{
lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
| (lcd.addr.y ? lcd.hwidth : 0)
- /* we force the cursor to stay at the end of the
- line if it wants to go farther */
+ /*
+ * we force the cursor to stay at the end of the
+ * line if it wants to go farther
+ */
| ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
(lcd.hwidth - 1) : lcd.bwidth - 1));
}
if (lcd.flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (lcd.light_tempo == 0)
- /* switch off the light only when the tempo
- lighting is gone */
+ /*
+ * switch off the light only when the tempo
+ * lighting is gone
+ */
lcd_backlight(0);
}
}
case '\b':
/* go back one char and clear it */
if (lcd.addr.x > 0) {
- /* check if we're not at the
- end of the line */
+ /*
+ * check if we're not at the
+ * end of the line
+ */
if (lcd.addr.x < lcd.bwidth)
/* back one char */
lcd_write_cmd(LCD_CMD_SHIFT);
lcd_clear_fast();
break;
case '\n':
- /* flush the remainder of the current line and
- go to the beginning of the next line */
+ /*
+ * flush the remainder of the current line and
+ * go to the beginning of the next line
+ */
for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
lcd_write_data(' ');
lcd.addr.x = 0;
}
}
- /* now we'll see if we're in an escape mode and if the current
- escape sequence can be understood. */
+ /*
+ * now we'll see if we're in an escape mode and if the current
+ * escape sequence can be understood.
+ */
if (lcd.esc_seq.len >= 2) {
int processed = 0;
}
/* LCD special escape codes */
- /* flush the escape sequence if it's been processed
- or if it is getting too long. */
+ /*
+ * flush the escape sequence if it's been processed
+ * or if it is getting too long.
+ */
if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
lcd.esc_seq.len = -1;
} /* escape codes */
for (; count-- > 0; (*ppos)++, tmp++) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
- /* let's be a little nice with other processes
- that need some CPU */
+ /*
+ * let's be a little nice with other processes
+ * that need some CPU
+ */
schedule();
if (get_user(c, tmp))
if (lcd.enabled && lcd.initialized) {
for (; count-- > 0; tmp++) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
- /* let's be a little nice with other processes
- that need some CPU */
+ /*
+ * let's be a little nice with other processes
+ * that need some CPU
+ */
schedule();
lcd_write_char(*tmp);
pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
- /* before this line, we must NOT send anything to the display.
+ /*
+ * before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
- * enable mark the LCD initialized just before. */
+ * enable mark the LCD initialized just before.
+ */
lcd.initialized = true;
lcd_init_display();
phys_read |= (pmask_t) gndmask << 40;
if (bitmask != gndmask) {
- /* since clearing the outputs changed some inputs, we know
+ /*
+ * since clearing the outputs changed some inputs, we know
* that some input signals are currently tied to some outputs.
* So we'll scan them.
*/
}
w_dtr(pprt, oldval); /* disable all outputs */
}
- /* this is easy: use old bits when they are flapping,
- * use new ones when stable */
+ /*
+ * this is easy: use old bits when they are flapping,
+ * use new ones when stable
+ */
phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
(phys_read & ~(phys_read ^ phys_read_prev));
}