#include "disk-io.h"
#include "print-tree.h"
-int split_node(struct ctree_root *root, struct ctree_path *path, int level);
-int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
-int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
-int push_node_right(struct ctree_root *root,
+static int split_node(struct ctree_root *root, struct ctree_path *path,
+ int level);
+static int split_leaf(struct ctree_root *root, struct ctree_path *path,
+ int data_size);
+static int push_node_left(struct ctree_root *root, struct ctree_path *path,
+ int level);
+static int push_node_right(struct ctree_root *root,
struct ctree_path *path, int level);
-int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
+static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
inline void init_path(struct ctree_path *p)
{
break;
tree_block_release(root, p->nodes[i]);
}
+ memset(p, 0, sizeof(*p));
}
/*
return 0;
}
+int check_node(struct ctree_path *path, int level)
+{
+ int i;
+ struct node *parent = NULL;
+ struct node *node = &path->nodes[level]->node;
+ int parent_slot;
+
+ if (path->nodes[level + 1])
+ parent = &path->nodes[level + 1]->node;
+ parent_slot = path->slots[level + 1];
+ if (parent && node->header.nritems > 0) {
+ struct key *parent_key;
+ parent_key = &parent->keys[parent_slot];
+ BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
+ BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
+ }
+ BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
+ for (i = 0; i < node->header.nritems - 2; i++) {
+ BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
+ }
+ return 0;
+}
+
+int check_leaf(struct ctree_path *path, int level)
+{
+ int i;
+ struct leaf *leaf = &path->nodes[level]->leaf;
+ struct node *parent = NULL;
+ int parent_slot;
+
+ if (path->nodes[level + 1])
+ parent = &path->nodes[level + 1]->node;
+ parent_slot = path->slots[level + 1];
+ if (parent && leaf->header.nritems > 0) {
+ struct key *parent_key;
+ parent_key = &parent->keys[parent_slot];
+ BUG_ON(memcmp(parent_key, &leaf->items[0].key,
+ sizeof(struct key)));
+ BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
+ }
+ for (i = 0; i < leaf->header.nritems - 2; i++) {
+ BUG_ON(comp_keys(&leaf->items[i].key,
+ &leaf->items[i+1].key) >= 0);
+ BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
+ leaf->items[i + 1].size);
+ if (i == 0) {
+ BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
+ LEAF_DATA_SIZE);
+ }
+ }
+ BUG_ON(leaf_free_space(leaf) < 0);
+ return 0;
+}
+
+int check_block(struct ctree_path *path, int level)
+{
+ if (level == 0)
+ return check_leaf(path, level);
+ return check_node(path, level);
+}
+
/*
* search for key in the array p. items p are item_size apart
* and there are 'max' items in p
* level of the path (level 0)
*
* If the key isn't found, the path points to the slot where it should
- * be inserted.
+ * be inserted, and 1 is returned. If there are other errors during the
+ * search a negative error number is returned.
*
* if ins_len > 0, nodes and leaves will be split as we walk down the
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
c = &b->node;
level = node_level(c->header.flags);
p->nodes[level] = b;
+ ret = check_block(p, level);
+ if (ret)
+ return -1;
ret = bin_search(c, key, &slot);
if (!is_leaf(c->header.flags)) {
if (ret && slot > 0)
return ret;
}
}
- return -1;
+ return 1;
}
/*
* This is used after shifting pointers to the left, so it stops
* fixing up pointers when a given leaf/node is not in slot 0 of the
* higher levels
+ *
+ * If this fails to write a tree block, it returns -1, but continues
+ * fixing up the blocks in ram so the tree is consistent.
*/
-static void fixup_low_keys(struct ctree_root *root,
+static int fixup_low_keys(struct ctree_root *root,
struct ctree_path *path, struct key *key,
int level)
{
int i;
+ int ret = 0;
+ int wret;
for (i = level; i < MAX_LEVEL; i++) {
struct node *t;
int tslot = path->slots[i];
break;
t = &path->nodes[i]->node;
memcpy(t->keys + tslot, key, sizeof(*key));
- write_tree_block(root, path->nodes[i]);
+ wret = write_tree_block(root, path->nodes[i]);
+ if (wret)
+ ret = wret;
if (tslot != 0)
break;
}
+ return ret;
}
/*
* be modified to reflect the push.
