printk("state_jr3_init_set_full_scale_complete complete = %d\n", is_complete(channel));
result = poll_delay_min_max(20, 100);
} else {
- volatile force_array_t *full_scale;
+ volatile struct force_array *full_scale;
// Use ranges in kN or we will overflow arount 2000N!
full_scale = &channel->full_scale;
/* The force_array structure shows the layout for the decoupled and
* filtered force data.
*/
-typedef struct force_array {
+struct force_array {
s32 fx;
s32 fy;
s32 fz;
s32 mz;
s32 v1;
s32 v2;
-} force_array_t;
+};
/* The six_axis_array structure shows the layout for the offsets and
* the full scales.
* axes used for each vector respectively.
*/
- force_array_t full_scale; /* offset 0x0080 */
+ struct force_array full_scale; /* offset 0x0080 */
/* Offsets contains the sensor offsets. These values are subtracted from
* the sensor data to obtain the decoupled data. The offsets are set a
* calculated is specified by the variable rate_address (pg. 12).
*/
- force_array_t rate_data; /* offset 0x00c8 */
+ struct force_array rate_data; /* offset 0x00c8 */
/* Minimum_data & maximum_data are the minimum and maximum (peak)
* data values. The JR3 DSP can monitor any 8 contiguous data items
* also lost when plugging in a new sensor.
*/
- force_array_t minimum_data; /* offset 0x00d0 */
- force_array_t maximum_data; /* offset 0x00d8 */
+ struct force_array minimum_data; /* offset 0x00d0 */
+ struct force_array maximum_data; /* offset 0x00d8 */
/* Near_sat_value & sat_value contain the value used to determine if
* the raw sensor is saturated. Because of decoupling and offset