--- /dev/null
+/*
+ * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/interrupt.h>
+#include <linux/regmap.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/cpufreq.h>
+#include <linux/nvmem-consumer.h>
+#include <linux/bitops.h>
+#include <linux/regulator/qcom_smd-regulator.h>
+
+/* Register Offsets for RB-CPR and Bit Definitions */
+
+/* RBCPR Version Register */
+#define REG_RBCPR_VERSION 0
+#define RBCPR_VER_2 0x02
+
+/* RBCPR Gate Count and Target Registers */
+#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * n)
+
+#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
+#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
+#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
+#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
+
+/* RBCPR Timer Control */
+#define REG_RBCPR_TIMER_INTERVAL 0x44
+#define REG_RBIF_TIMER_ADJUST 0x4c
+
+#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
+#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
+#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
+#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
+
+/* RBCPR Config Register */
+#define REG_RBIF_LIMIT 0x48
+#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
+#define RBIF_LIMIT_CEILING_SHIFT 6
+#define RBIF_LIMIT_FLOOR_BITS 6
+#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
+
+#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
+#define RBIF_LIMIT_FLOOR_DEFAULT 0
+
+#define REG_RBIF_SW_VLEVEL 0x94
+#define RBIF_SW_VLEVEL_DEFAULT 0x20
+
+#define REG_RBCPR_STEP_QUOT 0x80
+#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
+
+/* RBCPR Control Register */
+#define REG_RBCPR_CTL 0x90
+
+#define RBCPR_CTL_LOOP_EN BIT(0)
+#define RBCPR_CTL_TIMER_EN BIT(3)
+#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
+#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
+#define RBCPR_CTL_COUNT_MODE BIT(10)
+#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
+#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
+#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
+#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
+
+/* RBCPR Ack/Nack Response */
+#define REG_RBIF_CONT_ACK_CMD 0x98
+#define REG_RBIF_CONT_NACK_CMD 0x9c
+
+/* RBCPR Result status Register */
+#define REG_RBCPR_RESULT_0 0xa0
+
+#define RBCPR_RESULT0_BUSY_SHIFT 19
+#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
+#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
+#define RBCPR_RESULT0_ERROR_SHIFT 6
+#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
+#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
+#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
+#define RBCPR_RESULT0_STEP_UP_SHIFT 1
+
+/* RBCPR Interrupt Control Register */
+#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * n)
+#define REG_RBIF_IRQ_CLEAR 0x110
+#define REG_RBIF_IRQ_STATUS 0x114
+
+#define CPR_INT_DONE BIT(0)
+#define CPR_INT_MIN BIT(1)
+#define CPR_INT_DOWN BIT(2)
+#define CPR_INT_MID BIT(3)
+#define CPR_INT_UP BIT(4)
+#define CPR_INT_MAX BIT(5)
+#define CPR_INT_CLAMP BIT(6)
+#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
+ CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
+#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
+
+#define CPR_NUM_RING_OSC 8
+
+/* RBCPR Clock Control Register */
+#define RBCPR_CLK_SEL_MASK BIT(-1)
+#define RBCPR_CLK_SEL_19P2_MHZ 0
+#define RBCPR_CLK_SEL_AHB_CLK BIT(0)
+
+/* CPR eFuse parameters */
+#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
+
+#define CPR_FUSE_MIN_QUOT_DIFF 50
+
+#define SPEED_BIN_NONE UINT_MAX
+
+#define FUSE_REVISION_UNKNOWN (-1)
+#define FUSE_MAP_NO_MATCH (-1)
+#define FUSE_PARAM_MATCH_ANY 0xffffffff
+
+/**
+ * enum vdd_mx_vmin_method - Method to determine vmin for vdd-mx
+ * @VDD_MX_VMIN_APC: Use APC voltage
+ * @VDD_MX_VMIN_APC_CORNER_CEILING: Use PVS corner ceiling voltage
+ * @VDD_MX_VMIN_APC_SLOW_CORNER_CEILING: Use slow speed corner ceiling
+ * @VDD_MX_VMIN_MX_VMAX: Use specified vdd-mx-vmax voltage
+ * @VDD_MX_VMIN_APC_CORNER_MAP: Use APC corner mapped MX voltage
+ */
+enum vdd_mx_vmin_method {
+ VDD_MX_VMIN_APC,
+ VDD_MX_VMIN_APC_CORNER_CEILING,
+ VDD_MX_VMIN_APC_SLOW_CORNER_CEILING,
+ VDD_MX_VMIN_MX_VMAX,
+ VDD_MX_VMIN_APC_CORNER_MAP,
+};
+/* TODO: Trim these above to used values */
+
+enum voltage_change_dir {
+ NO_CHANGE,
+ DOWN,
+ UP,
+};
+
+struct qfprom_offset {
+ u16 offset;
+ u8 width;
+ u8 shift;
+};
+
+struct cpr_fuse {
+ struct qfprom_offset ring_osc;
+ struct qfprom_offset init_voltage;
+ struct qfprom_offset quotient;
+ struct qfprom_offset quotient_offset;
+};
+
+struct fuse_corner_data {
+ int ref_uV;
+ int max_uV;
+ int min_uV;
+ int max_quot_scale;
+ int quot_offset;
+ int quot_scale;
+ int max_volt_scale;
+ int vdd_mx_req;
+};
+
+struct cpr_fuses {
+ struct qfprom_offset redundant;
+ u8 redundant_value;
+ int init_voltage_step;
+ struct fuse_corner_data *fuse_corner_data;
+ struct cpr_fuse *cpr_fuse;
+ struct qfprom_offset *disable;
+};
+
+struct pvs_bin {
+ int *uV;
+};
+
+struct pvs_fuses {
+ struct qfprom_offset redundant;
+ u8 redundant_value;
+ struct qfprom_offset *pvs_fuse;
+ struct pvs_bin *pvs_bins;
+};
+
+struct corner_data {
+ unsigned int fuse_corner;
+ unsigned long freq;
+};
+
+struct freq_plan {
+ u32 speed_bin;
+ u32 pvs_version;
+ const struct corner_data **plan;
+};
+
+struct fuse_conditional_min_volt {
+ struct qfprom_offset redundant;
+ u8 expected;
+ int min_uV;
+};
+
+struct fuse_uplift_wa {
+ struct qfprom_offset redundant;
+ u8 expected;
+ int uV;
+ int *quot;
+ int max_uV;
+ int speed_bin;
+};
+
+struct corner_override {
+ u32 speed_bin;
+ u32 pvs_version;
+ int *max_uV;
+ int *min_uV;
+};
+
+struct corner_adjustment {
+ u32 speed_bin;
+ u32 pvs_version;
+ u32 cpr_rev;
+ u8 *ring_osc_idx;
+ int *fuse_quot;
+ int *fuse_quot_diff;
+ int *fuse_quot_min;
+ int *fuse_quot_offset;
+ int *fuse_init_uV;
+ int *quot;
+ int *init_uV;
+ bool disable_closed_loop;
+};
+
+struct cpr_desc {
+ unsigned int num_fuse_corners;
+ unsigned int num_corners;
+ enum vdd_mx_vmin_method vdd_mx_vmin_method;
+ int vdd_mx_vmax;
+ int min_diff_quot;
+ int *step_quot;
+ struct cpr_fuses cpr_fuses;
+ struct qfprom_offset fuse_revision;
+ struct qfprom_offset speed_bin;
+ struct qfprom_offset pvs_version;
+ struct corner_data *corner_data;
+ struct freq_plan *freq_plans;
+ size_t num_freq_plans;
+ struct pvs_fuses *pvs_fuses;
+ struct fuse_conditional_min_volt *min_volt_fuse;
+ struct fuse_uplift_wa *uplift_wa;
+ struct corner_override *corner_overrides;