*
* The path is altered to reflect the push.
+ *
+ * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the left hand block.
*/
-int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
+static int push_node_left(struct ctree_root *root, struct ctree_path *path,
+ int level)
{
int slot;
struct node *left;
int right_nritems;
struct tree_buffer *t;
struct tree_buffer *right_buf;
+ int ret = 0;
+ int wret;
if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
return 1;
left->header.nritems += push_items;
/* adjust the pointers going up the tree */
- fixup_low_keys(root, path, right->keys, level + 1);
+ wret = fixup_low_keys(root, path, right->keys, level + 1);
+ if (wret < 0)
+ ret = wret;
- write_tree_block(root, t);
- write_tree_block(root, right_buf);
+ wret = write_tree_block(root, t);
+ if (wret < 0)
+ ret = wret;
+
+ wret = write_tree_block(root, right_buf);
+ if (wret < 0)
+ ret = wret;
/* then fixup the leaf pointer in the path */
if (path->slots[level] < push_items) {
path->slots[level] -= push_items;
tree_block_release(root, t);
}
- return 0;
+ return ret;
}
/*
* be modified to reflect the push.
*
* The path is altered to reflect the push.
+ *
+ * returns 0 if some ptrs were pushed, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the right hand block.
*/
-int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
+static int push_node_right(struct ctree_root *root, struct ctree_path *path,
+ int level)
{
int slot;
struct tree_buffer *t;
* helper function to insert a new root level in the tree.
* A new node is allocated, and a single item is inserted to
* point to the existing root
+ *
+ * returns zero on success or < 0 on failure.
*/
static int insert_new_root(struct ctree_root *root,
struct ctree_path *path, int level)
*
* slot and level indicate where you want the key to go, and
* blocknr is the block the key points to.
+ *
+ * returns zero on success and < 0 on any error
*/
-int insert_ptr(struct ctree_root *root,
+static int insert_ptr(struct ctree_root *root,
struct ctree_path *path, struct key *key,
u64 blocknr, int slot, int level)
{
*
* Before splitting this tries to make some room in the node by pushing
* left and right, if either one works, it returns right away.
+ *
+ * returns 0 on success and < 0 on failure
*/
-int split_node(struct ctree_root *root, struct ctree_path *path, int level)
+static int split_node(struct ctree_root *root, struct ctree_path *path,
+ int level)
{
struct tree_buffer *t;
struct node *c;
struct node *split;
int mid;
int ret;
+ int wret;
ret = push_node_left(root, path, level);
if (!ret)
return 0;
+ if (ret < 0)
+ return ret;
ret = push_node_right(root, path, level);
if (!ret)
return 0;
+ if (ret < 0)
+ return ret;
t = path->nodes[level];
c = &t->node;
if (t == root->node) {
(c->header.nritems - mid) * sizeof(u64));
split->header.nritems = c->header.nritems - mid;
c->header.nritems = mid;
- write_tree_block(root, t);
- write_tree_block(root, split_buffer);
- insert_ptr(root, path, split->keys, split_buffer->blocknr,
- path->slots[level + 1] + 1, level + 1);
+ ret = 0;
+
+ wret = write_tree_block(root, t);
+ if (wret)
+ ret = wret;
+ wret = write_tree_block(root, split_buffer);
+ if (wret)
+ ret = wret;
+ wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
+ path->slots[level + 1] + 1, level + 1);
+ if (wret)
+ ret = wret;
+
if (path->slots[level] >= mid) {
path->slots[level] -= mid;
tree_block_release(root, t);
} else {
tree_block_release(root, split_buffer);
}
- return 0;
+ return ret;
}
/*
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
-int leaf_space_used(struct leaf *l, int start, int nr)
+static int leaf_space_used(struct leaf *l, int start, int nr)
{
int data_len;
int end = start + nr - 1;
/*
* push some data in the path leaf to the right, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
+ *
+ * returns 1 if the push failed because the other node didn't have enough
+ * room, 0 if everything worked out and < 0 if there were major errors.
