struct gpmi_nfc_hardware_timing *hw)
{
struct timing_threshod *nfc = &timing_default_threshold;
+ struct resources *r = &this->resources;
struct nand_chip *nand = &this->nand;
struct nand_timing target = this->timing;
bool improved_timing_is_available;
(target.tRHOH_in_ns >= 0) ;
/* Inspect the clock. */
+ nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
clock_frequency_in_hz = nfc->clock_frequency_in_hz;
- clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
+ clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
/*
* The NFC quantizes setup and hold parameters in terms of clock cycles.
void gpmi_begin(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
- struct timing_threshod *nfc = &timing_default_threshold;
void __iomem *gpmi_regs = r->gpmi_regs;
unsigned int clock_period_in_ns;
uint32_t reg;
goto err_out;
}
- /* Get the timing information we need. */
- nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
- clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
-
gpmi_nfc_compute_hardware_timing(this, &hw);
/* [1] Set HW_GPMI_TIMING0 */
*
* Calculate the amount of time we need to wait, in microseconds.
*/
+ clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
if (!dll_wait_time_in_us)