+ size_t num_corner_overrides;
+ struct corner_adjustment *adjustments;
+ size_t num_adjustments;
+ bool reduce_to_fuse_uV;
+ bool reduce_to_corner_uV;
+};
+
+struct acc_desc {
+ unsigned int enable_reg;
+ u32 enable_mask;
+
+ struct reg_default *settings;
+ struct reg_default *override_settings;
+ int num_regs_per_fuse;
+
+ struct qfprom_offset override;
+ u8 override_value;
+};
+
+struct fuse_corner {
+ int min_uV;
+ int max_uV;
+ int uV;
+ int quot;
+ int step_quot;
+ const struct reg_default *accs;
+ int num_accs;
+ int vdd_mx_req;
+ unsigned long max_freq;
+ u8 ring_osc_idx;
+};
+
+struct corner {
+ int min_uV;
+ int max_uV;
+ int uV;
+ int last_uV;
+ int quot_adjust;
+ u32 save_ctl;
+ u32 save_irq;
+ unsigned long freq;
+ struct fuse_corner *fuse_corner;
+};
+
+struct cpr_drv {
+ unsigned int num_fuse_corners;
+ unsigned int num_corners;
+
+ unsigned int nb_count;
+ struct notifier_block cpufreq_nb;
+ bool switching_opp;
+ struct notifier_block reg_nb;
+
+ unsigned int ref_clk_khz;
+ unsigned int timer_delay_us;
+ unsigned int timer_cons_up;
+ unsigned int timer_cons_down;
+ unsigned int up_threshold;
+ unsigned int down_threshold;
+ unsigned int idle_clocks;
+ unsigned int gcnt_us;
+ unsigned int vdd_apc_step_up_limit;
+ unsigned int vdd_apc_step_down_limit;
+ unsigned int clamp_timer_interval;
+ int ceiling_max;
+ enum vdd_mx_vmin_method vdd_mx_vmin_method;
+ int vdd_mx_vmax;
+
+ struct mutex lock;
+ void __iomem *base;
+ struct corner *corner;
+ struct regulator *vdd_apc;
+ struct regulator *vdd_mx;
+ struct clk *cpu_clk;
+ struct device *cpu_dev;
+ struct regmap *tcsr;
+ bool loop_disabled;
+ bool suspended;
+ u32 gcnt;
+ unsigned long flags;
+#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
+
+ struct fuse_corner *fuse_corners;
+ struct corner *corners;
+};
+
+static bool cpr_is_allowed(struct cpr_drv *drv)
+{
+ if (drv->loop_disabled) /* || disabled in software */
+ return false;
+ else
+ return true;
+}
+
+static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
+{
+ writel_relaxed(value, drv->base + offset);
+}
+
+static u32 cpr_read(struct cpr_drv *drv, u32 offset)
+{
+ return readl_relaxed(drv->base + offset);
+}
+
+static void
+cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
+{
+ u32 val;
+
+ val = readl_relaxed(drv->base + offset);
+ val &= ~mask;
+ val |= value & mask;
+ writel_relaxed(val, drv->base + offset);
+}
+
+static void cpr_irq_clr(struct cpr_drv *drv)
+{
+ cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
+}
+
+static void cpr_irq_clr_nack(struct cpr_drv *drv)
+{
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+}
+
+static void cpr_irq_clr_ack(struct cpr_drv *drv)
+{
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+}
+
+static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
+{
+ cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
+}
+
+static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
+{
+ cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
+}
+
+static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
+{
+ u32 val, mask;
+
+ if (drv->suspended)
+ return;
+
+ /* Program Consecutive Up & Down */
+ val = drv->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+ val |= drv->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+ mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
+ cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
+ cpr_masked_write(drv, REG_RBCPR_CTL,
+ RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+ RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
+ corner->save_ctl);
+ cpr_irq_set(drv, corner->save_irq);
+
+ if (cpr_is_allowed(drv) /*&& drv->vreg_enabled */ &&
+ corner->max_uV > corner->min_uV)
+ val = RBCPR_CTL_LOOP_EN;
+ else
+ val = 0;
+ cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
+}
+
+static void cpr_ctl_disable(struct cpr_drv *drv)
+{
+ if (drv->suspended)
+ return;
+
+ cpr_irq_set(drv, 0);
+ cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+ RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
+ cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
+ RBIF_TIMER_ADJ_CONS_UP_MASK |
+ RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+ cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+ cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
+}
+
+static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
+{
+ u32 reg_val;
+
+ reg_val = cpr_read(drv, REG_RBCPR_CTL);
+ return reg_val & RBCPR_CTL_LOOP_EN;
+}
+
+static bool cpr_ctl_is_busy(struct cpr_drv *drv)
+{
+ u32 reg_val;
+
+ reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
+ return reg_val & RBCPR_RESULT0_BUSY_MASK;
+}
+
+static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
+{
+ corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
+ corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
+}
+
+static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
+{
+ u32 gcnt, ctl, irq, ro_sel, step_quot;
+ struct fuse_corner *fuse = corner->fuse_corner;
+ int i;
+
+ ro_sel = fuse->ring_osc_idx;
+ gcnt = drv->gcnt;
+ gcnt |= fuse->quot - corner->quot_adjust;
+
+ /* Program the step quotient and idle clocks */
+ step_quot = drv->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
+ step_quot |= fuse->step_quot;
+ cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
+
+ /* Clear the target quotient value and gate count of all ROs */
+ for (i = 0; i < CPR_NUM_RING_OSC; i++)
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
+ ctl = corner->save_ctl;
+ cpr_write(drv, REG_RBCPR_CTL, ctl);
+ irq = corner->save_irq;
+ cpr_irq_set(drv, irq);
+ pr_debug("gcnt = 0x%08x, ctl = 0x%08x, irq = 0x%08x\n", gcnt, ctl, irq);
+}
+
+static void cpr_corner_switch(struct cpr_drv *drv, struct corner *corner)
+{
+ if (drv->corner == corner)
+ return;
+
+ cpr_corner_restore(drv, corner);
+}
+
+static int
+cpr_mx_get(struct cpr_drv *drv, struct fuse_corner *fuse, int apc_volt)
+{
+ int vdd_mx;
+ struct fuse_corner *highest_fuse;
+
+ highest_fuse = &drv->fuse_corners[drv->num_fuse_corners - 1];
+
+ switch (drv->vdd_mx_vmin_method) {
+ case VDD_MX_VMIN_APC:
+ vdd_mx = apc_volt;
+ break;
+ case VDD_MX_VMIN_APC_CORNER_CEILING:
+ vdd_mx = fuse->max_uV;
+ break;
+ case VDD_MX_VMIN_APC_SLOW_CORNER_CEILING:
+ vdd_mx = highest_fuse->max_uV;
+ break;
+ case VDD_MX_VMIN_MX_VMAX:
+ vdd_mx = drv->vdd_mx_vmax;
+ break;
+ case VDD_MX_VMIN_APC_CORNER_MAP:
+ vdd_mx = fuse->vdd_mx_req;
+ break;
+ default:
+ BUG();
+ }
+
+ return vdd_mx;
+}
+
+static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
