This patchs fix several conding-style violations.
Signed-off-by: Olivier Grenie <olivier.grenie@dibcom.fr>
Signed-off-by: Patrick Boettcher <patrick.boettcher@dibcom.fr>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
b[6] = (u8) (divider >> 8);
b[7] = (u8) (divider & 0xff);
- deb_info("setting I2C speed: %04x %04x %04x (%d kHz).", (b[2] << 8) | (b[3]), (b[4] << 8) | b[5], (b[6] << 8) | b[7], scl_kHz);
+ deb_info("setting I2C speed: %04x %04x %04x (%d kHz).",
+ (b[2] << 8) | (b[3]), (b[4] << 8) | b[5], (b[6] << 8) | b[7], scl_kHz);
return dib0700_ctrl_wr(d, b, 8);
}
deb_info("modifying (%d) streaming state for %d\n", onoff, adap->id);
st->channel_state &= ~0x3;
- if ((adap->stream.props.endpoint != 2) && (adap->stream.props.endpoint != 3)) {
+ if ((adap->stream.props.endpoint != 2)
+ && (adap->stream.props.endpoint != 3)) {
deb_info("the endpoint number (%i) is not correct, use the adapter id instead", adap->stream.props.endpoint);
if (onoff)
st->channel_state |= 1 << (adap->id);
else
st->channel_state |= 1 << ~(adap->id);
- }
- else {
+ } else {
if (onoff)
st->channel_state |= 1 << (adap->stream.props.endpoint-2);
else
.drives = 0x2d98,
.diversity_delay = 48,
.refclksel = 3,
- },{
+ }, {
.output_mpeg2_in_188_bytes = 1,
.agc_config_count = 2,
if (band == BAND_CBAND) {
- deb_info("tuning in CBAND - soft-AGC startup\n");
- /* TODO specific wbd target for dib0090 - needed for startup ? */
- dib0090_set_tune_state(fe, CT_AGC_START);
- do {
- ret = dib0090_gain_control(fe);
- msleep(ret);
- tune_state = dib0090_get_tune_state(fe);
- if (tune_state == CT_AGC_STEP_0)
- dib8000_set_gpio(fe, 6, 0, 1);
- else if (tune_state == CT_AGC_STEP_1) {
- dib0090_get_current_gain(fe, NULL, NULL, &rf_gain_limit, <gain);
- if (rf_gain_limit == 0)
- dib8000_set_gpio(fe, 6, 0, 0);
- }
- } while (tune_state < CT_AGC_STOP);
- dib0090_pwm_gain_reset(fe);
- dib8000_pwm_agc_reset(fe);
- dib8000_set_tune_state(fe, CT_DEMOD_START);
+ deb_info("tuning in CBAND - soft-AGC startup\n");
+ dib0090_set_tune_state(fe, CT_AGC_START);
+ do {
+ ret = dib0090_gain_control(fe);
+ msleep(ret);
+ tune_state = dib0090_get_tune_state(fe);
+ if (tune_state == CT_AGC_STEP_0)
+ dib8000_set_gpio(fe, 6, 0, 1);
+ else if (tune_state == CT_AGC_STEP_1) {
+ dib0090_get_current_gain(fe, NULL, NULL, &rf_gain_limit, <gain);
+ if (rf_gain_limit == 0)
+ dib8000_set_gpio(fe, 6, 0, 0);
+ }
+ } while (tune_state < CT_AGC_STOP);
+ dib0090_pwm_gain_reset(fe);
+ dib8000_pwm_agc_reset(fe);
+ dib8000_set_tune_state(fe, CT_DEMOD_START);
} else {
- deb_info("not tuning in CBAND - standard AGC startup\n");
- dib0090_pwm_gain_reset(fe);
+ deb_info("not tuning in CBAND - standard AGC startup\n");
+ dib0090_pwm_gain_reset(fe);
}
return 0;
struct dvb_frontend *fe_slave;
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 0);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(1000);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_ctrl_clock(adap->dev, 72, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
dib8000_i2c_enumeration(&adap->dev->i2c_adap, 2, 18, 0x80);
u8 wb[4] = { 0xc >> 8, 0xc & 0xff, 0, 0 };
u8 rb[2];
struct i2c_msg msg[2] = {
- {.addr = 0x1e >> 1,.flags = 0,.buf = wb,.len = 2},
- {.addr = 0x1e >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
+ {.addr = 0x1e >> 1, .flags = 0, .buf = wb, .len = 2},
+ {.addr = 0x1e >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
u8 index_data;
return -EIO;
switch (rb[0] << 8 | rb[1]) {
- case 0:
+ case 0:
deb_info("Found DiB0170 rev1: This version of DiB0170 is not supported any longer.\n");
return -EIO;
- case 1:
+ case 1:
deb_info("Found DiB0170 rev2");
break;
- case 2:
+ case 2:
deb_info("Found DiB0190 rev2");
break;
- default:
+ default:
deb_info("DiB01x0 not found");
return -EIO;
- }
+ }
for (index_data = 0; index_data < len; index_data += 2) {
wb[2] = (data[index_data + 1] >> 8) & 0xff;
wb[3] |= rb[1] & ~(3 << 4);
}
- wb[0] = (data[index_data ] >> 8)&0xff;
- wb[1] = (data[index_data ] )&0xff;
+ wb[0] = (data[index_data] >> 8)&0xff;
+ wb[1] = (data[index_data])&0xff;
msg[0].len = 4;
if (i2c_transfer(i2c, &msg[0], 1) != 1)
return -EIO;
.clkoutdrive = 0,
.freq_offset_khz_uhf = 0,
.freq_offset_khz_vhf = 0,
- },{
+ }, {
.io.pll_bypass = 0,
.io.pll_range = 1,
.io.pll_prediv = 1,
dib0700_set_i2c_speed(adap->dev, 340);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_ctrl_clock(adap->dev, 72, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
dib9000_i2c_enumeration(&adap->dev->i2c_adap, 1, 0x10, 0x80);
dib0700_set_i2c_speed(adap->dev, 2000);
if (dib9000_firmware_post_pll_init(adap->fe) < 0)
return -ENODEV;
- release_firmware(state->frontend_firmware);
+ release_firmware(state->frontend_firmware);
return 0;
}
dib0700_set_i2c_speed(adap->dev, 340);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_ctrl_clock(adap->dev, 72, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
if (request_firmware(&state->frontend_firmware, "dib9090.fw", &adap->dev->udev->dev)) {
if (dib9000_firmware_post_pll_init(fe_slave) < 0)
return -ENODEV;
}
- release_firmware(state->frontend_firmware);
+ release_firmware(state->frontend_firmware);
return 0;
}
deb_info("bandwidth = %d fdem_min =%d", fe->dtv_property_cache.bandwidth_hz, fdem_min);
/* Find Min and Max prediv */
- while((xtal/max_prediv) >= fcp_min)
+ while ((xtal/max_prediv) >= fcp_min)
max_prediv++;
max_prediv--;
min_prediv = max_prediv;
- while((xtal/min_prediv) <= fcp_max) {
+ while ((xtal/min_prediv) <= fcp_max) {
min_prediv--;
- if(min_prediv == 1)
+ if (min_prediv == 1)
break;
}
deb_info("MIN prediv = %d : MAX prediv = %d", min_prediv, max_prediv);
min_prediv = 2;
- for(prediv = min_prediv ; prediv < max_prediv; prediv ++) {
+ for (prediv = min_prediv ; prediv < max_prediv; prediv++) {
fcp = xtal / prediv;
- if(fcp > fcp_min && fcp < fcp_max) {
- for(loopdiv = 1 ; loopdiv < 64 ; loopdiv++) {
+ if (fcp > fcp_min && fcp < fcp_max) {
+ for (loopdiv = 1 ; loopdiv < 64 ; loopdiv++) {
fdem = ((xtal/prediv) * loopdiv);
fs = fdem / 4;
/* test min/max system restrictions */
- if((fdem >= fdem_min) && (fdem <= fdem_max) && (fs >= fe->dtv_property_cache.bandwidth_hz/1000)) {
+ if ((fdem >= fdem_min) && (fdem <= fdem_max) && (fs >= fe->dtv_property_cache.bandwidth_hz/1000)) {
spur = 0;
/* test fs harmonics positions */
- for(harmonic_id = (fe->dtv_property_cache.frequency / (1000*fs)) ; harmonic_id <= ((fe->dtv_property_cache.frequency / (1000*fs))+1) ; harmonic_id++) {
- if(((fs*harmonic_id) >= ((fe->dtv_property_cache.frequency/1000) - (fe->dtv_property_cache.bandwidth_hz/2000))) && ((fs*harmonic_id) <= ((fe->dtv_property_cache.frequency/1000) + (fe->dtv_property_cache.bandwidth_hz/2000)))) {
+ for (harmonic_id = (fe->dtv_property_cache.frequency / (1000*fs)) ; harmonic_id <= ((fe->dtv_property_cache.frequency / (1000*fs))+1) ; harmonic_id++) {
+ if (((fs*harmonic_id) >= ((fe->dtv_property_cache.frequency/1000) - (fe->dtv_property_cache.bandwidth_hz/2000))) && ((fs*harmonic_id) <= ((fe->dtv_property_cache.frequency/1000) + (fe->dtv_property_cache.bandwidth_hz/2000)))) {
spur = 1;
break;
}
}
- if(!spur) {
+ if (!spur) {
adc->pll_loopdiv = loopdiv;
adc->pll_prediv = prediv;
- adc->timf = 2396745143UL/fdem*(1<<9);
- adc->timf+= ((2396745143UL%fdem)<< 9)/fdem;
+ adc->timf = 2396745143UL/fdem*(1 << 9);
+ adc->timf += ((2396745143UL%fdem) << 9)/fdem;
deb_info("loopdiv=%i prediv=%i timf=%i", loopdiv, prediv, adc->timf);
break;
}
}
- if(adc->pll_loopdiv == 0 && adc->pll_prediv == 0) {
+ if (adc->pll_loopdiv == 0 && adc->pll_prediv == 0)
return -EINVAL;
- } else
+ else
return 0;
}
target = (dib0090_get_wbd_offset(fe) * 8 + 1) / 2;
dib7000p_set_wbd_ref(fe, target);
- if(dib7090p_get_best_sampling(fe, &adc) == 0) {
+ if (dib7090p_get_best_sampling(fe, &adc) == 0) {
pll.pll_ratio = adc.pll_loopdiv;
pll.pll_prediv = adc.pll_prediv;
}
static struct dib0090_wbd_slope dib7090_wbd_table[] = {
- { 380, 81, 850, 64, 540 ,4},
- { 860, 51, 866, 21, 375 ,4},
- {1700, 0, 250, 0, 100, 6}, //LBAND Predefinition , NOT tested Yet
- {2600, 0, 250, 0, 100, 6}, //SBAND Predefinition , NOT tested Yet
- { 0xFFFF, 0, 0, 0, 0 ,0},
+ { 380, 81, 850, 64, 540, 4},
+ { 860, 51, 866, 21, 375, 4},
+ {1700, 0, 250, 0, 100, 6},
+ {2600, 0, 250, 0, 100, 6},
+ { 0xFFFF, 0, 0, 0, 0, 0},
};
struct dibx000_agc_config dib7090_agc_config[2] = {
.band_caps = BAND_UHF,
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=0, P_agc_inv_pwm2=0,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=5, P_agc_write=0 */
- .setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0), // setup
+ .setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0),
- .inv_gain = 687,// inv_gain = 1/ 95.4dB // no boost, lower gain due to ramp quantification
- .time_stabiliz = 10, // time_stabiliz
+ .inv_gain = 687,
+ .time_stabiliz = 10,
- .alpha_level = 0, // alpha_level
- .thlock = 118, // thlock
+ .alpha_level = 0,
+ .thlock = 118,
- .wbd_inv = 0, // wbd_inv
- .wbd_ref = 1200, // wbd_ref
- .wbd_sel = 3, // wbd_sel
- .wbd_alpha = 5, // wbd_alpha
+ .wbd_inv = 0,
+ .wbd_ref = 1200,
+ .wbd_sel = 3,
+ .wbd_alpha = 5,
- .agc1_max = 65535, // agc1_max
- .agc1_min = 0, // agc1_min
+ .agc1_max = 65535,
+ .agc1_min = 0,
- .agc2_max = 65535, // agc2_max
- .agc2_min = 0, // agc2_min
+ .agc2_max = 65535,
+ .agc2_min = 0,
- .agc1_pt1 = 0, // agc1_pt1
- .agc1_pt2 = 32, // agc1_pt2
- .agc1_pt3 = 114, // agc1_pt3 // 40.4dB
- .agc1_slope1 = 143, // agc1_slope1
- .agc1_slope2 = 144, // agc1_slope2
- .agc2_pt1 = 114, // agc2_pt1
- .agc2_pt2 = 227, // agc2_pt2
- .agc2_slope1 = 116, // agc2_slope1
- .agc2_slope2 = 117, // agc2_slope2
+ .agc1_pt1 = 0,
+ .agc1_pt2 = 32,
+ .agc1_pt3 = 114,
+ .agc1_slope1 = 143,
+ .agc1_slope2 = 144,
+ .agc2_pt1 = 114,
+ .agc2_pt2 = 227,
