = xfs_fs_evict_inode,
        .put_super              = xfs_fs_put_super,
        .sync_fs                = xfs_fs_sync_fs,
index 71bf846b7280cafaad8af94c33b5875f40efc75d..205ebcb34d9e499f732423bd00c1204bb89f6ef8 100644 (file)
@@ -336,32 +336,6 @@ xfs_sync_fsdata(
        return error;
 }
 
-int
-xfs_log_dirty_inode(
-       struct xfs_inode        *ip,
-       struct xfs_perag        *pag,
-       int                     flags)
-{
-       struct xfs_mount        *mp = ip->i_mount;
-       struct xfs_trans        *tp;
-       int                     error;
-
-       if (!ip->i_update_core)
-               return 0;
-
-       tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
-       error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
-       if (error) {
-               xfs_trans_cancel(tp, 0);
-               return error;
-       }
-
-       xfs_ilock(ip, XFS_ILOCK_EXCL);
-       xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
-       xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
-       return xfs_trans_commit(tp, 0);
-}
-
 /*
  * When remounting a filesystem read-only or freezing the filesystem, we have
  * two phases to execute. This first phase is syncing the data before we
@@ -385,16 +359,6 @@ xfs_quiesce_data(
 {
        int                     error, error2 = 0;
 
-       /*
-        * Log all pending size and timestamp updates.  The vfs writeback
-        * code is supposed to do this, but due to its overagressive
-        * livelock detection it will skip inodes where appending writes
-        * were written out in the first non-blocking sync phase if their
-        * completion took long enough that it happened after taking the
-        * timestamp for the cut-off in the blocking phase.
-        */
-       xfs_inode_ag_iterator(mp, xfs_log_dirty_inode, 0);
-
        /* force out the log */
        xfs_log_force(mp, XFS_LOG_SYNC);
 
index fa965479d788d29da66b0e85bd59123c1fe08c65..941202e7ac6e594e2c423c19bc89248397e39516 100644 (file)
@@ -34,8 +34,6 @@ void xfs_quiesce_attr(struct xfs_mount *mp);
 
 void xfs_flush_inodes(struct xfs_inode *ip);
 
-int xfs_log_dirty_inode(struct xfs_inode *ip, struct xfs_perag *pag, int flags);
-
 int xfs_reclaim_inodes(struct xfs_mount *mp, int mode);
 int xfs_reclaim_inodes_count(struct xfs_mount *mp);
 void xfs_reclaim_inodes_nr(struct xfs_mount *mp, int nr_to_scan);
index 3b369c1277f0634753cf567e3fc4f44ccf57c7d7..ceaf6fe67e414f083f7760b9b1ff4724075dd67b 100644 (file)
@@ -580,7 +580,7 @@ DEFINE_INODE_EVENT(xfs_ioctl_setattr);
 DEFINE_INODE_EVENT(xfs_dir_fsync);
 DEFINE_INODE_EVENT(xfs_file_fsync);
 DEFINE_INODE_EVENT(xfs_destroy_inode);
-DEFINE_INODE_EVENT(xfs_write_inode);
+DEFINE_INODE_EVENT(xfs_dirty_inode);
 DEFINE_INODE_EVENT(xfs_evict_inode);
 
 DEFINE_INODE_EVENT(xfs_dquot_dqalloc);
index 32f0288ae10f30abe1f67d3ebcb766926fe8de7b..892763effdf12e65d6b3e9cbfe37503897163a06 100644 (file)
@@ -95,10 +95,14 @@ xfs_trans_ichgtime(
        if ((flags & XFS_ICHGTIME_MOD) &&
            !timespec_equal(&inode->i_mtime, &tv)) {
                inode->i_mtime = tv;
+               ip->i_d.di_mtime.t_sec = tv.tv_sec;
+               ip->i_d.di_mtime.t_nsec = tv.tv_nsec;
        }
        if ((flags & XFS_ICHGTIME_CHG) &&
            !timespec_equal(&inode->i_ctime, &tv)) {
                inode->i_ctime = tv;
+               ip->i_d.di_ctime.t_sec = tv.tv_sec;
+               ip->i_d.di_ctime.t_nsec = tv.tv_nsec;
        }
 }