+ struct fuse_corner *end)
+{
+ if (f < end) {
+ for (f += 1; f <= end; f++)
+ regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+ } else {
+ for (f -= 1; f >= end; f--)
+ regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+ }
+}
+
+static int cpr_pre_voltage(struct cpr_drv *drv,
+ struct fuse_corner *fuse_corner,
+ enum voltage_change_dir dir, int vdd_mx_vmin)
+{
+ int ret = 0;
+ struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+ if (drv->tcsr && dir == DOWN)
+ cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+ if (vdd_mx_vmin && dir == UP)
+ ret = qcom_rpm_set_corner(drv->vdd_mx, vdd_mx_vmin);
+
+ return ret;
+}
+
+static int cpr_post_voltage(struct cpr_drv *drv,
+ struct fuse_corner *fuse_corner,
+ enum voltage_change_dir dir, int vdd_mx_vmin)
+{
+ int ret = 0;
+ struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+ if (drv->tcsr && dir == UP)
+ cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+ if (vdd_mx_vmin && dir == DOWN)
+ ret = qcom_rpm_set_corner(drv->vdd_mx, vdd_mx_vmin);
+
+ return ret;
+}
+
+static int cpr_regulator_notifier(struct notifier_block *nb,
+ unsigned long event, void *d)
+{
+ struct cpr_drv *drv = container_of(nb, struct cpr_drv, reg_nb);
+ u32 val, mask;
+ int last_uV, new_uV;
+
+ switch (event) {
+ case REGULATOR_EVENT_VOLTAGE_CHANGE:
+ new_uV = (int)(uintptr_t)d;
+ break;
+ default:
+ return 0;
+ }
+
+ mutex_lock(&drv->lock);
+
+ last_uV = drv->corner->last_uV;
+
+ if (drv->switching_opp) {
+ goto unlock;
+ } else if (last_uV < new_uV) {
+ /* Disable auto nack down */
+ mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+ val = 0;
+ } else if (last_uV > new_uV) {
+ /* Restore default threshold for UP */
+ mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+ mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val = drv->up_threshold;
+ val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ } else { /* Somehow it's the same? */
+ goto unlock;
+ }
+
+ cpr_ctl_modify(drv, mask, val);
+
+ /* Re-enable default interrupts */
+ cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+ /* Ack */
+ cpr_irq_clr_ack(drv);
+
+ /* Save register values for the corner */
+ cpr_corner_save(drv, drv->corner);
+ drv->corner->last_uV = new_uV;
+unlock:
+ mutex_unlock(&drv->lock);
+
+ return 0;
+}
+
+static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
+{
+ u32 val, error_steps, reg_mask;
+ int last_uV, new_uV, step_uV;
+ struct corner *corner;
+ struct fuse_corner *fuse;
+
+ //step_uV = regulator_get_linear_step(drv->vdd_apc);
+ step_uV = 12500; /*TODO: Get step volt here */
+ corner = drv->corner;
+ fuse = corner->fuse_corner;
+
+ val = cpr_read(drv, REG_RBCPR_RESULT_0);
+
+ error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
+ error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
+ last_uV = corner->last_uV;
+
+ if (dir == UP) {
+ if (drv->clamp_timer_interval &&
+ error_steps < drv->up_threshold) {
+ /*
+ * Handle the case where another measurement started
+ * after the interrupt was triggered due to a core
+ * exiting from power collapse.
+ */
+ error_steps = max(drv->up_threshold,
+ drv->vdd_apc_step_up_limit);
+ }
+
+ if (last_uV >= corner->max_uV) {
+ cpr_irq_clr_nack(drv);
+
+ /* Maximize the UP threshold */
+ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+ reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val = reg_mask;
+ cpr_ctl_modify(drv, reg_mask, val);
+
+ /* Disable UP interrupt */
+ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
+
+ return 0;
+ }
+
+ if (error_steps > drv->vdd_apc_step_up_limit)
+ error_steps = drv->vdd_apc_step_up_limit;
+
+ /* Calculate new voltage */
+ new_uV = last_uV + error_steps * step_uV;
+ if (new_uV > corner->max_uV)
+ new_uV = corner->max_uV;
+ } else if (dir == DOWN) {
+ if (drv->clamp_timer_interval
+ && error_steps < drv->down_threshold) {
+ /*
+ * Handle the case where another measurement started
+ * after the interrupt was triggered due to a core
+ * exiting from power collapse.
+ */
+ error_steps = max(drv->down_threshold,
+ drv->vdd_apc_step_down_limit);
+ }
+
+ if (last_uV <= corner->min_uV) {
+ cpr_irq_clr_nack(drv);
+
+ /* Enable auto nack down */
+ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+ val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+
+ cpr_ctl_modify(drv, reg_mask, val);
+
+ /* Disable DOWN interrupt */
+ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
+
+ return 0;
+ }
+
+ if (error_steps > drv->vdd_apc_step_down_limit)
+ error_steps = drv->vdd_apc_step_down_limit;
+
+ /* Calculate new voltage */
+ new_uV = last_uV - error_steps * step_uV;
+ if (new_uV < corner->min_uV)
+ new_uV = corner->min_uV;
+ }
+
+ return new_uV;
+}
+
+static irqreturn_t cpr_irq_handler(int irq, void *dev)
+{
+ struct cpr_drv *drv = dev;
+ u32 val;
+ int new_uV = 0;
+ struct corner *corner;
+
+ mutex_lock(&drv->lock);
+
+ val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+ if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
+ val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+
+ pr_debug("IRQ_STATUS = %#02x\n", val);
+
+ if (!cpr_ctl_is_enabled(drv)) {
+ pr_debug("CPR is disabled\n");
+ goto unlock;
+ } else if (cpr_ctl_is_busy(drv) && !drv->clamp_timer_interval) {
+ pr_debug("CPR measurement is not ready\n");
+ goto unlock;
+ } else if (!cpr_is_allowed(drv)) {
+ val = cpr_read(drv, REG_RBCPR_CTL);
+ pr_err_ratelimited("Interrupt broken? RBCPR_CTL = %#02x\n",
+ val);
+ goto unlock;
+ }
+
+ /* Following sequence of handling is as per each IRQ's priority */
+ if (val & CPR_INT_UP) {
+ new_uV = cpr_scale(drv, UP);
+ } else if (val & CPR_INT_DOWN) {
+ new_uV = cpr_scale(drv, DOWN);
+ } else if (val & CPR_INT_MIN) {
+ cpr_irq_clr_nack(drv);
+ } else if (val & CPR_INT_MAX) {
+ cpr_irq_clr_nack(drv);
+ } else if (val & CPR_INT_MID) {
+ /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
+ pr_debug("IRQ occurred for Mid Flag\n");
+ } else {
+ pr_debug("IRQ occurred for unknown flag (%#08x)\n", val);
+ }
+
+ /* Save register values for the corner */
+ corner = drv->corner;
+ cpr_corner_save(drv, corner);
+unlock:
+ mutex_unlock(&drv->lock);
+
+ if (new_uV)
+ dev_pm_opp_adjust_voltage(drv->cpu_dev, corner->freq, new_uV);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * TODO: Register for hotplug notifier and turn on/off CPR when CPUs are offline
+ */
+static int cpr_enable(struct cpr_drv *drv)
+{
+ int ret;
+
+ /* Enable dependency power before vdd_apc */
+ if (drv->vdd_mx) {