*/
-int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
- int data_size)
+static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
+ int data_size)
{
struct tree_buffer *left_buf = path->nodes[0];
struct leaf *left = &left_buf->leaf;
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*/
-int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
- int data_size)
+static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
+ int data_size)
{
struct tree_buffer *right_buf = path->nodes[0];
struct leaf *right = &right_buf->leaf;
int push_items = 0;
struct item *item;
int old_left_nritems;
+ int ret = 0;
+ int wret;
slot = path->slots[1];
if (slot == 0) {
push_space = right->items[i].offset;
}
- write_tree_block(root, t);
- write_tree_block(root, right_buf);
+ wret = write_tree_block(root, t);
+ if (wret)
+ ret = wret;
+ wret = write_tree_block(root, right_buf);
+ if (wret)
+ ret = wret;
- fixup_low_keys(root, path, &right->items[0].key, 1);
+ wret = fixup_low_keys(root, path, &right->items[0].key, 1);
+ if (wret)
+ ret = wret;
/* then fixup the leaf pointer in the path */
if (path->slots[0] < push_items) {
path->slots[0] -= push_items;
}
BUG_ON(path->slots[0] < 0);
- return 0;
+ return ret;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
+ *
+ * returns 0 if all went well and < 0 on failure.
*/
-int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
+static int split_leaf(struct ctree_root *root, struct ctree_path *path,
+ int data_size)
{
- struct tree_buffer *l_buf = path->nodes[0];
- struct leaf *l = &l_buf->leaf;
+ struct tree_buffer *l_buf;
+ struct leaf *l;
int nritems;
int mid;
int slot;
int rt_data_off;
int i;
int ret;
-
- if (push_leaf_left(root, path, data_size) == 0 ||
- push_leaf_right(root, path, data_size) == 0) {
- l_buf = path->nodes[0];
- l = &l_buf->leaf;
- if (leaf_free_space(l) >= sizeof(struct item) + data_size)
- return 0;
+ int wret;
+
+ wret = push_leaf_left(root, path, data_size);
+ if (wret < 0)
+ return wret;
+ if (wret) {
+ wret = push_leaf_right(root, path, data_size);
+ if (wret < 0)
+ return wret;
}
+ l_buf = path->nodes[0];
+ l = &l_buf->leaf;
+
+ /* did the pushes work? */
+ if (leaf_free_space(l) >= sizeof(struct item) + data_size)
+ return 0;
+
if (!path->nodes[1]) {
ret = insert_new_root(root, path, 1);
if (ret)
right->items[i].offset += rt_data_off;
l->header.nritems = mid;
- ret = insert_ptr(root, path, &right->items[0].key,
+ ret = 0;
+ wret = insert_ptr(root, path, &right->items[0].key,
right_buffer->blocknr, path->slots[1] + 1, 1);
- write_tree_block(root, right_buffer);
- write_tree_block(root, l_buf);
+ if (wret)
+ ret = wret;
+ wret = write_tree_block(root, right_buffer);
+ if (wret)
+ ret = wret;
+ wret = write_tree_block(root, l_buf);
+ if (wret)
+ ret = wret;
BUG_ON(path->slots[0] != slot);
if (mid <= slot) {
int insert_item(struct ctree_root *root, struct key *key,
void *data, int data_size)
{
- int ret;
+ int ret = 0;
+ int wret;
int slot;
int slot_orig;
struct leaf *leaf;
release_path(root, &path);
return -EEXIST;
}
+ if (ret < 0) {
+ release_path(root, &path);
+ return ret;
+ }
slot_orig = path.slots[0];
leaf_buf = path.nodes[0];
leaf->items[slot].size = data_size;
memcpy(leaf->data + data_end - data_size, data, data_size);
leaf->header.nritems += 1;
- write_tree_block(root, leaf_buf);
+
+ ret = 0;
if (slot == 0)
- fixup_low_keys(root, &path, key, 1);
+ ret = fixup_low_keys(root, &path, key, 1);
+
+ wret = write_tree_block(root, leaf_buf);
+ if (wret)
+ ret = wret;
+
if (leaf_free_space(leaf) < 0)
BUG();
release_path(root, &path);
- return 0;
+ return ret;
}
/*
* continuing all the way the root if required. The root is converted into
* a leaf if all the nodes are emptied.