+ .agc2_slope1 = 116,
+ .agc2_slope2 = 117,
- .alpha_mant = 18, // alpha_mant // 5Hz with 95.4dB
- .alpha_exp = 0, // alpha_exp
- .beta_mant = 20, // beta_mant
- .beta_exp = 59, // beta_exp
+ .alpha_mant = 18,
+ .alpha_exp = 0,
+ .beta_mant = 20,
+ .beta_exp = 59,
- .perform_agc_softsplit = 0, // perform_agc_softsplit
+ .perform_agc_softsplit = 0,
} , {
.band_caps = BAND_FM | BAND_VHF | BAND_CBAND,
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=0, P_agc_inv_pwm2=0,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=5, P_agc_write=0 */
- .setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0), // setup
+ .setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0),
- .inv_gain = 732,// inv_gain = 1/ 89.5dB // no boost, lower gain due to ramp quantification
- .time_stabiliz = 10, // time_stabiliz
+ .inv_gain = 732,
+ .time_stabiliz = 10,
- .alpha_level = 0, // alpha_level
- .thlock = 118, // thlock
+ .alpha_level = 0,
+ .thlock = 118,
- .wbd_inv = 0, // wbd_inv
- .wbd_ref = 1200, // wbd_ref
- .wbd_sel = 3, // wbd_sel
- .wbd_alpha = 5, // wbd_alpha
+ .wbd_inv = 0,
+ .wbd_ref = 1200,
+ .wbd_sel = 3,
+ .wbd_alpha = 5,
- .agc1_max = 65535, // agc1_max : 1
- .agc1_min = 0, // agc1_min
+ .agc1_max = 65535,
+ .agc1_min = 0,
- .agc2_max = 65535, // agc2_max
- .agc2_min = 0, // agc2_min
+ .agc2_max = 65535,
+ .agc2_min = 0,
- .agc1_pt1 = 0, // agc1_pt1
- .agc1_pt2 = 0, // agc1_pt2
- .agc1_pt3 = 98, // agc1_pt3 // 34.5dB CBAND P1G + 55dB BB boost = 89.5dB
- .agc1_slope1 = 0, // agc1_slope1
- .agc1_slope2 = 167, // agc1_slope2 = Dy/Dx * 2**6 * 2**8 = 1/98 * 2**6 *2**8 : Dy = 1
- .agc1_pt1 = 98, // agc2_pt1
- .agc2_pt2 = 255, // agc2_pt2
- .agc2_slope1 = 104, // agc2_slope1 = Dy/Dx * 2**6 * 2**8 = 1/(255-98) * 2**6 *2**8
- .agc2_slope2 = 0, // agc2_slope2
+ .agc1_pt1 = 0,
+ .agc1_pt2 = 0,
+ .agc1_pt3 = 98,
+ .agc1_slope1 = 0,
+ .agc1_slope2 = 167,
+ .agc1_pt1 = 98,
+ .agc2_pt2 = 255,
+ .agc2_slope1 = 104,
+ .agc2_slope2 = 0,
- .alpha_mant = 18, // alpha_mant // 5Hz with 95.4dB
- .alpha_exp = 0, // alpha_exp
- .beta_mant = 20, // beta_mant
- .beta_exp = 59, // beta_exp
+ .alpha_mant = 18,
+ .alpha_exp = 0,
+ .beta_mant = 20,
+ .beta_exp = 59,
- .perform_agc_softsplit = 0, // perform_agc_softsplit
+ .perform_agc_softsplit = 0,
}
};
static struct dibx000_bandwidth_config dib7090_clock_config_12_mhz = {
- 60000, 15000, // internal, sampling
- 1, 5, 0, 0, 0, // pll_cfg: prediv, ratio, range, reset, bypass
- 0, 0, 1, 1, 2, // misc: refdiv, bypclk_div, IO_CLK_en_core, ADClkSrc, modulo
- (3 << 14) | (1 << 12) | (524 << 0), // sad_cfg: refsel, sel, freq_15k
- (0 << 25) | 0, // ifreq = 0.000000 MHz
- 20452225, // timf
- 15000000, // xtal_hz
+ 60000, 15000,
+ 1, 5, 0, 0, 0,
+ 0, 0, 1, 1, 2,
+ (3 << 14) | (1 << 12) | (524 << 0),
+ (0 << 25) | 0,
+ 20452225,
+ 15000000,
};
static struct dib7000p_config nim7090_dib7000p_config = {
.output_mode = OUTMODE_MPEG2_PAR_GATED_CLK,
.default_i2c_addr = 0x90,
.enMpegOutput = 1,
- },{
+ }, {
.output_mpeg2_in_188_bytes = 1,
.hostbus_diversity = 1,
.tuner_is_baseband = 1,
.data_tx_drv = 0,
.low_if = NULL,
.in_soc = 1,
- },{
+ }, {
.io.clock_khz = 12000,
.io.pll_bypass = 0,
.io.pll_range = 0,
static int nim7090_frontend_attach(struct dvb_usb_adapter *adap)
{
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 0);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
if (dib7000p_i2c_enumeration(&adap->dev->i2c_adap, 1, 0x10, &nim7090_dib7000p_config) != 0) {
st->disable_streaming_master_mode = 1;
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 0);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
- msleep(10);
+ msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
/* initialize IC 0 */
dib0700_set_i2c_speed(adap->dev, 340);
adap->fe = dvb_attach(dib7000p_attach, &adap->dev->i2c_adap, 0x90, &tfe7090pvr_dib7000p_config[0]);
- dib7090_slave_reset(adap->fe);
+ dib7090_slave_reset(adap->fe);
if (adap->fe == NULL)
return -ENODEV;
{
u8 b[2];
struct i2c_msg msg[2] = {
- {.addr = state->config->i2c_address,.flags = 0,.buf = ®,.len = 1},
- {.addr = state->config->i2c_address,.flags = I2C_M_RD,.buf = b,.len = 2},
+ {.addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1},
+ {.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2},
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "DiB0090 I2C read failed\n");
static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
{
u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
- struct i2c_msg msg = {.addr = state->config->i2c_address,.flags = 0,.buf = b,.len = 3 };
+ struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C write failed\n");
return -EREMOTEIO;
static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
{
u8 b[2];
- struct i2c_msg msg = {.addr = reg,.flags = I2C_M_RD,.buf = b,.len = 2 };
+ struct i2c_msg msg = {.addr = reg, .flags = I2C_M_RD, .buf = b, .len = 2 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C read failed\n");
return 0;
static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
{
u8 b[2] = { val >> 8, val & 0xff };
- struct i2c_msg msg = {.addr = reg,.flags = 0,.buf = b,.len = 2 };
+ struct i2c_msg msg = {.addr = reg, .flags = 0, .buf = b, .len = 2 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C write failed\n");
return -EREMOTEIO;
return 0;
- identification_error:
+identification_error:
return -EIO;
}
if (identity->product != KROSUS)
goto identification_error;
- //From the SOC the version definition has changed
-
if ((identity->version & 0x3) == SOC) {
identity->in_soc = 1;
switch (identity->version) {
return 0;
- identification_error:
+identification_error:
return -EIO;;
}
if (state->current_band == BAND_VHF) {
if (state->identity.in_soc) {
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs);
- //dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf_socs); /* TODO */
} else {
dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
{
u16 adc_val = dib0090_read_reg(state, 0x1d);
- if (state->identity.in_soc) {
+ if (state->identity.in_soc)
adc_val >>= 2;
- }
return adc_val;
}
#ifdef DEBUG_AGC
dprintk
("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
- (u32) * tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
+ (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
(u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
#endif
}
if (current_temp > 128)
current_temp = 128;
- //What Wbd gain to apply for this range of frequency
state->wbdmux &= ~(7 << 13);
if (wbd->wbd_gain != 0)
state->wbdmux |= (wbd->wbd_gain << 13);
else
- state->wbdmux |= (4 << 13); // 4 is the default WBD gain
+ state->wbdmux |= (4 << 13);
dib0090_write_reg(state, 0x10, state->wbdmux);
- //All the curves are linear with slope*f/64+offset
wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
- // Iet assumes that thot-tcold = 130 equiv 128, current temperature ref is -30deg
-
wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
- //for (offset = 0; offset < 1000; offset += 4)
- // dbgp("offset = %d -> %d\n", offset, dib0090_wbd_to_db(state, offset));
- state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); // get the value in dBm from the offset
+ state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
dprintk("wbd-target: %d dB", (u32) state->wbd_target);
dprintk("wbd offset applied is %d", wbd_tcold);
};
static const u16 dib0090_p1g_additionnal_defaults[] = {
- // additionnal INITIALISATION for p1g to be written after dib0090_defaults
1, 0x05,
0xabcd,
void dib0090_set_EFUSE(struct dib0090_state *state)
{
- u8 c,h,n;
- u16 e2,e4;
- u16 cal;
-
- e2=dib0090_read_reg(state,0x26);
- e4=dib0090_read_reg(state,0x28);
-
- if ((state->identity.version == P1D_E_F) || // All P1F uses the internal calibration
- (state->identity.version == P1G) || (e2 == 0xffff)) { //W0090G11R1 and W0090G11R1-D : We will find the calibration Value of the Baseband
-
- dib0090_write_reg(state,0x22,0x10); //Start the Calib
- cal = (dib0090_read_reg(state,0x22)>>6) & 0x3ff;
-
- if ((cal<670) || (cal==1023)) //Cal at 800 would give too high value for the n
- cal=850; //Recenter the n to 32
- n = 165 - ((cal * 10)>>6) ;
- e2 = e4 = (3<<12) | (34<<6) | (n);
- }
-
- if (e2!=e4) {
- e2 &= e4; /* Remove the redundancy */
- }
-
- if (e2 != 0xffff) {
- c = e2 & 0x3f;
- n = (e2 >> 12) & 0xf;
- h= (e2 >> 6) & 0x3f;
-
- if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
- c=32;
- if ((h >= HR_MAX) || (h <= HR_MIN))
- h=34;
- if ((n >= POLY_MAX) || (n <= POLY_MIN))
- n=3;
-
- dib0090_write_reg(state,0x13, (h << 10)) ;
- e2 = (n<<11) | ((h>>2)<<6) | (c);
- dib0090_write_reg(state,0x2, e2) ; /* Load the BB_2 */
- }
+ u8 c, h, n;
+ u16 e2, e4;
+ u16 cal;
+
+ e2 = dib0090_read_reg(state, 0x26);
+ e4 = dib0090_read_reg(state, 0x28);
+
+ if ((state->identity.version == P1D_E_F) ||
+ (state->identity.version == P1G) || (e2 == 0xffff)) {
+
+ dib0090_write_reg(state, 0x22, 0x10);
+ cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
+
+ if ((cal < 670) || (cal == 1023))
+ cal = 850;
+ n = 165 - ((cal * 10)>>6) ;
+ e2 = e4 = (3<<12) | (34<<6) | (n);
+ }
+
+ if (e2 != e4)
+ e2 &= e4; /* Remove the redundancy */
+
+ if (e2 != 0xffff) {
+ c = e2 & 0x3f;
+ n = (e2 >> 12) & 0xf;
+ h = (e2 >> 6) & 0x3f;
+
+ if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
+ c = 32;
+ if ((h >= HR_MAX) || (h <= HR_MIN))
+ h = 34;
+ if ((n >= POLY_MAX) || (n <= POLY_MIN))
+ n = 3;
+
+ dib0090_write_reg(state, 0x13, (h << 10)) ;
+ e2 = (n<<11) | ((h>>2)<<6) | (c);
+ dib0090_write_reg(state, 0x2, e2) ; /* Load the BB_2 */
+ }
}
static int dib0090_reset(struct dvb_frontend *fe)
dib0090_set_default_config(state, dib0090_defaults);
- if (state->identity.in_soc)
- dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
+ if (state->identity.in_soc)
+ dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
if (state->identity.p1g)
dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
- if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
- dib0090_set_EFUSE(state);
+ /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
+ if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
+ dib0090_set_EFUSE(state);
/* Congigure in function of the crystal */
if (state->config->io.clock_khz >= 24000)
static const struct dc_calibration dc_p1g_table[] = {
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
- {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, // offset_trim2_i_chann 0 0 5 0 0 1 6 9 5
- {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, // offset_trim2_q_chann 0 0 5 0 0 1 7 15 11
+ {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
+ {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
- {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, // offset_trim1_i_chann 0 0 5 0 0 1 6 4 0
- {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, // offset_trim1_q_chann 0 0 5 0 0 1 6 14 10
+ {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
+ {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
{0},
};
dib0090_write_reg(state, 0x24, reg);
state->wbdmux = dib0090_read_reg(state, 0x10);
- dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); // connect BB, disable WDB enable*
- dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); //Discard the DataTX
+ dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
+ dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
state->dc = dc_table;
if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
state->step++;
- state->min_adc_diff = state->adc_diff; //min is used as N-1
+ state->min_adc_diff = state->adc_diff;
*tune_state = CT_TUNER_STEP_1;
} else {
/* the minimum was what we have seen in the step before */
- if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) { //Come back to the previous state since the delta was better
+ if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
state->step--;
}
break;
case CT_TUNER_STEP_6:
- dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); //Force the test bus to be off
+ dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
dib0090_write_reg(state, 0x1f, 0x7);
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
state->calibrate &= ~DC_CAL;
return 0;
}
- dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); // Force: WBD enable,gain to 4, mux to WBD
+ dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
- dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); //Discard all LNA but crystal !!!
+ dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
*tune_state = CT_TUNER_STEP_0;
state->wbd_calibration_gain = wbd_gain;
return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
};
static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
- //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
- {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, // FM EN_CAB
+ {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
- {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
- {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
- {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
+ {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
+ {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
+ {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
- {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
+ {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
- {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
- {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
- {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
+ {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+ {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+ {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
- {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, // SBD EN_SBD
- {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, // SBD EN_SBD
+ {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
+ {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
static const struct dib0090_pll dib0090_p1g_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
- {57000, 0, 11, 48, 6}, // CAB
- {70000, 1, 11, 48, 6}, // CAB
- {86000, 0, 10, 32, 4}, // CAB
- {105000, 1, 10, 32, 4}, // FM
- {115000, 0, 9, 24, 6}, // FM
- {140000, 1, 9, 24, 6}, // MID FM VHF
- {170000, 0, 8, 16, 4}, // MID FM VHF
+ {57000, 0, 11, 48, 6},
+ {70000, 1, 11, 48, 6},
+ {86000, 0, 10, 32, 4},
+ {105000, 1, 10, 32, 4},
+ {115000, 0, 9, 24, 6},
+ {140000, 1, 9, 24, 6},
+ {170000, 0, 8, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
- {200000, 1, 8, 16, 4}, // VHF
- {230000, 0, 7, 12, 6}, // VHF
- {280000, 1, 7, 12, 6}, // MID VHF UHF
- {340000, 0, 6, 8, 4}, // MID VHF UHF
- {380000, 1, 6, 8, 4}, // MID VHF UHF
- {455000, 0, 5, 6, 6}, // MID VHF UHF
+ {200000, 1, 8, 16, 4},
+ {230000, 0, 7, 12, 6},
+ {280000, 1, 7, 12, 6},
+ {340000, 0, 6, 8, 4},
+ {380000, 1, 6, 8, 4},
+ {455000, 0, 5, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
- {580000, 1, 5, 6, 6}, // UHF
- {680000, 0, 4, 4, 4}, // UHF
- {860000, 1, 4, 4, 4}, // UHF
+ {580000, 1, 5, 6, 6},
+ {680000, 0, 4, 4, 4},
+ {860000, 1, 4, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
- {1800000, 1, 2, 2, 4}, // LBD
+ {1800000, 1, 2, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
- {2900000, 0, 1, 1, 6}, // SBD
+ {2900000, 0, 1, 1, 6},
#endif
};
static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
- //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
- {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB // 0x8190 Good perf but higher current //0x4187 Low current
- {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB
- {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB
+ {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
+ {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
+ {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
- {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
- {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
+ {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+ {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
- {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
- {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
- {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
+ {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+ {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+ {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
- {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, // SBD EN_SBD
- {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, // SBD EN_SBD
+ {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
+ {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
- //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
- //{ 184000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB }, // 0x81ce 0x8190 Good perf but higher current //0x4187 Low current
{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
- {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, //0x4187
+ {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
#endif
state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
}
}
- state->adc_diff = 3000; // start with a unreachable high number : only set for KROSUS < P1G */
+ state->adc_diff = 3000;
*tune_state = CT_TUNER_STEP_0;
} else if (*tune_state == CT_TUNER_STEP_0) {
if (state->identity.p1g && !force_soft_search) {
- // 30MHz => Code 15 for the ration => 128us to lock. Giving approximately
- u8 ratio = 31; // (state->config->io.clock_khz / 1024 + 1) & 0x1f;
+ u8 ratio = 31;
dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
dib0090_read_reg(state, 0x40);
- //dib0090_write_reg(state, 0x40, (3<<7) | ((((state->config->io.clock_khz >> 11)+1) & 0x1f)<<2) | (1<<1) | 1);
ret = 50;
} else {
state->step /= 2;
dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
state->adc_diff = adc;
state->fcaptrim = state->captrim;
- //we could break here, to save time, if we reached a close-enough value
- //e.g.: if (state->adc_diff < 20)
- //break;
}
state->captrim += step_sign * state->step;
else
*tune_state = CT_TUNER_STEP_2;
- ret = 25; //LOLO changed from 15
+ ret = 25;
}
} else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
/*write the final cptrim config */
int ret = 15;
s16 val;
- //The assumption is that the AGC is not active
switch (*tune_state) {
case CT_TUNER_START:
state->wbdmux = dib0090_read_reg(state, 0x10);
- dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); //Move to the bias and clear the wbd enable
+ dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
state->bias = dib0090_read_reg(state, 0x13);
- dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); //Move to the Ref
+ dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
*tune_state = CT_TUNER_STEP_0;
/* wait for the WBDMUX to switch and for the ADC to sample */
break;
case CT_TUNER_STEP_0:
- state->adc_diff = dib0090_get_slow_adc_val(state); // Get the value for the Ref
- dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); //Move to the Ptat
+ state->adc_diff = dib0090_get_slow_adc_val(state);
+ dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
*tune_state = CT_TUNER_STEP_1;
break;
case CT_TUNER_STEP_1:
- val = dib0090_get_slow_adc_val(state); // Get the value for the Ptat
- state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; // +55 is defined as = -30deg
+ val = dib0090_get_slow_adc_val(state);
+ state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
dprintk("temperature: %d C", state->temperature - 30);
break;
case CT_TUNER_STEP_2:
- //Reload the start values.