+ ret = regulator_enable(drv->vdd_mx);
+ if (ret)
+ return ret;
+ }
+
+ ret = regulator_enable(drv->vdd_apc);
+ if (ret)
+ return ret;
+
+ mutex_lock(&drv->lock);
+ //drv->vreg_enabled = true;
+ if (cpr_is_allowed(drv) && drv->corner) {
+ cpr_irq_clr(drv);
+ cpr_corner_restore(drv, drv->corner);
+ cpr_ctl_enable(drv, drv->corner);
+ }
+ mutex_unlock(&drv->lock);
+ pr_info("CPR is enabled!\n");
+
+ return 0;
+}
+
+static int cpr_disable(struct cpr_drv *drv)
+{
+ int ret;
+
+ ret = regulator_disable(drv->vdd_apc);
+ if (ret)
+ return ret;
+
+ if (drv->vdd_mx)
+ ret = regulator_disable(drv->vdd_mx);
+ if (ret)
+ return ret;
+
+ mutex_lock(&drv->lock);
+ //drv->vreg_enabled = false;
+ if (cpr_is_allowed(drv))
+ cpr_ctl_disable(drv);
+ mutex_unlock(&drv->lock);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int cpr_suspend(struct device *dev)
+{
+ struct cpr_drv *drv = platform_get_drvdata(to_platform_device(dev));
+
+ if (cpr_is_allowed(drv)) {
+ mutex_lock(&drv->lock);
+ cpr_ctl_disable(drv);
+ cpr_irq_clr(drv);
+ drv->suspended = true;
+ mutex_unlock(&drv->lock);
+ }
+
+ return 0;
+}
+
+static int cpr_resume(struct device *dev)
+{
+ struct cpr_drv *drv = platform_get_drvdata(to_platform_device(dev));
+
+ if (cpr_is_allowed(drv)) {
+ mutex_lock(&drv->lock);
+ drv->suspended = false;
+ cpr_irq_clr(drv);
+ cpr_ctl_enable(drv, drv->corner);
+ mutex_unlock(&drv->lock);
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(cpr_pm_ops, cpr_suspend, cpr_resume);
+
+static int cpr_config(struct cpr_drv *drv)
+{
+ int i;
+ u32 val, gcnt;
+ struct corner *corner;
+
+ /* Disable interrupt and CPR */
+ cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
+ cpr_write(drv, REG_RBCPR_CTL, 0);
+
+ /* Program the default HW Ceiling, Floor and vlevel */
+ val = RBIF_LIMIT_CEILING_DEFAULT << RBIF_LIMIT_CEILING_SHIFT;
+ val |= RBIF_LIMIT_FLOOR_DEFAULT;
+ cpr_write(drv, REG_RBIF_LIMIT, val);
+ cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
+
+ /* Clear the target quotient value and gate count of all ROs */
+ for (i = 0; i < CPR_NUM_RING_OSC; i++)
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+ /* Init and save gcnt */
+ gcnt = (drv->ref_clk_khz * drv->gcnt_us) / 1000;
+ gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
+ gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
+ drv->gcnt = gcnt;
+
+ /* Program the delay count for the timer */
+ val = (drv->ref_clk_khz * drv->timer_delay_us) / 1000;
+ cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
+ pr_debug("Timer count: 0x%0x (for %d us)\n", val, drv->timer_delay_us);
+
+ /* Program Consecutive Up & Down */
+ val = drv->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+ val |= drv->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+ val |= drv->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
+ cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
+
+ /* Program the control register */
+ val = drv->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val |= drv->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
+ val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
+ val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
+ cpr_write(drv, REG_RBCPR_CTL, val);
+
+ for (i = 0; i < drv->num_corners; i++) {
+ corner = &drv->corners[i];
+ corner->save_ctl = val;
+ corner->save_irq = CPR_INT_DEFAULT;
+ }
+
+ cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+ val = cpr_read(drv, REG_RBCPR_VERSION);
+ if (val <= RBCPR_VER_2)
+ drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
+
+ return 0;
+}
+
+/* Called twice for each CPU in policy, one pre and one post event */
+static int
+cpr_cpufreq_notifier(struct notifier_block *nb, unsigned long event, void *f)
+{
+ struct cpr_drv *drv = container_of(nb, struct cpr_drv, cpufreq_nb);
+ struct cpufreq_freqs *freqs = f;
+ unsigned long old = freqs->old * 1000;
+ unsigned long new = freqs->new * 1000;
+ struct corner *corner, *end;
+ enum voltage_change_dir dir;
+ int ret = 0, new_uV;
+ int vdd_mx_vmin = 0;
+ struct fuse_corner *fuse_corner;
+
+ /* Determine direction */
+ if (old > new)
+ dir = DOWN;
+ else if (old < new)
+ dir = UP;
+ else
+ dir = NO_CHANGE;
+
+ /* Determine new corner we're going to */
+ corner = drv->corners;
+ end = &corner[drv->num_corners - 1];
+ for (; corner <= end; corner++)
+ if (corner->freq == new)
+ break;
+
+ if (corner > end)
+ return -EINVAL;
+
+ fuse_corner = corner->fuse_corner;
+
+ if (cpr_is_allowed(drv)) {
+ new_uV = corner->last_uV;
+ } else {
+ new_uV = corner->uV;
+ }
+
+ if (dir != NO_CHANGE && drv->vdd_mx)
+ vdd_mx_vmin = cpr_mx_get(drv, fuse_corner, new_uV);
+
+ mutex_lock(&drv->lock);
+ if (event == CPUFREQ_PRECHANGE) {
+ if (drv->nb_count++)
+ goto unlock;
+
+ pr_debug("Pre change [%ld] %p @ %lu?\n", corner - drv->corners,
+ corner, corner->freq);
+ if (cpr_is_allowed(drv))
+ cpr_ctl_disable(drv);
+
+ ret = cpr_pre_voltage(drv, fuse_corner, dir, vdd_mx_vmin);
+ if (ret)
+ goto unlock;
+
+ drv->switching_opp = true;
+ }
+
+ if (event == CPUFREQ_POSTCHANGE) {
+ if (--drv->nb_count)
+ goto unlock;
+
+ pr_debug("Post change [%ld] %p @ %lu?\n", corner - drv->corners,
+ corner, corner->freq);
+
+ ret = cpr_post_voltage(drv, fuse_corner, dir, vdd_mx_vmin);
+ if (ret)
+ goto unlock;
+
+ if (cpr_is_allowed(drv) /* && drv->vreg_enabled */) {
+ cpr_irq_clr(drv);
+ cpr_corner_switch(drv, corner);
+ cpr_ctl_enable(drv, corner);
+ }
+
+ drv->corner = corner;
+ drv->switching_opp = false;
+ }
+unlock:
+ mutex_unlock(&drv->lock);
+
+ return ret;
+}
+
+static u32
+cpr_read_efuse(struct nvmem_device *qfprom, const struct qfprom_offset *efuse)
+{
+ u64 buffer = 0;
+ size_t bytes;
+ int ret;
+
+ bytes = DIV_ROUND_UP(efuse->width + efuse->shift, BITS_PER_BYTE);
+ ret = nvmem_device_read(qfprom, efuse->offset, bytes, &buffer);
+
+ buffer >>= efuse->shift;
+ buffer &= GENMASK(efuse->width - 1, 0);
+
+ return buffer;
+}
+
+static void
+cpr_populate_ring_osc_idx(const struct cpr_fuse *fuses, struct cpr_drv *drv,
+ struct nvmem_device *qfprom)
+{
+ struct fuse_corner *fuse = drv->fuse_corners;
+ struct fuse_corner *end = fuse + drv->num_fuse_corners;
+
+ for (; fuse < end; fuse++, fuses++)
+ fuse->ring_osc_idx = cpr_read_efuse(qfprom, &fuses->ring_osc);
+}
+
+static const struct corner_adjustment *cpr_find_adjustment(u32 speed_bin,
+ u32 pvs_version, u32 cpr_rev, const struct cpr_desc *desc,
+ const struct cpr_drv *drv)
+{
+ int i, j;
+ u32 val, ro;
+ struct corner_adjustment *a;
+
+ for (i = 0; i < desc->num_adjustments; i++) {