*/
-int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
+static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
{
int slot;
struct tree_buffer *t;
struct node *node;
int nritems;
u64 blocknr;
+ int wret;
+ int ret = 0;
while(1) {
t = path->nodes[level];
write_tree_block(root, t);
if (node->header.nritems != 0) {
int tslot;
- if (slot == 0)
- fixup_low_keys(root, path, node->keys,
- level + 1);
+ if (slot == 0) {
+ wret = fixup_low_keys(root, path,
+ node->keys,
+ level + 1);
+ if (wret)
+ ret = wret;
+ }
tslot = path->slots[level + 1];
t->count++;
- if (push_node_left(root, path, level))
- push_node_right(root, path, level);
+ wret = push_node_left(root, path, level);
+ if (wret < 0) {
+ ret = wret;
+ break;
+ }
+ if (node->header.nritems != 0) {
+ wret = push_node_right(root, path, level);
+ if (wret < 0) {
+ ret = wret;
+ break;
+ }
+ }
path->slots[level + 1] = tslot;
if (node->header.nritems != 0) {
tree_block_release(root, t);
if (!path->nodes[level])
BUG();
}
- return 0;
+ return ret;
}
/*
struct tree_buffer *leaf_buf;
int doff;
int dsize;
+ int ret = 0;
+ int wret;
leaf_buf = path->nodes[0];
leaf = &leaf_buf->leaf;
leaf->header.flags = node_level(0);
write_tree_block(root, leaf_buf);
} else {
- del_ptr(root, path, 1);
+ wret = del_ptr(root, path, 1);
+ if (wret)
+ ret = wret;
free_extent(root, leaf_buf->blocknr, 1);
}
} else {
int used = leaf_space_used(leaf, 0, leaf->header.nritems);
- if (slot == 0)
- fixup_low_keys(root, path, &leaf->items[0].key, 1);
- write_tree_block(root, leaf_buf);
+ if (slot == 0) {
+ wret = fixup_low_keys(root, path,
+ &leaf->items[0].key, 1);
+ if (wret)
+ ret = wret;
+ }
+ wret = write_tree_block(root, leaf_buf);
+ if (wret)
+ ret = wret;
+
/* delete the leaf if it is mostly empty */
if (used < LEAF_DATA_SIZE / 3) {
/* push_leaf_left fixes the path.
*/
slot = path->slots[1];
leaf_buf->count++;
- push_leaf_left(root, path, 1);
- if (leaf->header.nritems)
- push_leaf_right(root, path, 1);
+ wret = push_leaf_left(root, path, 1);
+ if (wret < 0)
+ ret = wret;
+ if (leaf->header.nritems) {
+ wret = push_leaf_right(root, path, 1);
+ if (wret < 0)
+ ret = wret;
+ }
if (leaf->header.nritems == 0) {
u64 blocknr = leaf_buf->blocknr;
path->slots[1] = slot;
- del_ptr(root, path, 1);
+ wret = del_ptr(root, path, 1);
+ if (wret)
+ ret = wret;
tree_block_release(root, leaf_buf);
free_extent(root, blocknr, 1);
} else {
}
}
}
- return 0;
+ return ret;
}
/*
return 0;
}
-/* some sample code to insert,search & delete items */
-#if 0
-/* for testing only */
-int next_key(int i, int max_key) {
- return rand() % max_key;
- //return i;
-}
-int main() {
- struct key ins;
- struct key last = { (u64)-1, 0, 0};
- char *buf;
- int i;
- int num;
- int ret;
- int run_size = 20000000;
- int max_key = 100000000;
- int tree_size = 0;
- struct ctree_path path;
- struct ctree_super_block super;
- struct ctree_root *root;
-
- radix_tree_init();
-
-
- root = open_ctree("dbfile", &super);
- srand(55);
- for (i = 0; i < run_size; i++) {
- buf = malloc(64);
- num = next_key(i, max_key);
- // num = i;
- sprintf(buf, "string-%d", num);
- if (i % 10000 == 0)
- fprintf(stderr, "insert %d:%d\n", num, i);
- ins.objectid = num;
- ins.offset = 0;
- ins.flags = 0;