dib0090_write_reg(state, 0x13, state->bias);
dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
*tune_state = CT_TUNER_START;
state->calibrate &= ~TEMP_CAL;
if (state->config->analog_output == 0)
- dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); //Set the DataTX
+ dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
break;
/* deactivate DataTX before some calibrations */
if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
- else /* Activate DataTX in case a calibration has been done before */ if (state->config->analog_output == 0)
- dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
+ else
+ /* Activate DataTX in case a calibration has been done before */
+ if (state->config->analog_output == 0)
+ dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
}
if (state->calibrate & DC_CAL)
return dib0090_dc_offset_calibration(state, tune_state);
else if (state->calibrate & WBD_CAL) {
- if (state->current_rf == 0) {
+ if (state->current_rf == 0)
state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
- }
return dib0090_wbd_calibration(state, tune_state);
} else if (state->calibrate & TEMP_CAL)
return dib0090_get_temperature(state, tune_state);
if (state->config->use_pwm_agc && state->identity.in_soc) {
tmp = dib0090_read_reg(state, 0x39);
if ((tmp >> 10) & 0x1)
- dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); // disengage mux : en_mux_bb1 = 0
+ dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
}
state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
state->current_tune_table_index = tune;
state->current_pll_table_index = pll;
- // select internal switch
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
- // Find the VCO frequency in MHz
VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
- FREF = state->config->io.clock_khz; // REFDIV is 1FREF Has to be as Close as possible to 10MHz
+ FREF = state->config->io.clock_khz;
if (state->config->fref_clock_ratio != 0)
FREF /= state->config->fref_clock_ratio;
- // Determine the FB divider
- // The reference is 10MHz, Therefore the FBdivider is on the first digits
FBDiv = (VCOF_kHz / pll->topresc / FREF);
- Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; //in kHz
+ Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
- // Avoid Spurs in the loopfilter bandwidth
if (Rest < LPF)
Rest = 0;
else if (Rest < 2 * LPF)
else if (Rest > (FREF - LPF)) {
Rest = 0;
FBDiv += 1;
- } //Go to the next FB
- else if (Rest > (FREF - 2 * LPF))
+ } else if (Rest > (FREF - 2 * LPF))
Rest = FREF - 2 * LPF;
Rest = (Rest * 6528) / (FREF / 10);
state->rest = Rest;
if (Rest == 0) {
if (pll->vco_band)
lo5 = 0x049f;
- //else if (state->config->analog_output)
- // lo5 = 0x041f;
else
lo5 = 0x041f;
} else {
else
lo5 = 0x42f;
} else
- lo5 = 0x42c; //BIAS Lo set to 4 by default in case of the Captrim search does not take care of the VCO Bias
+ lo5 = 0x42c;
}
lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
- //Internal loop filter set...
if (!state->config->io.pll_int_loop_filt) {
if (state->identity.in_soc)
lo6 = 0xff98;
else
lo6 = 0xff28;
} else
- lo6 = (state->config->io.pll_int_loop_filt << 3); // take the loop filter value given by the layout
- //dprintk("lo6 = 0x%04x", (u32)lo6);
+ lo6 = (state->config->io.pll_int_loop_filt << 3);
Den = 1;
if (Rest > 0) {
if (state->config->analog_output)
- lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
+ lo6 |= (1 << 2) | 2;
else {
if (state->identity.in_soc)
- lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
+ lo6 |= (1 << 2) | 2;
else
- lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
+ lo6 |= (1 << 2) | 2;
}
Den = 255;
}
- // Now we have to define the Num and Denum
- // LO1 gets the FBdiv
dib0090_write_reg(state, 0x15, (u16) FBDiv);
- // LO2 gets the REFDiv
if (state->config->fref_clock_ratio != 0)
dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
else
dib0090_write_reg(state, 0x16, (Den << 8) | 1);
- // LO3 for the Numerator
dib0090_write_reg(state, 0x17, (u16) Rest);
- // VCO and HF DIV
dib0090_write_reg(state, 0x19, lo5);
- // SIGMA Delta
dib0090_write_reg(state, 0x1c, lo6);
- // Check if the 0090 is analogged configured
- //Disable ADC and DigPLL =0xFF9F, 0xffbf for test purposes.
- //Enable The Outputs of the BB on DATA_Tx
lo6 = tune->tuner_enable;
if (state->config->analog_output)
lo6 = (lo6 & 0xff9f) | 0x2;
else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
-// if(!state->identity.p1g) {
while (state->current_rf / 1000 > wbd->max_freq)
wbd++;
-// }
dib0090_write_reg(state, 0x1e, 0x07ff);
dprintk("Final Captrim: %d", (u32) state->fcaptrim);
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
c = 4;
- i = 3; //wbdmux_bias
+ i = 3;
- if (wbd->wbd_gain != 0) //&& !state->identity.p1g)
+ if (wbd->wbd_gain != 0)
c = wbd->wbd_gain;
- //Store wideband mux register.
state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
dib0090_write_reg(state, 0x10, state->wbdmux);
} else if (*tune_state == CT_TUNER_STEP_1) {
/* initialize the lt gain register */
state->rf_lt_def = 0x7c00;
- // dib0090_write_reg(state, 0x0f, state->rf_lt_def);
dib0090_set_bandwidth(state);
state->tuner_is_tuned = 1;
-// if(!state->identity.p1g)
- state->calibrate |= WBD_CAL; // TODO: only do the WBD calibration for new tune
-//
- state->calibrate |= TEMP_CAL; // Force the Temperature to be remesured at next TUNE.