+ a = &desc->adjustments[i];
+
+ if (a->speed_bin != speed_bin &&
+ a->speed_bin != FUSE_PARAM_MATCH_ANY)
+ continue;
+ if (a->pvs_version != pvs_version &&
+ a->pvs_version != FUSE_PARAM_MATCH_ANY)
+ continue;
+ if (a->cpr_rev != cpr_rev &&
+ a->cpr_rev != FUSE_PARAM_MATCH_ANY)
+ continue;
+ for (j = 0; j < drv->num_fuse_corners; j++) {
+ val = a->ring_osc_idx[j];
+ ro = drv->fuse_corners[j].ring_osc_idx;
+ if (val != ro && val != FUSE_PARAM_MATCH_ANY)
+ break;
+ }
+ if (j == drv->num_fuse_corners)
+ return a;
+ }
+
+ return NULL;
+}
+
+static void cpr_fuse_corner_init(struct cpr_drv *drv,
+ const struct cpr_desc *desc,
+ struct nvmem_device *qfprom,
+ const struct cpr_fuse *fuses, u32 speed,
+ const struct corner_adjustment *adjustments,
+ const struct acc_desc *acc_desc)
+{
+ int i;
+ unsigned int idx = 0;
+ unsigned int step_volt;
+ int steps, step_size_uv;
+ const struct fuse_corner_data *fdata;
+ struct fuse_corner *fuse, *end, *prev;
+ const struct qfprom_offset *pvs_efuse;
+ const struct qfprom_offset *init_v_efuse;
+ const struct qfprom_offset *redun;
+ const struct fuse_conditional_min_volt *min_v;
+ const struct fuse_uplift_wa *up;
+ bool do_min_v = false, do_uplift = false;
+ const int *pvs_uV = NULL;
+ const int *adj_uV, *adj_quot, *adj_min, *min_diff_quot;
+ const int *step_quot;
+ int uV, diff;
+ u32 bits, bin;
+ u32 min_uV;
+ u8 expected;
+ const struct reg_default *accs;
+
+ redun = &acc_desc->override;
+ expected = acc_desc->override_value;
+ if (redun->width && cpr_read_efuse(qfprom, redun) == expected)
+ accs = acc_desc->override_settings;
+ else
+ accs = acc_desc->settings;
+
+ /* Figure out if we should apply workarounds */
+ min_v = desc->min_volt_fuse;
+ do_min_v = min_v &&
+ cpr_read_efuse(qfprom, &min_v->redundant) == min_v->expected;
+ if (do_min_v)
+ min_uV = min_v->min_uV;
+
+ up = desc->uplift_wa;
+ if (!do_min_v && up)
+ if (cpr_read_efuse(qfprom, &up->redundant) == up->expected)
+ do_uplift = up->speed_bin == speed;
+
+ adj_uV = adjustments ? adjustments->fuse_init_uV : NULL;
+ adj_quot = adjustments ? adjustments->fuse_quot : NULL;
+ adj_min = adjustments ? adjustments->fuse_quot_min : NULL;
+ min_diff_quot = adjustments ? adjustments->fuse_quot_diff : NULL;
+ fuse = drv->fuse_corners;
+ end = &fuse[drv->num_fuse_corners - 1];
+ fdata = desc->cpr_fuses.fuse_corner_data;
+ step_quot = desc->step_quot;
+
+ /*
+ * The initial voltage for each fuse corner may be determined by one of
+ * two ways. Either initial voltages are encoded for each fuse corner
+ * in a dedicated fuse per fuse corner (fuses::init_voltage), or we
+ * use the PVS bin fuse to use a table of initial voltages (pvs_uV).
+ */
+ if (fuses->init_voltage.width) {
+ //step_volt = regulator_get_linear_step(drv->vdd_apc);
+ step_volt = 12500; /* TODO: Replace with ^ when apc_reg ready */
+ step_size_uv = desc->cpr_fuses.init_voltage_step;
+ } else {
+ redun = &desc->pvs_fuses->redundant;
+ expected = desc->pvs_fuses->redundant_value;
+ if (redun->width)
+ idx = !!(cpr_read_efuse(qfprom, redun) == expected);
+
+ pvs_efuse = &desc->pvs_fuses->pvs_fuse[idx];
+ bin = cpr_read_efuse(qfprom, pvs_efuse);
+ pvs_uV = desc->pvs_fuses->pvs_bins[bin].uV;
+ }
+
+ /* Populate fuse_corner voltage and ring_osc_idx members */
+ prev = NULL;
+ for (i = 0; fuse <= end; fuse++, fuses++, i++) {
+ if (pvs_uV) {
+ uV = pvs_uV[i];
+ } else {
+ init_v_efuse = &fuses->init_voltage;
+ bits = cpr_read_efuse(qfprom, init_v_efuse);
+ /* Not two's complement.. instead highest bit is sign */
+ steps = bits & BIT(init_v_efuse->width - 1) ? -1 : 1;
+ steps *= bits & ~BIT(init_v_efuse->width - 1);
+
+ uV = fdata[i].ref_uV + steps * step_size_uv;
+ uV = DIV_ROUND_UP(uV, step_volt) * step_volt;
+ }
+
+ if (adj_uV)
+ uV += adj_uV[i];
+
+ fuse->min_uV = fdata[i].min_uV;
+ fuse->max_uV = fdata[i].max_uV;
+
+ if (do_min_v) {
+ if (fuse->max_uV < min_uV) {
+ fuse->max_uV = min_uV;
+ fuse->min_uV = min_uV;
+ } else if (fuse->min_uV < min_uV) {
+ fuse->min_uV = min_uV;
+ }
+ }
+
+ fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
+
+ if (fuse == end) {
+ if (do_uplift) {
+ end->uV += up->uV;
+ end->uV = clamp(end->uV, 0, up->max_uV);
+ }
+ /*
+ * Allow the highest fuse corner's PVS voltage to
+ * define the ceiling voltage for that corner in order
+ * to support SoC's in which variable ceiling values
+ * are required.
+ */
+ end->max_uV = max(end->max_uV, end->uV);
+ }
+
+ /* Unpack the target quotient by scaling. */
+ fuse->quot = cpr_read_efuse(qfprom, &fuses->quotient);
+ fuse->quot *= fdata[i].quot_scale;
+ fuse->quot += fdata[i].quot_offset;
+
+ if (adj_quot) {
+ fuse->quot += adj_quot[i];
+
+ if (prev && min_diff_quot) {
+ diff = min_diff_quot[i];
+ if (fuse->quot - prev->quot <= diff)
+ fuse->quot = prev->quot + adj_min[i];
+ }
+ prev = fuse;
+ }
+
+ if (do_uplift)
+ fuse->quot += up->quot[i];
+
+ fuse->step_quot = step_quot[fuse->ring_osc_idx];
+
+ fuse->accs = accs;
+ fuse->num_accs = acc_desc->num_regs_per_fuse;
+ accs += acc_desc->num_regs_per_fuse;
+
+ fuse->vdd_mx_req = fdata[i].vdd_mx_req;
+ }
+
+ /*
+ * Restrict all fuse corner PVS voltages based upon per corner
+ * ceiling and floor voltages.
+ */
+ for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
+ if (fuse->uV > fuse->max_uV)
+ fuse->uV = fuse->max_uV;
+ else if (fuse->uV < fuse->min_uV)
+ fuse->uV = fuse->min_uV;
+
+ pr_debug("fuse corner %d: [%d %d %d] RO%d quot %d squot %d\n", i,
+ fuse->min_uV, fuse->uV, fuse->max_uV,
+ fuse->ring_osc_idx, fuse->quot,
+ fuse->step_quot);
+ }
+
+ drv->ceiling_max = end->max_uV;
+}
+
+static int cpr_populate_opps(struct device_node *of_node, struct cpr_drv *drv,
+ const struct corner_data **plan)
+{
+ int i, j, ret, cpu;
+ struct device *cpu_dev;
+ struct device_node *np;
+ struct corner *corner;
+ const struct corner_data *p;
+
+ for (i = 0; (np = of_parse_phandle(of_node, "qcom,cpr-cpus", i)); i++) {
+ for_each_possible_cpu(cpu)
+ if (arch_find_n_match_cpu_physical_id(np, cpu, NULL))
+ break;
+
+ of_node_put(np);
+ if (cpu >= nr_cpu_ids) {
+ pr_err("Failed to find logical CPU for %s\n", np->name);
+ return -EINVAL;
+ }
+
+ cpu_dev = get_cpu_device(cpu);
+ if (!cpu_dev)
+ return -EINVAL;
+
+ for (j = 0, corner = drv->corners; plan[j]; j++, corner++) {
+ p = plan[j];
+ ret = dev_pm_opp_add(cpu_dev, p->freq, corner->uV);
+ if (ret)
+ return ret;
+ corner->freq = p->freq;
+ }
+
+ /*
+ * Keep cpu_dev and its regulator and clock for monitoring
+ * voltage changes and updating OPPs later.