- ret = insert_item(root, &ins, buf, strlen(buf));
- if (!ret)
- tree_size++;
- free(buf);
- }
- write_ctree_super(root, &super);
- close_ctree(root);
-
- root = open_ctree("dbfile", &super);
- printf("starting search\n");
- srand(55);
- for (i = 0; i < run_size; i++) {
- num = next_key(i, max_key);
- ins.objectid = num;
- init_path(&path);
- if (i % 10000 == 0)
- fprintf(stderr, "search %d:%d\n", num, i);
- ret = search_slot(root, &ins, &path, 0);
- if (ret) {
- print_tree(root, root->node);
- printf("unable to find %d\n", num);
- exit(1);
- }
- release_path(root, &path);
- }
- write_ctree_super(root, &super);
- close_ctree(root);
- root = open_ctree("dbfile", &super);
- printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
- node_level(root->node->node.header.flags),
- root->node->node.header.nritems,
- NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
- printf("all searches good, deleting some items\n");
- i = 0;
- srand(55);
- for (i = 0 ; i < run_size/4; i++) {
- num = next_key(i, max_key);
- ins.objectid = num;
- init_path(&path);
- ret = search_slot(root, &ins, &path, -1);
- if (!ret) {
- if (i % 10000 == 0)
- fprintf(stderr, "del %d:%d\n", num, i);
- ret = del_item(root, &path);
- if (ret != 0)
- BUG();
- tree_size--;
- }
- release_path(root, &path);
- }
- write_ctree_super(root, &super);
- close_ctree(root);
- root = open_ctree("dbfile", &super);
- srand(128);
- for (i = 0; i < run_size; i++) {
- buf = malloc(64);
- num = next_key(i, max_key);
- sprintf(buf, "string-%d", num);
- ins.objectid = num;
- if (i % 10000 == 0)
- fprintf(stderr, "insert %d:%d\n", num, i);
- ret = insert_item(root, &ins, buf, strlen(buf));
- if (!ret)
- tree_size++;
- free(buf);
- }
- write_ctree_super(root, &super);
- close_ctree(root);
- root = open_ctree("dbfile", &super);
- srand(128);
- printf("starting search2\n");
- for (i = 0; i < run_size; i++) {
- num = next_key(i, max_key);
- ins.objectid = num;
- init_path(&path);
- if (i % 10000 == 0)
- fprintf(stderr, "search %d:%d\n", num, i);
- ret = search_slot(root, &ins, &path, 0);
- if (ret) {
- print_tree(root, root->node);
- printf("unable to find %d\n", num);
- exit(1);
- }
- release_path(root, &path);
- }
- printf("starting big long delete run\n");
- while(root->node && root->node->node.header.nritems > 0) {
- struct leaf *leaf;
- int slot;
- ins.objectid = (u64)-1;
- init_path(&path);
- ret = search_slot(root, &ins, &path, -1);
- if (ret == 0)
- BUG();
-
- leaf = &path.nodes[0]->leaf;
- slot = path.slots[0];
- if (slot != leaf->header.nritems)
- BUG();
- while(path.slots[0] > 0) {
- path.slots[0] -= 1;
- slot = path.slots[0];
- leaf = &path.nodes[0]->leaf;
-
- if (comp_keys(&last, &leaf->items[slot].key) <= 0)
- BUG();
- memcpy(&last, &leaf->items[slot].key, sizeof(last));
- if (tree_size % 10000 == 0)
- printf("big del %d:%d\n", tree_size, i);
- ret = del_item(root, &path);
- if (ret != 0) {
- printf("del_item returned %d\n", ret);
- BUG();
- }
- tree_size--;
- }
- release_path(root, &path);
- }
- printf("tree size is now %d\n", tree_size);
- printf("map tree\n");
- print_tree(root->extent_root, root->extent_root->node);
- write_ctree_super(root, &super);
- close_ctree(root);
- return 0;
-}
-#endif