+ state->calibrate |= WBD_CAL;
+ state->calibrate |= TEMP_CAL;
*tune_state = CT_TUNER_STOP;
} else
ret = FE_CALLBACK_TIME_NEVER;
static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
{470, 0, 250, 0, 100, 4},
{860, 51, 866, 21, 375, 4},
- {1700, 0, 800, 0, 850, 4}, //LBAND Predefinition , to calibrate
- {2900, 0, 250, 0, 100, 6}, //SBAND Predefinition , NOT tested Yet
+ {1700, 0, 800, 0, 850, 4},
+ {2900, 0, 250, 0, 100, 6},
{0xFFFF, 0, 0, 0, 0, 0},
};
memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
return fe;
- free_mem:
+free_mem:
kfree(st);
fe->tuner_priv = NULL;
return NULL;
}
-
EXPORT_SYMBOL(dib0090_fw_register);
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
- {.addr = state->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
- {.addr = state->i2c_addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
+ {.addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
+ {.addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
- .addr = state->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
+ .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
dprintk("setting output mode for demod %p to %d", &state->demod, mode);
switch (mode) {
- case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
+ case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
- case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
+ case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
- case OUTMODE_MPEG2_SERIAL: // STBs with serial input
+ case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break;
case OUTMODE_DIVERSITY:
else
outreg = (1 << 11);
break;
- case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
+ case OUTMODE_MPEG2_FIFO:
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
break;
- case OUTMODE_HIGH_Z: // disable
+ case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
reg_909 &= 0x0003;
break;
- case DIBX000_ADC_OFF: // leave the VBG voltage on
+ case DIBX000_ADC_OFF:
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
-// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
if (state->version == SOC7090)
- dib7000p_write_word(state, 74, 2048); // P_sad_calib_value = (0.9/1.8)*4096
+ dib7000p_write_word(state, 74, 2048);
else
- dib7000p_write_word(state, 74, 776); // P_sad_calib_value = 0.625*3.3 / 4096
+ dib7000p_write_word(state, 74, 776);
/* do the calibration */
dib7000p_write_word(state, 73, (1 << 0));
if (state->version == SOC7090) {
dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
- while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
- }
+ while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
+ ;
dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
} else {
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
reg_1856 &= 0xf000;
reg_1857 = dib7000p_read_word(state, 1857);
- dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); // desable pll
+ dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
- dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); // enable pll
+ dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
- while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
+ while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
dprintk("Waiting for PLL to lock");
- }
return 0;
}
0xd4c0,
1, 26,
- 0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
+ 0x6680,
/* set ADC level to -16 */
11, 79,
(1 << 13) - 501 - 117,
1, 142,
- 0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
+ 0x0410,
/* disable power smoothing */
8, 145,
0,
1, 154,
- 1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
+ 1 << 13,
1, 168,
- 0x0ccd, // P_pha3_thres, default 0x3000
-
-// 1, 169,
-// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
+ 0x0ccd,
1, 183,
- 0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
+ 0x200f,
1, 212,
- 0x169, // P_vit_ksi_dwn = 5 P_vit_ksi_up = 5 0x1e1, // P_vit_ksi_dwn = 4 P_vit_ksi_up = 7
+ 0x169,
5, 187,
- 0x023d, // P_adp_regul_cnt=573, default: 410
- 0x00a4, // P_adp_noise_cnt=
- 0x00a4, // P_adp_regul_ext
- 0x7ff0, // P_adp_noise_ext
- 0x3ccc, // P_adp_fil
+ 0x023d,
+ 0x00a4,
+ 0x00a4,
+ 0x7ff0,
+ 0x3ccc,
1, 198,
- 0x800, // P_equal_thres_wgn
+ 0x800,
1, 222,
- 0x0010, // P_fec_ber_rs_len=2
+ 0x0010,
1, 235,
- 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
+ 0x0062,
2, 901,
- 0x0006, // P_clk_cfg1
- (3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
+ 0x0006,
+ (3 << 10) | (1 << 6),
1, 905,
- 0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
+ 0x2c8e,
0,
};
dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
- //dib7000p_write_word(state, 273, (1<<6) | 10); /* P_vit_inoise_sel = 1, P_vit_inoise_gain = 10*/
- dib7000p_write_word(state, 273, (1<<6) | 30); //26/* P_vit_inoise_sel = 1, P_vit_inoise_gain = 26*/// FAG
+ dib7000p_write_word(state, 273, (1<<6) | 30);
}
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be reset.");
dib7000p_set_bandwidth(state, 8000);
- if(state->version == SOC7090) {
+ if (state->version == SOC7090) {
dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
- } else { // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
+ } else {
if (state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36, 0x0755);
else
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
- dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
+ dib7000p_write_word(state, 903, (tmp | 0x1));
tmp = dib7000p_read_word(state, 900);
- dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
+ dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
}
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
u16 dyn_gain;
- // when there is no LNA to program return immediatly
if (state->cfg.update_lna) {
- // read dyn_gain here (because it is demod-dependent and not fe)
dyn_gain = dib7000p_read_word(state, 394);
- if (state->cfg.update_lna(&state->demod, dyn_gain)) { // LNA has changed
+ if (state->cfg.update_lna(&state->demod, dyn_gain)) {
dib7000p_restart_agc(state);
return 1;
}
switch (state->agc_state) {
case 0:
- // set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 0x79b) & 0xff00;
dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */
- dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); // bit 14 = enDemodGain
+ dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
/* enable adc i & q */
reg = dib7000p_read_word(state, 0x780);
break;
case 1:
- // AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
break;
case 4: /* LNA startup */
- // wait AGC accurate lock time
ret = 7;
if (dib7000p_update_lna(state))
- // wait only AGC rough lock time
ret = 5;
- else // nothing was done, go to the next state
+ else
(*agc_state)++;
break;
dib7000p_write_word(state, 208, value);
/* offset loop parameters */
- dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
- dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
- dib7000p_write_word(state, 29, 0x1273); // isi
- dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
+ dib7000p_write_word(state, 26, 0x6680);
+ dib7000p_write_word(state, 32, 0x0003);
+ dib7000p_write_word(state, 29, 0x1273);
+ dib7000p_write_word(state, 33, 0x0005);
/* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) {
break;
}
if (state->cfg.diversity_delay == 0)
- state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
+ state->div_sync_wait = (value * 3) / 2 + 48;
else
- state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for one DVSY-fifo
+ state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
/* deactive the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
else
factor = 6;
- // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * internal * factor;
- dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
- dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
+ dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
+ dib7000p_write_word(state, 7, (u16) (value & 0xffff));
value = 100 * internal * factor;
- dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
- dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
+ dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
+ dib7000p_write_word(state, 9, (u16) (value & 0xffff));
value = 500 * internal * factor;
- dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
- dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
+ dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
+ dib7000p_write_word(state, 11, (u16) (value & 0xffff));
value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284);
- if (irq_pending & 0x1) // failed
+ if (irq_pending & 0x1)
return 1;
- if (irq_pending & 0x2) // succeeded
+ if (irq_pending & 0x2)
return 2;
- return 0; // still pending
+ return 0;
}
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
if (state->sfn_workaround_active) {
dprintk("SFN workaround is active");
tmp |= (1 << 9);
- dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
+ dib7000p_write_word(state, 166, 0x4000);
} else {
- dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift
+ dib7000p_write_word(state, 166, 0x0000);
}
dib7000p_write_word(state, 29, tmp);
if (state->version == SOC7090) {
dib7090_set_diversity_in(fe, 0);
dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
- }
- else
+ } else
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
/* maybe the parameter has been changed */
dprintk("autosearch returns: %d", found);
if (found == 0 || found == 1)
- return 0; // no channel found
+ return 0;
dib7000p_get_frontend(fe, fep);
}
{
u8 tx[2], rx[2];
struct i2c_msg msg[2] = {
- {.addr = 18 >> 1,.flags = 0,.buf = tx,.len = 2},
- {.addr = 18 >> 1,.flags = I2C_M_RD,.buf = rx,.len = 2},
+ {.addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2},
+ {.addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2},
};
tx[0] = 0x03;
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
- else {
+ else
return -EINVAL;
- }
return 0;
}
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
word &= 0x3;
- word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); //Mask bit 12,13
+ word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
dib7000p_write_word(state, 72, word); /* Set the proper input */
return num;
}
u16 rx_copy_buf[22];
dprintk("Configure DibStream Tx");
- for (index_buf = 0; index_buf<22; index_buf++)
+ for (index_buf = 0; index_buf < 22; index_buf++)
rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);
dib7000p_write_word(state, 1615, 1);
dib7000p_write_word(state, 1612, syncSize);
dib7000p_write_word(state, 1615, 0);
- for (index_buf = 0; index_buf<22; index_buf++)
+ for (index_buf = 0; index_buf < 22; index_buf++)
dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);
return 0;
u32 syncFreq;
dprintk("Configure DibStream Rx");
- if ((P_Kin != 0) && (P_Kout != 0))
- {
+ if ((P_Kin != 0) && (P_Kout != 0)) {
syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
dib7000p_write_word(state, 1542, syncFreq);
}
u16 reg;
dprintk("Enable Diversity on host bus");
- reg = (1 << 8) | (1 << 5); // P_enDivOutOnDibTx = 1 ; P_enDibTxOnHostBus = 1
+ reg = (1 << 8) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
u16 reg;
dprintk("Enable ADC on host bus");
- reg = (1 << 7) | (1 << 5); //P_enAdcOnDibTx = 1 ; P_enDibTxOnHostBus = 1
+ reg = (1 << 7) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
u16 reg;
dprintk("Enable Mpeg on host bus");
- reg = (1 << 9) | (1 << 5); //P_enMpegOnDibTx = 1 ; P_enDibTxOnHostBus = 1
+ reg = (1 << 9) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
dprintk("Enable Mpeg mux");
dib7000p_write_word(state, 1287, reg);
- reg &= ~(1 << 7); // P_restart_mpegMux = 0
+ reg &= ~(1 << 7);
dib7000p_write_word(state, 1287, reg);
- reg = (1 << 4); //P_enMpegMuxOnHostBus = 1
+ reg = (1 << 4);
dib7000p_write_word(state, 1288, reg);
return 0;
u16 reg;
dprintk("Disable Mpeg mux");
- dib7000p_write_word(state, 1288, 0); //P_enMpegMuxOnHostBus = 0
+ dib7000p_write_word(state, 1288, 0);
reg = dib7000p_read_word(state, 1287);
- reg &= ~(1 << 7); // P_restart_mpegMux = 0
+ reg &= ~(1 << 7);
dib7000p_write_word(state, 1287, reg);
return 0;
{
struct dib7000p_state *state = fe->demodulator_priv;
- switch(mode) {
- case INPUT_MODE_DIVERSITY:
+ switch (mode) {
+ case INPUT_MODE_DIVERSITY:
dprintk("Enable diversity INPUT");
- dib7090_cfg_DibRx(state, 5,5,0,0,0,0,0);
+ dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
break;
- case INPUT_MODE_MPEG:
+ case INPUT_MODE_MPEG:
dprintk("Enable Mpeg INPUT");
- dib7090_cfg_DibRx(state, 8,5,0,0,0,8,0); /*outputRate = 8 */
+ dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /*outputRate = 8 */
break;
- case INPUT_MODE_OFF:
- default:
+ case INPUT_MODE_OFF:
+ default:
dprintk("Disable INPUT");
- dib7090_cfg_DibRx(state, 0,0,0,0,0,0,0);
+ dib7090_cfg_DibRx(state, 0, 0, 0, 0, 0, 0, 0);
break;
}
return 0;
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
dib7090_disableMpegMux(state);
- dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
+ dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (2 << 6) | (0 << 1);
}
break;
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
dib7090_disableMpegMux(state);
- dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
+ dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (0 << 6);
}
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
dib7090_disableMpegMux(state);
- dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
+ dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (1 << 6);
break;
case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */
dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
dib7090_disableMpegMux(state);
- dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
+ dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (5 << 6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
en_cur_state = dib7000p_read_word(state, 1922);
- if (en_cur_state > 0xff) { //LNAs and MIX are ON and therefore it is a valid configuration
+ if (en_cur_state > 0xff)
state->tuner_enable = en_cur_state;
- }
if (onoff)
- en_cur_state &= 0x00ff; //Mask to be applied
+ en_cur_state &= 0x00ff;
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
int dib7090_slave_reset(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
- u16 reg;
+ u16 reg;
- reg = dib7000p_read_word(state, 1794);
- dib7000p_write_word(state, 1794, reg | (4 << 12));
+ reg = dib7000p_read_word(state, 1794);
+ dib7000p_write_word(state, 1794, reg | (4 << 12));
- dib7000p_write_word(state, 1032, 0xffff);
- return 0;
+ dib7000p_write_word(state, 1032, 0xffff);
+ return 0;
}
EXPORT_SYMBOL(dib7090_slave_reset);
return demod;
- error:
+error:
kfree(st);
return NULL;
}
u16 diversity_delay;
u8 default_i2c_addr;
- u8 enMpegOutput : 1;
+ u8 enMpegOutput:1;
};
#define DEFAULT_DIB7000P_I2C_ADDRESS 18
fifo_threshold = 1792;
smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
- dprintk("-I- Setting output mode for demod %p to %d", &state->fe[0], mode);
+ dprintk("-I- Setting output mode for demod %p to %d",
+ &state->fe[0], mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
break;
default:
- dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]);
+ dprintk("Unhandled output_mode passed to be set for demod %p",
+ &state->fe[0]);
return -EINVAL;
}
{
/* by default everything is going to be powered off */
u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
- reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
+ reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
+ reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
/* now, depending on the requested mode, we power on */
switch (mode) {
// clk_cfg1
clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
- (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0);
+ (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) |
+ (pll->pll_range << 1) | (pll->pll_reset << 0);
dib8000_write_word(state, 902, clk_cfg1);
clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
if (state->cfg.pll->ADClkSrc == 0)
- dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
+ dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) |
+ (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
else if (state->cfg.refclksel != 0)
- dib8000_write_word(state, 904,
- (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->
- ADClkSrc << 7) | (0 << 1));
+ dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
+ ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) |
+ (pll->ADClkSrc << 7) | (0 << 1));
else
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
1, 285,
0x0020, //p_fec_
1, 299,
- 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
+ 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
1, 338,
(1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
- (1 << 10) | // P_ctrl_pre_freq_mode_sat=1
- (0 << 9) | // P_ctrl_pre_freq_inh=0
- (3 << 5) | // P_ctrl_pre_freq_step=3
- (1 << 0), // P_pre_freq_win_len=1
+ (1 << 10) |
+ (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
+ (3 << 5) | /* P_ctrl_pre_freq_step=3 */
+ (1 << 0), /* P_pre_freq_win_len=1 */
1, 903,
(0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
// read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib8000_read_word(state, 390);
- if (state->cfg.update_lna(state->fe[0], dyn_gain)) { // LNA has changed
+ if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
dib8000_restart_agc(state);
return 1;
}
split_offset = state->current_agc->split.max;
else
split_offset = state->current_agc->split.max *
- (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
+ (agc - state->current_agc->split.min_thres) /
+ (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
dprintk("AGC split_offset: %d", split_offset);
s32 val;
val = dib8000_read32(state, 384);
- /* mode = 1 : ln_agcpower calc using mant-exp conversion and mantis look up table */
if (mode) {
tmp_val = val;
while (tmp_val >>= 1)
exp++;
mant = (val * 1000 / (1<<exp));
ix = (u8)((mant-1000)/100); /* index of the LUT */
- val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); /* 1000 * ln(adcpower_real) ; 693 = 1000ln(2) ; 6908 = 1000*ln(1000) ; 20 comes from adc_real = adc_pow_int / 2**20 */
+ val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
val = (val*256)/1000;
}
return val;
dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
i = dib8000_read_word(state, 26) & 1; // P_dds_invspec
- dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion ^ i);
+ dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion^i);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
//compute new dds_freq for the seg and adjust prbs
int seg_offset =
- state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx - (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) -
+ state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx -
+ (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) -
(state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2);
int clk = state->cfg.pll->internal;
u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26)
int dds_offset = seg_offset * segtodds;
int new_dds, sub_channel;
- if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) // if even
+ if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
dds_offset -= (int)(segtodds / 2);
if (state->cfg.pll->ifreq == 0) {
// - the segment of center frequency with an odd total number of segments
// - the segment to the left of center frequency with an even total number of segments
// - the segment to the right of center frequency with an even total number of segments
- if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
+ if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT)
+ && (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
&& (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx ==
((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
}
dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
- if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) // if odd
+ if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
- else // if even
+ else
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
sub_channel -= 6;
}
break;
}
- } else { // if not state->fe[0]->dtv_property_cache.isdbt_sb_mode
+ } else {
dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
state->differential_constellation = (seg_diff_mask != 0);
dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
+ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
seg_mask13 = 0x00E0;
else // 1-segment
seg_mask13 = 0x0040;
dib8000_write_word(state, 353, seg_mask13); // ADDR 353
/* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
- // dib8000_write_word(state, 351, (state->fe[0]->dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5 );
// ---- SMALL ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_2k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_2k_sb_1seg;
} else { // 3-segments
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg_0dqpsk;
} else { // QPSK or QAM on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg;
break;
case TRANSMISSION_MODE_4K:
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_4k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_4k_sb_1seg;
} else { // 3-segments
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg;
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
default:
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_8k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_8k_sb_1seg;
} else { // 3-segments
- if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
- if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
+ if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg;
// ---- COFF ----
// Carloff, the most robust
- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // Sound Broadcasting mode - use both TMCC and AC pilots
+ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
// P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
// P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
/* // P_small_coef_ext_enable = 1 */
/* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
// P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
if (mode == 3)
dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
}
// ---- FFT ----
- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // 1-seg
+ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
dib8000_write_word(state, 178, 64); // P_fft_powrange=64
else
dib8000_write_word(state, 178, 32); // P_fft_powrange=32
/* offset loop parameters */
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);
dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));
// ---- ANA_FE ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
ana_fe = ana_fe_coeff_3seg;
else // 1-segment
ana_fe = ana_fe_coeff_1seg;
// "P_cspu_left_edge" not used => do not care
// "P_cspu_right_edge" not used => do not care
- if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
+ if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1
dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0 // 1-segment
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0
&& state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
//dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15
// never achieved a lock before - wait for timfreq to update
if (state->timf == 0) {
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
msleep(300);
else // Sound Broadcasting mode 3 seg
msleep(500);
msleep(200);
}
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
- if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
+ if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
/* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
dprintk("could not start Slow ADC");
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
- if (ret<0)
+ if (ret < 0)
return ret;
}
u8 index_frontend;
int ret;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
fe->dtv_property_cache.bandwidth_hz = 6000000;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat&FE_HAS_SYNC) {
dprintk("TMCC lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep);
- for (sub_index_frontend=0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
+ for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
}
/* synchronize the cache with the other frontends */
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = fe->dtv_property_cache.isdbt_sb_mode;
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
state->fe[0]->dtv_property_cache.bandwidth_hz = 6000000;
}
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* synchronization of the cache */
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
/* start up the AGC */
do {
time = dib8000_agc_startup(state->fe[0]);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
time_slave = dib8000_agc_startup(state->fe[index_frontend]);
if (time == FE_CALLBACK_TIME_NEVER)
time = time_slave;
else
break;
exit_condition = 1;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
exit_condition = 0;
break;
}
} while (exit_condition == 0);
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
if ((state->fe[0]->dtv_property_cache.delivery_system != SYS_ISDBT) ||
u8 found = 0;
u8 tune_failed = 0;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_bandwidth(state->fe[index_frontend], fe->dtv_property_cache.bandwidth_hz / 1000);