+ */
+ if (i == 0) {
+ drv->cpu_dev = cpu_dev;
+ drv->vdd_apc = devm_regulator_get(cpu_dev, "cpu");
+ if (IS_ERR(drv->vdd_apc))
+ return PTR_ERR(drv->vdd_apc);
+ drv->cpu_clk = devm_clk_get(cpu_dev, NULL);
+ if (IS_ERR(drv->cpu_clk))
+ return PTR_ERR(drv->cpu_clk);
+ }
+ }
+
+ return 0;
+}
+
+static const struct corner_data **
+find_freq_plan(const struct cpr_desc *desc, u32 speed_bin, u32 pvs_version)
+{
+ int i;
+ const struct freq_plan *p;
+
+ for (i = 0; i < desc->num_freq_plans; i++) {
+ p = &desc->freq_plans[i];
+
+ if (p->speed_bin != speed_bin &&
+ p->speed_bin != FUSE_PARAM_MATCH_ANY)
+ continue;
+ if (p->pvs_version != pvs_version &&
+ p->pvs_version != FUSE_PARAM_MATCH_ANY)
+ continue;
+
+ return p->plan;
+ }
+
+ return NULL;
+
+}
+
+static struct corner_override *find_corner_override(const struct cpr_desc *desc,
+ u32 speed_bin, u32 pvs_version)
+{
+ int i;
+ struct corner_override *o;
+
+ for (i = 0; i < desc->num_corner_overrides; i++) {
+ o = &desc->corner_overrides[i];
+
+ if (o->speed_bin != speed_bin &&
+ o->speed_bin != FUSE_PARAM_MATCH_ANY)
+ continue;
+ if (o->pvs_version != pvs_version &&
+ o->pvs_version != FUSE_PARAM_MATCH_ANY)
+ continue;
+
+ return o;
+ }
+
+ return NULL;
+
+}
+
+static void cpr_corner_init(struct cpr_drv *drv, const struct cpr_desc *desc,
+ const struct cpr_fuse *fuses, u32 speed_bin,
+ u32 pvs_version, struct nvmem_device *qfprom,
+ const struct corner_adjustment *adjustments,
+ const struct corner_data **plan)
+{
+ int i, fnum, quot_diff, scaling;
+ struct fuse_corner *fuse, *prev_fuse;
+ struct corner *corner, *end;
+ const struct corner_data *cdata, *p;
+ const struct fuse_corner_data *fdata;
+ bool apply_scaling = false;
+ const int *adj_quot, *adj_volt, *adj_quot_offset;
+ const struct qfprom_offset *quot_offset;
+ unsigned long freq_corner, freq_diff, freq_diff_mhz;
+ unsigned long freq_high, freq_low;
+ int volt_high;
+ u64 temp, temp_limit;
+ int step_volt = 12500; /* TODO: Get from regulator APIs */
+ const struct corner_override *override;
+
+ corner = drv->corners;
+ end = &corner[drv->num_corners - 1];
+ cdata = desc->corner_data;
+ fdata = desc->cpr_fuses.fuse_corner_data;
+ adj_quot = adjustments ? adjustments->quot : NULL;
+ adj_volt = adjustments ? adjustments->init_uV : NULL;
+ adj_quot_offset = adjustments ? adjustments->fuse_quot_offset : NULL;
+
+ override = find_corner_override(desc, speed_bin, pvs_version);
+
+ /*
+ * Store maximum frequency for each fuse corner based on the frequency
+ * plan
+ */
+ for (i = 0; plan[i]; i++) {
+ p = plan[i];
+ freq_corner = p->freq;
+ fnum = p->fuse_corner;
+ fuse = &drv->fuse_corners[fnum];
+ if (freq_corner > fuse->max_freq)
+ fuse->max_freq = freq_corner;
+
+ }
+
+ /*
+ * Get the quotient adjustment scaling factor, according to:
+ *
+ * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
+ * / (freq(corner_N) - freq(corner_N-1)), max_factor)
+ *
+ * QUOT(corner_N): quotient read from fuse for fuse corner N
+ * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
+ * freq(corner_N): max frequency in MHz supported by fuse corner N
+ * freq(corner_N-1): max frequency in MHz supported by fuse corner
+ * (N - 1)
+ *
+ * Then walk through the corners mapped to each fuse corner
+ * and calculate the quotient adjustment for each one using the
+ * following formula:
+ *
+ * quot_adjust = (freq_max - freq_corner) * scaling / 1000
+ *
+ * freq_max: max frequency in MHz supported by the fuse corner
+ * freq_corner: frequency in MHz corresponding to the corner
+ * scaling: calculated from above equation
+ *
+ *
+ * + +
+ * | v |
+ * q | f c o | f c
+ * u | c l | c
+ * o | f t | f
+ * t | c a | c
+ * | c f g | c f
+ * | e |
+ * +--------------- +----------------
+ * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
+ * corner corner
+ *
+ * c = corner
+ * f = fuse corner
+ *
+ */
+ for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
+ freq_corner = cdata[i].freq;
+ fnum = cdata[i].fuse_corner;
+ fuse = &drv->fuse_corners[fnum];
+ if (fnum)
+ prev_fuse = &drv->fuse_corners[fnum - 1];
+ else
+ prev_fuse = NULL;
+
+ corner->fuse_corner = fuse;
+ corner->uV = fuse->uV;
+ if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
+ quot_offset = &fuses[fnum].quotient_offset;
+ if (quot_offset->width) {
+ quot_diff = cpr_read_efuse(qfprom, quot_offset);
+ quot_diff *= fdata->quot_scale;
+ if (adj_quot_offset)
+ quot_diff += adj_quot_offset[fnum];
+ } else {
+ quot_diff = fuse->quot - prev_fuse->quot;
+ }
+
+ freq_diff = fuse->max_freq - prev_fuse->max_freq;
+ freq_diff /= 1000000; /* Convert to MHz */
+ scaling = 1000 * quot_diff / freq_diff;
+ scaling = min(scaling, fdata[fnum].max_quot_scale);
+
+ apply_scaling = true;
+ } else if (freq_corner == fuse->max_freq) {
+ /* This is a fuse corner; don't scale anything */
+ apply_scaling = false;
+ }
+
+ if (apply_scaling) {
+ freq_diff = fuse->max_freq - freq_corner;
+ freq_diff_mhz = freq_diff / 1000000;
+ corner->quot_adjust = scaling * freq_diff_mhz / 1000;
+
+ freq_high = fuse->max_freq;
+ freq_low = fuse->max_freq;
+ volt_high = fuse->uV;
+
+ /*
+ if (freq_high > freq_low && volt_high > volt_low &&
+ freq_high > freq_corner)
+ */
+
+ temp = freq_diff * (fuse->uV - prev_fuse->uV);
+ do_div(temp, freq_high - freq_low);
+
+ /*
+ * max_volt_scale has units of uV/MHz while freq values
+ * have units of Hz. Divide by 1000000 to convert to.
+ */
+ temp_limit = freq_diff * fdata[fnum].max_volt_scale;
+ do_div(temp_limit, 1000000);
+
+ corner->uV = volt_high - min(temp, temp_limit);
+ corner->uV = roundup(corner->uV, step_volt);
+ }
+
+ if (adj_quot)
+ corner->quot_adjust -= adj_quot[i];
+
+ if (adj_volt)
+ corner->uV += adj_volt[i];
+
+ /* Load per corner ceiling and floor voltages if they exist. */
+ if (override) {
+ corner->max_uV = override->max_uV[i];
+ corner->min_uV = override->min_uV[i];
+ } else {
+ corner->max_uV = fuse->max_uV;
+ corner->min_uV = fuse->min_uV;
+ }
+
+ if (drv->ceiling_max < corner->max_uV)
+ drv->ceiling_max = corner->max_uV;
+
+ corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
+ corner->last_uV = corner->uV;
+
+ /* Reduce the ceiling voltage if needed */
+ if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
+ corner->max_uV = corner->uV;
+ else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
+ corner->max_uV = max(corner->min_uV, fuse->uV);
+
+ pr_debug("corner %d: [%d %d %d] quot %d\n", i,
+ corner->min_uV, corner->uV, corner->max_uV,
+ fuse->quot - corner->quot_adjust);
+ }
+}
+
+static const struct cpr_fuse *
+cpr_get_fuses(const struct cpr_desc *desc, struct nvmem_device *qfprom)
+{
+ u32 expected = desc->cpr_fuses.redundant_value;
+ const struct qfprom_offset *fuse = &desc->cpr_fuses.redundant;
+ unsigned int idx;
+
+ idx = !!(fuse->width && cpr_read_efuse(qfprom, fuse) == expected);
+
+ return &desc->cpr_fuses.cpr_fuse[idx * desc->num_fuse_corners];
+}
+
+static bool cpr_is_close_loop_disabled(struct cpr_drv *drv,
+ const struct cpr_desc *desc, struct nvmem_device *qfprom,
+ const struct cpr_fuse *fuses,
+ const struct corner_adjustment *adj)
+{
+ const struct qfprom_offset *disable;
+ unsigned int idx;
+ struct fuse_corner *highest_fuse, *second_highest_fuse;
+ int min_diff_quot, diff_quot;
+
+ if (adj && adj->disable_closed_loop)
+ return true;
+
+ if (!desc->cpr_fuses.disable)
+ return false;
+
+ /*
+ * Are the fuses the redundant ones? This avoids reading the fuse
+ * redundant bit again
+ */
+ idx = !!(fuses == desc->cpr_fuses.cpr_fuse);
+ disable = &desc->cpr_fuses.disable[idx];
+
+ if (cpr_read_efuse(qfprom, disable))
+ return true;
+
+ if (!fuses->quotient_offset.width) {
+ /*
+ * Check if the target quotients for the highest two fuse
+ * corners are too close together.
+ */
+ highest_fuse = &drv->fuse_corners[drv->num_fuse_corners - 1];
+ second_highest_fuse = highest_fuse - 1;
+
+ min_diff_quot = desc->min_diff_quot;
+ diff_quot = highest_fuse->quot - second_highest_fuse->quot;
+
+ return diff_quot < min_diff_quot;
+ }
+
+ return false;
+}
+
+static int cpr_init_parameters(struct platform_device *pdev,
+ struct cpr_drv *drv)
+{
+ struct device_node *of_node = pdev->dev.of_node;
+ int ret;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-ref-clk",
+ &drv->ref_clk_khz);
+ if (ret)
+ return ret;
+ ret = of_property_read_u32(of_node, "qcom,cpr-timer-delay-us",
+ &drv->timer_delay_us);
+ if (ret)
+ return ret;
+ ret = of_property_read_u32(of_node, "qcom,cpr-timer-cons-up",
+ &drv->timer_cons_up);
+ if (ret)
+ return ret;
+ ret = of_property_read_u32(of_node, "qcom,cpr-timer-cons-down",
+ &drv->timer_cons_down);
+ if (ret)
+ return ret;
+ drv->timer_cons_down &= RBIF_TIMER_ADJ_CONS_DOWN_MASK;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-up-threshold",
+ &drv->up_threshold);
+ drv->up_threshold &= RBCPR_CTL_UP_THRESHOLD_MASK;
+ if (ret)
+ return ret;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-down-threshold",
+ &drv->down_threshold);
+ drv->down_threshold &= RBCPR_CTL_DN_THRESHOLD_MASK;
+ if (ret)
+ return ret;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-idle-clocks",
+ &drv->idle_clocks);
+ drv->idle_clocks &= RBCPR_STEP_QUOT_IDLE_CLK_MASK;
+ if (ret)
+ return ret;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-gcnt-us", &drv->gcnt_us);
+ if (ret)
+ return ret;
+ ret = of_property_read_u32(of_node, "qcom,vdd-apc-step-up-limit",
+ &drv->vdd_apc_step_up_limit);
+ if (ret)
+ return ret;
+ ret = of_property_read_u32(of_node, "qcom,vdd-apc-step-down-limit",
+ &drv->vdd_apc_step_down_limit);
+ if (ret)
+ return ret;
+
+ ret = of_property_read_u32(of_node, "qcom,cpr-clamp-timer-interval",
+ &drv->clamp_timer_interval);
+ if (ret && ret != -EINVAL)
+ return ret;
+
+ drv->clamp_timer_interval = min_t(unsigned int,
+ drv->clamp_timer_interval,
+ RBIF_TIMER_ADJ_CLAMP_INT_MASK);
+
+ pr_debug("up threshold = %u, down threshold = %u\n",
+ drv->up_threshold, drv->down_threshold);
+
+ return 0;
+}
+
+static int cpr_init_and_enable_corner(struct cpr_drv *drv)
+{
+ unsigned long rate;
+ struct corner *end;
+
+ end = &drv->corners[drv->num_corners - 1];
+ rate = clk_get_rate(drv->cpu_clk);
+
+ for (drv->corner = drv->corners; drv->corner <= end; drv->corner++)
+ if (drv->corner->freq == rate)
+ break;
+
+ if (drv->corner > end)
+ return -EINVAL;
+
+ return cpr_enable(drv);
+}
+
+static struct corner_data msm8916_corner_data[] = {
+ /* [corner] -> { fuse corner, freq } */
+ { 0, 200000000 },
+ { 0, 400000000 },
+ { 1, 533330000 },
+ { 1, 800000000 },
+ { 2, 998400000 },
+ { 2, 1094400000 },
+ { 2, 1152000000 },
+ { 2, 1209600000 },
+ { 2, 1363200000 },
+};
+
+static const struct cpr_desc msm8916_desc = {
+ .num_fuse_corners = 3,
+ .vdd_mx_vmin_method = VDD_MX_VMIN_APC_CORNER_MAP,
+ .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
+ .step_quot = (int []){ 26, 26, 26, 26, 26, 26, 26, 26 },
+ .cpr_fuses = {
+ .init_voltage_step = 10000,
+ .fuse_corner_data = (struct fuse_corner_data[]){
+ /* ref_uV max_uV min_uV max_q q_off q_scl v_scl mx */
+ { 1050000, 1050000, 1050000, 0, 0, 1, 0, 3 },
+ { 1150000, 1150000, 1050000, 0, 0, 1, 0, 4 },
+ { 1350000, 1350000, 1162500, 650, 0, 1, 0, 6 },
+ },
+ .cpr_fuse = (struct cpr_fuse[]){
+ {
+ .ring_osc = { 222, 3, 6},
+ .init_voltage = { 220, 6, 2 },
+ .quotient = { 221, 12, 2 },
+ },
+ {
+ .ring_osc = { 222, 3, 6},
+ .init_voltage = { 218, 6, 2 },
+ .quotient = { 219, 12, 0 },
+ },
+ {
+ .ring_osc = { 222, 3, 6},
+ .init_voltage = { 216, 6, 0 },
+ .quotient = { 216, 12, 6 },
+ },
+ },
+ .disable = &(struct qfprom_offset){ 223, 1, 1 },
+ },
+ .speed_bin = { 12, 3, 2 },
+ .pvs_version = { 6, 2, 7 },
+ .corner_data = msm8916_corner_data,
+ .num_corners = ARRAY_SIZE(msm8916_corner_data),
+ .num_freq_plans = 3,
+ .freq_plans = (struct freq_plan[]){