dib8000_autosearch_start(state->fe[index_frontend]);
}
do {
- msleep(10);
+ msleep(20);
nbr_pending = 0;
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (((tune_failed >> index_frontend) & 0x1) == 0) {
found = dib8000_autosearch_irq(state->fe[index_frontend]);
switch (found) {
- case 0: /* tune pending */
+ case 0: /* tune pending */
nbr_pending++;
break;
- case 2:
+ case 2:
dprintk("autosearch succeed on the frontend%i", index_frontend);
exit_condition = 2;
index_frontend_success = index_frontend;
break;
- default:
+ default:
dprintk("unhandled autosearch result");
- case 1:
- tune_failed |= (1 << index_frontend);
+ case 1:
dprintk("autosearch failed for the frontend%i", index_frontend);
break;
}
dib8000_get_frontend(fe, fep);
}
- for (index_frontend=0, ret=0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0, ret = 0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
ret = dib8000_tune(state->fe[index_frontend]);
- }
/* set output mode and diversity input */
dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
dib8000_set_diversity_in(state->fe[index_frontend-1], 1);
}
return ret;
}
-static u16 dib8000_read_lock(struct dvb_frontend *fe) {
+static u16 dib8000_read_lock(struct dvb_frontend *fe)
+{
struct dib8000_state *state = fe->demodulator_priv;
return dib8000_read_word(state, 568);
u16 lock_slave = 0, lock = dib8000_read_word(state, 568);
u8 index_frontend;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
*stat = 0;
u16 val;
*strength = 0;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
u32 snr_master;
snr_master = dib8000_get_snr(fe);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib8000_get_snr(state->fe[index_frontend]);
if (snr_master != 0) {
}
EXPORT_SYMBOL(dib8000_remove_slave_frontend);
-struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
+struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib8000_state *state = fe->demodulator_priv;
struct dib8000_state *st = fe->demodulator_priv;
u8 index_frontend;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
dibx000_exit_i2c_master(&st->i2c_master);
extern s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode);
extern int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave);
extern int dib8000_remove_slave_frontend(struct dvb_frontend *fe);
-extern struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
+extern struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
#else
static inline struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
{
return -ENODEV;
}
-static inline struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) {
+static inline struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
+{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
- return NULL;
+ return NULL;
}
#endif
/* lock */
#define DIB_LOCK struct mutex
-#define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock)<0) dprintk("could not get the lock"); } while (0)
+#define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock) < 0) dprintk("could not get the lock"); } while (0)
#define DibReleaseLock(lock) mutex_unlock(lock)
#define DibInitLock(lock) mutex_init(lock)
#define DibFreeLock(lock)
#define FE_MM_W_COMPONENT_ACCESS 16
#define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17
-static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen,
- u8 * b, u32 len);
+static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len);
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len);
static u16 to_fw_output_mode(u16 mode)
int ret;
u8 wb[2] = { reg >> 8, reg & 0xff };
struct i2c_msg msg[2] = {
- {.addr = state->i2c.i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
- {.addr = state->i2c.i2c_addr >> 1,.flags = I2C_M_RD,.buf = b,.len = len},
+ {.addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
+ {.addr = state->i2c.i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = len},
};
if (state->platform.risc.fw_is_running && (reg < 1024))
u8 b[2];
u8 wb[2] = { reg >> 8, reg & 0xff };
struct i2c_msg msg[2] = {
- {.addr = i2c->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
- {.addr = i2c->i2c_addr >> 1,.flags = I2C_M_RD,.buf = b,.len = 2},
+ {.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
+ {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = 2},
};
if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) {
int ret;
struct i2c_msg msg = {
- .addr = state->i2c.i2c_addr >> 1,.flags = 0,.buf = b,.len = len + 2
+ .addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = b, .len = len + 2
};
if (state->platform.risc.fw_is_running && (reg < 1024)) {
if (dib9000_risc_apb_access_write
- (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
+ (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
return -EINVAL;
return 0;
}
{
u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff };
struct i2c_msg msg = {
- .addr = i2c->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
+ .addr = i2c->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
{
u8 b[14] = { 0 };
-// dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len);
-// b[0] = 0 << 7;
+/* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */
+/* b[0] = 0 << 7; */
b[1] = 1;
-// b[2] = 0; // 1057
-// b[3] = 0;
- b[4] = (u8) (addr >> 8); // 1058
+/* b[2] = 0; */
+/* b[3] = 0; */
+ b[4] = (u8) (addr >> 8);
b[5] = (u8) (addr & 0xff);
-// b[10] = 0; // 1061
-// b[11] = 0;
- b[12] = (u8) (addr >> 8); // 1062
+/* b[10] = 0; */
+/* b[11] = 0; */
+ b[12] = (u8) (addr >> 8);
b[13] = (u8) (addr & 0xff);
addr += len;
-// b[6] = 0; // 1059
-// b[7] = 0;
- b[8] = (u8) (addr >> 8); // 1060
+/* b[6] = 0; */
+/* b[7] = 0; */
+ b[8] = (u8) (addr >> 8);
b[9] = (u8) (addr & 0xff);
dib9000_write(state, 1056, b, 14);
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f];
/* decide whether we need to "refresh" the memory controller */
if (state->platform.risc.memcmd == cmd && /* same command */
- !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
+ !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
return;
dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80);
state->platform.risc.memcmd = cmd;
break;
} while (1);
- //dprintk( "MBX: size: %d", size);
+ /*dprintk( "MBX: size: %d", size); */
if (tmp == 0) {
ret = -EINVAL;
/* update register nb_mes_in_RX */
ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr);
- out:
+out:
DibReleaseLock(&state->platform.risc.mbx_if_lock);
return ret;
if (*block == 0) {
size = dib9000_mbx_read(state, block, 1, attr);
-// dprintk( "MBX: fetched %04x message to cache", *block);
+/* dprintk( "MBX: fetched %04x message to cache", *block); */
switch (*block >> 8) {
case IN_MSG_DEBUG_BUF:
ret = dib9000_mbx_fetch_to_cache(state, attr);
tmp = dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */
-// if (tmp)
-// dprintk( "cleared IRQ: %x", tmp);
+/* if (tmp) */
+/* dprintk( "cleared IRQ: %x", tmp); */
DibReleaseLock(&state->platform.risc.mbx_lock);
return ret;
{
u16 value;
- if ((value = dib9000_i2c_read16(client, 896)) != 0x01b3) {
+ value = dib9000_i2c_read16(client, 896);
+ if (value != 0x01b3) {
dprintk("wrong Vendor ID (0x%x)", value);
return 0;
}
{
struct dib9000_state *state = fe->demodulator_priv;
- dib9000_write_word(state, 1817, 0x0003); // SRAM read lead in + P_host_rdy_cmos=1
+ dib9000_write_word(state, 1817, 0x0003);
dib9000_write_word(state, 1227, 1);
dib9000_write_word(state, 1227, 0);
return 0;
}
-static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen,
- u8 * b, u32 len)
+static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len)
{
u16 mb[10];
u8 i, s;
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
- //dprintk( "APB access thru rd fw %d %x", address, attribute);
+ /* dprintk( "APB access thru rd fw %d %x", address, attribute); */
mb[0] = (u16) address;
mb[1] = len / 2;
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute);
switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) {
case 1:
- s--; // address
+ s--;
for (i = 0; i < s; i++) {
b[i * 2] = (mb[i + 1] >> 8) & 0xff;
b[i * 2 + 1] = (mb[i + 1]) & 0xff;
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
- //dprintk( "APB access thru wr fw %d %x", address, attribute);
+ /* dprintk( "APB access thru wr fw %d %x", address, attribute); */
mb[0] = (unsigned short)address;
- for (i = 0; i < len && i < 20; i += 2) // 20 bytes max
+ for (i = 0; i < len && i < 20; i += 2)
mb[1 + (i / 2)] = (b[i] << 8 | b[i + 1]);
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, 1 + len / 2, attribute);
u8 size;
if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0)
- //if (dib9000_fw_boot(state, microcode_A_buffer, microcode_A_size, microcode_B_buffer, microcode_B_size) != 0)
return -EIO;
/* initialize the firmware */
b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask;
b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction;
b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value;
- //dprintk( "SBS: %d %d %x %x %x\n", i, b[1 + i*4], b[2 + i*4], b[3 + i*4], b[4 + i*4]);
}
b[1 + i * 4] = 0; /* fe_id */
if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0)
/* 0 - id, 1 - no_of_frontends */
b[0] = (0 << 8) | 1;
/* 0 = i2c-address demod, 0 = tuner */
- b[1] = (0 << 8) | (0); //st->i2c_addr ) );
+ b[1] = (0 << 8) | (0);
b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff);
b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff);
b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff);
return -EIO;
if (size > ARRAY_SIZE(b)) {
- dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, (int)ARRAY_SIZE(b));
+ dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size,
+ (int)ARRAY_SIZE(b));
return -EINVAL;
}
for (i = 0; i < size; i += 2) {
state->platform.risc.fe_mm[i / 2].addr = b[i + 0];
state->platform.risc.fe_mm[i / 2].size = b[i + 1];
- //dprintk( "MM: %d %d %d", state->platform.risc.fe_mm[i/2].addr, state->platform.risc.fe_mm[i/2].size, ARRAY_SIZE(state->platform.risc.fe_mm));
}
return 0;
ret = -EIO;
}
- dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, (u8 *) & ch, sizeof(struct dibDVBTChannel));
+ dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, (u8 *) &ch, sizeof(struct dibDVBTChannel));
- switch (ch.spectrum_inversion&0x7) {
+ switch (ch.spectrum_inversion & 0x7) {
case 1:
state->fe[0]->dtv_property_cache.inversion = INVERSION_ON;
break;
break;
}
- error:
+error:
DibReleaseLock(&state->platform.risc.mem_mbx_lock);
return ret;
}
ch.select_hp = 1;
ch.intlv_native = 1;
- dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) & ch);
+ dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch);
return 0;
}
break;
case CT_DEMOD_STEP_1:
if (search)
- dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, (u8 *) & i, 1);
+ dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, (u8 *) &i, 1);
else
- dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, (u8 *) & i, 1);
+ dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, (u8 *) &i, 1);
switch (i) { /* something happened */
case 0:
break;
dprintk("setting output mode for demod %p to %d", fe, mode);
switch (mode) {
- case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
+ case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
- case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
+ case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
- case OUTMODE_MPEG2_SERIAL: // STBs with serial input
+ case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
break;
case OUTMODE_DIVERSITY:
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
break;
- case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
+ case OUTMODE_MPEG2_FIFO:
outreg = (1 << 10) | (5 << 6);
break;
- case OUTMODE_HIGH_Z: // disable
+ case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
return -EINVAL;
}
- dib9000_write_word(state, 1795, outreg); // has to be written from outside
+ dib9000_write_word(state, 1795, outreg);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK:
static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
- u8 type = 0; /* I2C */
+ u8 type = 0; /* I2C */
u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4;
- u16 scl = state->component_bus_speed; /* SCL frequency */
- //u16 scl = 208; /* SCL frequency */
+ u16 scl = state->component_bus_speed; /* SCL frequency */
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER];
u8 p[13] = { 0 };
p[3] = (u8) scl & 0xff; /* scl */
p[4] = (u8) (scl >> 8);
-// p[5] = 0; /* attr */
-// p[6] = 0;
-
-// p[7] = (u8) (msg[0].addr << 1 );
-// p[8] = (u8) (msg[0].addr >> 7 );