+ {
+ .speed_bin = 0,
+ .pvs_version = 0,
+ .plan = (const struct corner_data* []){
+ msm8916_corner_data + 0,
+ msm8916_corner_data + 1,
+ msm8916_corner_data + 2,
+ msm8916_corner_data + 3,
+ msm8916_corner_data + 4,
+ msm8916_corner_data + 5,
+ msm8916_corner_data + 6,
+ msm8916_corner_data + 7,
+ NULL
+ },
+ },
+ {
+ .speed_bin = 0,
+ .pvs_version = 1,
+ .plan = (const struct corner_data* []){
+ msm8916_corner_data + 0,
+ msm8916_corner_data + 1,
+ msm8916_corner_data + 2,
+ msm8916_corner_data + 3,
+ msm8916_corner_data + 4,
+ msm8916_corner_data + 5,
+ msm8916_corner_data + 6,
+ msm8916_corner_data + 7,
+ NULL
+ },
+ },
+ {
+ .speed_bin = 2,
+ .pvs_version = 0,
+ .plan = (const struct corner_data* []){
+ msm8916_corner_data + 0,
+ msm8916_corner_data + 1,
+ msm8916_corner_data + 2,
+ msm8916_corner_data + 3,
+ msm8916_corner_data + 4,
+ msm8916_corner_data + 5,
+ msm8916_corner_data + 6,
+ msm8916_corner_data + 7,
+ msm8916_corner_data + 8,
+ NULL
+ },
+ },
+ },
+};
+
+static const struct acc_desc msm8916_acc_desc = {
+ .settings = (struct reg_default[]){
+ { 0xf000, 0 },
+ { 0xf000, 0x100 },
+ { 0xf000, 0x101 }
+ },
+ .override_settings = (struct reg_default[]){
+ { 0xf000, 0 },
+ { 0xf000, 0x100 },
+ { 0xf000, 0x100 }
+ },
+ .num_regs_per_fuse = 1,
+ .override = { 6, 1, 4 },
+ .override_value = 1,
+};
+
+static const struct of_device_id cpr_descs[] = {
+ { .compatible = "qcom,qfprom-msm8916", .data = &msm8916_desc },
+ { }
+};
+
+static const struct of_device_id acc_descs[] = {
+ { .compatible = "qcom,tcsr-msm8916", .data = &msm8916_acc_desc },
+ { }
+};
+
+static int cpr_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct device *dev = &pdev->dev;
+ struct cpr_drv *drv;
+ const struct cpr_fuse *cpr_fuses;
+ const struct corner_adjustment *adj;
+ const struct corner_data **plan;
+ size_t len;
+ int irq, ret;
+ const struct cpr_desc *desc;
+ const struct acc_desc *acc_desc;
+ const struct of_device_id *match;
+ struct device_node *np;
+ struct nvmem_device *qfprom;
+ u32 cpr_rev = FUSE_REVISION_UNKNOWN;
+ u32 speed_bin = SPEED_BIN_NONE;
+ u32 pvs_version = 0;
+
+ np = of_parse_phandle(dev->of_node, "nvmem", 0);
+ if (!np)
+ return -ENODEV;
+
+ match = of_match_node(cpr_descs, np);
+ if (!match)
+ return -EINVAL;
+ desc = match->data;
+
+ qfprom = nvmem_device_get(dev, "qfprom");
+ if (IS_ERR(qfprom))
+ return PTR_ERR(qfprom);
+
+ len = sizeof(*drv) +
+ sizeof(*drv->fuse_corners) * desc->num_fuse_corners +
+ sizeof(*drv->corners) * desc->num_corners;
+
+ drv = devm_kzalloc(dev, len, GFP_KERNEL);
+ if (!drv)
+ return -ENOMEM;
+
+ np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
+ if (!np)
+ return -ENODEV;
+
+ match = of_match_node(acc_descs, np);
+ if (!match)
+ return -EINVAL;
+
+ acc_desc = match->data;
+ drv->tcsr = syscon_node_to_regmap(np);
+ if (IS_ERR(drv->tcsr))
+ return PTR_ERR(drv->tcsr);
+
+ drv->num_fuse_corners = desc->num_fuse_corners;
+ drv->num_corners = desc->num_corners;
+ drv->fuse_corners = (struct fuse_corner *)(drv + 1);
+ drv->corners = (struct corner *)(drv->fuse_corners +
+ drv->num_fuse_corners);
+ mutex_init(&drv->lock);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ drv->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(drv->base))
+ return PTR_ERR(drv->base);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -EINVAL;
+
+ drv->vdd_mx = devm_regulator_get(dev, "vdd-mx");
+ if (IS_ERR(drv->vdd_mx))
+ return PTR_ERR(drv->vdd_mx);
+
+ drv->vdd_mx_vmin_method = desc->vdd_mx_vmin_method;
+ drv->vdd_mx_vmax = desc->vdd_mx_vmax;
+
+ if (desc->fuse_revision.width)
+ cpr_rev = cpr_read_efuse(qfprom, &desc->fuse_revision);
+ if (desc->speed_bin.width)
+ speed_bin = cpr_read_efuse(qfprom, &desc->speed_bin);
+ if (desc->pvs_version.width)
+ pvs_version = cpr_read_efuse(qfprom, &desc->pvs_version);
+
+ plan = find_freq_plan(desc, speed_bin, pvs_version);
+ if (!plan)
+ return -EINVAL;
+
+ cpr_fuses = cpr_get_fuses(desc, qfprom);
+ cpr_populate_ring_osc_idx(cpr_fuses, drv, qfprom);
+
+ adj = cpr_find_adjustment(speed_bin, pvs_version, cpr_rev, desc, drv);
+
+ cpr_fuse_corner_init(drv, desc, qfprom, cpr_fuses, speed_bin, adj,
+ acc_desc);
+ cpr_corner_init(drv, desc, cpr_fuses, speed_bin, pvs_version, qfprom,
+ adj, plan);
+
+ ret = cpr_populate_opps(dev->of_node, drv, plan);
+ if (ret)
+ return ret;
+
+ drv->loop_disabled = cpr_is_close_loop_disabled(drv, desc, qfprom,
+ cpr_fuses, adj);
+ pr_info("CPR closed loop is %sabled\n",
+ drv->loop_disabled ? "dis" : "en");
+
+ ret = cpr_init_parameters(pdev, drv);
+ if (ret)
+ return ret;
+
+ /* Configure CPR HW but keep it disabled */
+ ret = cpr_config(drv);
+ if (ret)
+ return ret;
+
+ /* Enable ACC if required */
+ if (acc_desc->enable_mask)
+ regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
+ acc_desc->enable_mask,
+ acc_desc->enable_mask);
+
+ ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
+ cpr_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+ "cpr", drv);
+ if (ret)
+ return ret;
+
+ ret = cpr_init_and_enable_corner(drv);
+ if (ret)
+ return ret;
+
+ drv->reg_nb.notifier_call = cpr_regulator_notifier;
+ ret = regulator_register_notifier(drv->vdd_apc, &drv->reg_nb);
+ if (ret)
+ return ret;
+
+ drv->cpufreq_nb.notifier_call = cpr_cpufreq_notifier;
+ ret = cpufreq_register_notifier(&drv->cpufreq_nb,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ if (ret) {
+ regulator_unregister_notifier(drv->vdd_apc, &drv->reg_nb);
+ return ret;
+ }
+
+ /*
+ * Ensure that enable state accurately reflects the case in which CPR
+ * is permanently disabled.
+ */
+ //cpr_vreg->enable &= !cpr_vreg->loop_disabled;
+
+ platform_set_drvdata(pdev, drv);
+
+ return 0;
+}
+
+static int cpr_remove(struct platform_device *pdev)
+{
+ struct cpr_drv *drv = platform_get_drvdata(pdev);
+
+ if (cpr_is_allowed(drv)) {
+ cpr_ctl_disable(drv);
+ cpr_irq_set(drv, 0);
+ }
+
+ return 0;
+}
+
+static const struct of_device_id cpr_match_table[] = {
+ { .compatible = "qcom,cpr" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, cpr_match_table);
+
+static struct platform_driver cpr_driver = {
+ .probe = cpr_probe,
+ .remove = cpr_remove,
+ .driver = {
+ .name = "qcom-cpr",
+ .of_match_table = cpr_match_table,
+ .pm = &cpr_pm_ops,
+ },
+};
+module_platform_driver(cpr_driver);
+
+MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:qcom-cpr");