p[7] = 0;
p[8] = 0;
struct dib9000_state *st = fe->demodulator_priv;
return &st->tuner_adap;
}
-
EXPORT_SYMBOL(dib9000_get_tuner_interface);
struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
struct dib9000_state *st = fe->demodulator_priv;
return &st->component_bus;
}
-
EXPORT_SYMBOL(dib9000_get_component_bus_interface);
struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
struct dib9000_state *st = fe->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
-
EXPORT_SYMBOL(dib9000_get_i2c_master);
int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
st->i2c.i2c_adap = i2c;
return 0;
}
-
EXPORT_SYMBOL(dib9000_set_i2c_adapter);
static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val)
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_cfg_gpio(state, num, dir, val);
}
-
EXPORT_SYMBOL(dib9000_set_gpio);
+
int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
dprintk("PID filter enabled %d", onoff);
return dib9000_write_word(state, 294 + 1, val);
}
-
EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl);
+
int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
return dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0);
}
-
EXPORT_SYMBOL(dib9000_fw_pid_filter);
int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_fw_init(state);
}
-
EXPORT_SYMBOL(dib9000_firmware_post_pll_init);
static void dib9000_release(struct dvb_frontend *demod)
struct dib9000_state *st = demod->demodulator_priv;
u8 index_frontend;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
DibFreeLock(&state->platform.risc.mbx_if_lock);
u8 index_frontend;
int ret;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
fe_status_t stat;
int ret;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat & FE_HAS_SYNC) {
dprintk("TPS lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep);
- for (sub_index_frontend=0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
+ for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL);
+ sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
- state->fe[sub_index_frontend]->dtv_property_cache.modulation = state->fe[index_frontend]->dtv_property_cache.modulation;
- state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
- state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
- state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
- state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = state->fe[index_frontend]->dtv_property_cache.hierarchy;
- state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
- state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
- state->fe[sub_index_frontend]->dtv_property_cache.rolloff = state->fe[index_frontend]->dtv_property_cache.rolloff;
+ state->fe[sub_index_frontend]->dtv_property_cache.modulation =
+ state->fe[index_frontend]->dtv_property_cache.modulation;
+ state->fe[sub_index_frontend]->dtv_property_cache.inversion =
+ state->fe[index_frontend]->dtv_property_cache.inversion;
+ state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode =
+ state->fe[index_frontend]->dtv_property_cache.transmission_mode;
+ state->fe[sub_index_frontend]->dtv_property_cache.guard_interval =
+ state->fe[index_frontend]->dtv_property_cache.guard_interval;
+ state->fe[sub_index_frontend]->dtv_property_cache.hierarchy =
+ state->fe[index_frontend]->dtv_property_cache.hierarchy;
+ state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP =
+ state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
+ state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP =
+ state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
+ state->fe[sub_index_frontend]->dtv_property_cache.rolloff =
+ state->fe[index_frontend]->dtv_property_cache.rolloff;
}
}
return 0;
return ret;
/* synchronize the cache with the other frontends */
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval;
/* set the master status */
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
- fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
+ fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
/* no channel specified, autosearch the channel */
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN;
} else
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
/* set mode and status for the different frontends */
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib9000_fw_set_diversity_in(state->fe[index_frontend], 1);
/* synchronization of the cache */
}
/* actual tune */
- exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
+ exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
index_frontend_success = 0;
do {
sleep_time = dib9000_fw_tune(state->fe[0], NULL);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
sleep_time = sleep_time_slave;
nbr_pending = 0;
exit_condition = 0;
index_frontend_success = 0;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if (frontend_status > -FE_STATUS_TUNE_PENDING) {
- exit_condition = 2; /* tune success */
+ exit_condition = 2; /* tune success */
index_frontend_success = index_frontend;
break;
}
if (frontend_status == -FE_STATUS_TUNE_PENDING)
- nbr_pending++; /* some frontends are still tuning */
+ nbr_pending++; /* some frontends are still tuning */
}
if ((exit_condition != 2) && (nbr_pending == 0))
- exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
+ exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
} while (exit_condition == 0);
/* check the tune result */
- if (exit_condition == 1) { /* tune failed */
+ if (exit_condition == 1) { /* tune failed */
dprintk("tune failed");
return 0;
}
/* retune the other frontends with the found channel */
channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* only retune the frontends which was not tuned success */
if (index_frontend != index_frontend_success) {
dib9000_set_channel_status(state->fe[index_frontend], &channel_status);
}
do {
sleep_time = FE_CALLBACK_TIME_NEVER;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
break;
nbr_pending = 0;
- for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING))
- nbr_pending++; /* some frontends are still tuning */
+ nbr_pending++; /* some frontends are still tuning */
}
}
} while (nbr_pending != 0);
/* set the output mode */
dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
/* turn off the diversity for the last frontend */
- dib9000_fw_set_diversity_in(state->fe[index_frontend-1], 0);
+ dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0);
return 0;
}
u8 index_frontend;
u16 lock = 0, lock_slave = 0;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib9000_read_lock(state->fe[index_frontend]);
lock = dib9000_read_word(state, 535);
u16 val;
*strength = 0;
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
u32 snr_master;
snr_master = dib9000_get_snr(fe);
- for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
+ for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib9000_get_snr(state->fe[index_frontend]);
if ((snr_master >> 16) != 0) {
struct i2c_device client = {.i2c_adap = i2c };
client.i2c_addr = default_addr + 16;
- dib9000_i2c_write16(&client, 1796, 0x0); // select DVB-T output
+ dib9000_i2c_write16(&client, 1796, 0x0);
for (k = no_of_demods - 1; k >= 0; k--) {
/* designated i2c address */
return 0;
}
-
EXPORT_SYMBOL(dib9000_i2c_enumeration);
int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend != 1) {
- dprintk("remove slave fe %p (index %i)", state->fe[index_frontend-1], index_frontend-1);
+ dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1);
state->fe[index_frontend] = NULL;
return 0;
}
}
EXPORT_SYMBOL(dib9000_remove_slave_frontend);
-struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
+struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib9000_state *state = fe->demodulator_priv;
return fe;
- component_bus_add_error:
+component_bus_add_error:
i2c_del_adapter(&st->tuner_adap);
- error:
+error:
kfree(st);
return NULL;
}
-
EXPORT_SYMBOL(dib9000_attach);
static struct dvb_frontend_ops dib9000_ops = {
extern int dib9000_firmware_post_pll_init(struct dvb_frontend *fe);
extern int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave);
extern int dib9000_remove_slave_frontend(struct dvb_frontend *fe);
-extern struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
+extern struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
extern struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe);
extern int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c);
extern int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed);
return -ENODEV;
}
-static inline struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) {
+static inline struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
+{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
}
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
- {.addr = mst->i2c_addr,.flags = 0,.buf = wb,.len = 2},
- {.addr = mst->i2c_addr,.flags = I2C_M_RD,.buf = rb,.len = 2},
+ {.addr = mst->i2c_addr, .flags = 0, .buf = wb, .len = 2},
+ {.addr = mst->i2c_addr, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
if (i2c_transfer(mst->i2c_adap, msg, 2) != 2)
static int dibx000_is_i2c_done(struct dibx000_i2c_master *mst)
{
- int i = 100; // max_i2c_polls;
+ int i = 100;
u16 status;
- while (((status = dibx000_read_word(mst, mst->base_reg + 2)) & 0x0100) == 0 && --i > 0);
+ while (((status = dibx000_read_word(mst, mst->base_reg + 2)) & 0x0100) == 0 && --i > 0)
+ ;
/* i2c timed out */
if (i == 0)
const u8 *b = msg->buf;
while (txlen) {
- dibx000_read_word(mst, mst->base_reg + 2); // reset fifo ptr
+ dibx000_read_word(mst, mst->base_reg + 2);
len = txlen > 8 ? 8 : txlen;
for (i = 0; i < len; i += 2) {
data |= *b++;
dibx000_write_word(mst, mst->base_reg, data);
}
- da = (((u8) (msg->addr)) << 9) | // addr
- (1 << 8) | // master
- (1 << 7) | // rq
- (0 << 6) | // stop
- (0 << 5) | // start
- ((len & 0x7) << 2) | // nb 8 bytes == 0 here
- (0 << 1) | // rw
- (0 << 0); // irqen
+ da = (((u8) (msg->addr)) << 9) |
+ (1 << 8) |
+ (1 << 7) |
+ (0 << 6) |
+ (0 << 5) |
+ ((len & 0x7) << 2) |
+ (0 << 1) |
+ (0 << 0);
if (txlen == msg->len)
da |= 1 << 5; /* start */
while (rxlen) {
len = rxlen > 8 ? 8 : rxlen;
- da = (((u8) (msg->addr)) << 9) | // addr
- (1 << 8) | // master
- (1 << 7) | // rq
- (0 << 6) | // stop
- (0 << 5) | // start
- ((len & 0x7) << 2) | // nb
- (1 << 1) | // rw
- (0 << 0); // irqen
+ da = (((u8) (msg->addr)) << 9) |
+ (1 << 8) |
+ (1 << 7) |
+ (0 << 6) |
+ (0 << 5) |
+ ((len & 0x7) << 2) |
+ (1 << 1) |
+ (0 << 0);
if (rxlen == msg->len)
da |= 1 << 5; /* start */
int ret = 0;
dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_1_2);
- for (msg_index = 0; msg_index<num; msg_index++) {
- if (msg[msg_index].flags & I2C_M_RD)
- {
+ for (msg_index = 0; msg_index < num; msg_index++) {
+ if (msg[msg_index].flags & I2C_M_RD) {
ret = dibx000_master_i2c_read(mst, &msg[msg_index]);
if (ret != 0)
return 0;
- }
- else
- {
+ } else {
ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1);
if (ret != 0)
return 0;
int ret = 0;
dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_3_4);
- for (msg_index = 0; msg_index<num; msg_index++) {
- if (msg[msg_index].flags & I2C_M_RD)
- {
+ for (msg_index = 0; msg_index < num; msg_index++) {
+ if (msg[msg_index].flags & I2C_M_RD) {
ret = dibx000_master_i2c_read(mst, &msg[msg_index]);
if (ret != 0)
return 0;
- }
- else
- {
+ } else {
ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1);
if (ret != 0)
return 0;
enum dibx000_i2c_interface selected_interface;
-// struct i2c_adapter tuner_i2c_adap;
+/* struct i2c_adapter tuner_i2c_adap; */
struct i2c_adapter gated_tuner_i2c_adap;
struct i2c_adapter master_i2c_adap_gpio12;
struct i2c_adapter master_i2c_adap_gpio34;
#define BAND_FM 0x10
#define BAND_CBAND 0x20
-#define BAND_OF_FREQUENCY(freq_kHz) ( (freq_kHz) <= 170000 ? BAND_CBAND : \
+#define BAND_OF_FREQUENCY(freq_kHz) ((freq_kHz) <= 170000 ? BAND_CBAND : \
(freq_kHz) <= 115000 ? BAND_FM : \
(freq_kHz) <= 250000 ? BAND_VHF : \
(freq_kHz) <= 863000 ? BAND_UHF : \
DIBX000_VBG_DISABLE,
};
-#define BANDWIDTH_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \
+#define BANDWIDTH_TO_KHZ(v) ((v) == BANDWIDTH_8_MHZ ? 8000 : \
(v) == BANDWIDTH_7_MHZ ? 7000 : \
- (v) == BANDWIDTH_6_MHZ ? 6000 : 8000 )
+ (v) == BANDWIDTH_6_MHZ ? 6000 : 8000)
#define BANDWIDTH_TO_INDEX(v) ( \
(v) == 8000 ? BANDWIDTH_8_MHZ : \
#define FE_CALLBACK_TIME_NEVER 0xffffffff
-#define ABS(x) ((x<0)?(-x):(x))
+#define ABS(x) ((x < 0) ? (-x) : (x))
#define DATA_BUS_ACCESS_MODE_8BIT 0x01
#define DATA_BUS_ACCESS_MODE_16BIT 0x02