From: Anton Saraev Date: Mon, 19 May 2014 08:09:58 +0000 (+0400) Subject: staging: crypto: skein: rename macros X-Git-Url: https://git.karo-electronics.de/?a=commitdiff_plain;h=0264b7b7fb44e78414d16fa5142cea4b9799609a;p=linux-beck.git staging: crypto: skein: rename macros Mixing upper and lower case in names of macros like It_Is_Macro is not accepted in the Linux Kernel. To prepare skein driver for mainline inclusion, we rename all macros to uppercase or lowercase names. Signed-off-by: Anton Saraev Reviewed-by: Jake Edge Signed-off-by: Greg Kroah-Hartman --- diff --git a/drivers/staging/skein/include/skein.h b/drivers/staging/skein/include/skein.h index 8ecd720f981c..2c87ff74aaea 100644 --- a/drivers/staging/skein/include/skein.h +++ b/drivers/staging/skein/include/skein.h @@ -28,15 +28,15 @@ ** ***************************************************************************/ -#ifndef RotL_64 -#define RotL_64(x, N) (((x) << (N)) | ((x) >> (64-(N)))) +#ifndef rotl_64 +#define rotl_64(x, N) (((x) << (N)) | ((x) >> (64-(N)))) #endif /* below two prototype assume we are handed aligned data */ -#define Skein_Put64_LSB_First(dst08, src64, b_cnt) memcpy(dst08, src64, b_cnt) -#define Skein_Get64_LSB_First(dst64, src08, w_cnt) \ +#define skein_put64_lsb_first(dst08, src64, b_cnt) memcpy(dst08, src64, b_cnt) +#define skein_get64_lsb_first(dst64, src08, w_cnt) \ memcpy(dst64, src08, 8*(w_cnt)) -#define Skein_Swap64(w64) (w64) +#define skein_swap64(w64) (w64) enum { SKEIN_SUCCESS = 0, /* return codes from Skein calls */ @@ -48,20 +48,20 @@ enum { #define SKEIN_256_STATE_WORDS (4) #define SKEIN_512_STATE_WORDS (8) -#define SKEIN1024_STATE_WORDS (16) +#define SKEIN_1024_STATE_WORDS (16) #define SKEIN_MAX_STATE_WORDS (16) #define SKEIN_256_STATE_BYTES (8*SKEIN_256_STATE_WORDS) #define SKEIN_512_STATE_BYTES (8*SKEIN_512_STATE_WORDS) -#define SKEIN1024_STATE_BYTES (8*SKEIN1024_STATE_WORDS) +#define SKEIN_1024_STATE_BYTES (8*SKEIN_1024_STATE_WORDS) #define SKEIN_256_STATE_BITS (64*SKEIN_256_STATE_WORDS) #define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS) -#define SKEIN1024_STATE_BITS (64*SKEIN1024_STATE_WORDS) +#define SKEIN_1024_STATE_BITS (64*SKEIN_1024_STATE_WORDS) #define SKEIN_256_BLOCK_BYTES (8*SKEIN_256_STATE_WORDS) #define SKEIN_512_BLOCK_BYTES (8*SKEIN_512_STATE_WORDS) -#define SKEIN1024_BLOCK_BYTES (8*SKEIN1024_STATE_WORDS) +#define SKEIN_1024_BLOCK_BYTES (8*SKEIN_1024_STATE_WORDS) struct skein_ctx_hdr { size_t hash_bit_len; /* size of hash result, in bits */ @@ -83,8 +83,8 @@ struct skein_512_ctx { /* 512-bit Skein hash context structure */ struct skein_1024_ctx { /* 1024-bit Skein hash context structure */ struct skein_ctx_hdr h; /* common header context variables */ - u64 X[SKEIN1024_STATE_WORDS]; /* chaining variables */ - u8 b[SKEIN1024_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */ + u64 X[SKEIN_1024_STATE_WORDS]; /* chaining variables */ + u8 b[SKEIN_1024_BLOCK_BYTES]; /* partial block buf (8-byte aligned) */ }; /* Skein APIs for (incremental) "straight hashing" */ @@ -232,44 +232,44 @@ int skein_1024_output(struct skein_1024_ctx *ctx, u8 *hash_val); ** Skein macros for getting/setting tweak words, etc. ** These are useful for partial input bytes, hash tree init/update, etc. **/ -#define Skein_Get_Tweak(ctx_ptr, TWK_NUM) ((ctx_ptr)->h.T[TWK_NUM]) -#define Skein_Set_Tweak(ctx_ptr, TWK_NUM, t_val) { \ +#define skein_get_tweak(ctx_ptr, TWK_NUM) ((ctx_ptr)->h.T[TWK_NUM]) +#define skein_set_tweak(ctx_ptr, TWK_NUM, t_val) { \ (ctx_ptr)->h.T[TWK_NUM] = (t_val); \ } -#define Skein_Get_T0(ctx_ptr) Skein_Get_Tweak(ctx_ptr, 0) -#define Skein_Get_T1(ctx_ptr) Skein_Get_Tweak(ctx_ptr, 1) -#define Skein_Set_T0(ctx_ptr, T0) Skein_Set_Tweak(ctx_ptr, 0, T0) -#define Skein_Set_T1(ctx_ptr, T1) Skein_Set_Tweak(ctx_ptr, 1, T1) +#define skein_get_T0(ctx_ptr) skein_get_tweak(ctx_ptr, 0) +#define skein_get_T1(ctx_ptr) skein_get_tweak(ctx_ptr, 1) +#define skein_set_T0(ctx_ptr, T0) skein_set_tweak(ctx_ptr, 0, T0) +#define skein_set_T1(ctx_ptr, T1) skein_set_tweak(ctx_ptr, 1, T1) /* set both tweak words at once */ -#define Skein_Set_T0_T1(ctx_ptr, T0, T1) \ - { \ - Skein_Set_T0(ctx_ptr, (T0)); \ - Skein_Set_T1(ctx_ptr, (T1)); \ +#define skein_set_T0_T1(ctx_ptr, T0, T1) \ + { \ + skein_set_T0(ctx_ptr, (T0)); \ + skein_set_T1(ctx_ptr, (T1)); \ } -#define Skein_Set_Type(ctx_ptr, BLK_TYPE) \ - Skein_Set_T1(ctx_ptr, SKEIN_T1_BLK_TYPE_##BLK_TYPE) +#define skein_set_type(ctx_ptr, BLK_TYPE) \ + skein_set_T1(ctx_ptr, SKEIN_T1_BLK_TYPE_##BLK_TYPE) /* * setup for starting with a new type: * h.T[0]=0; h.T[1] = NEW_TYPE; h.b_cnt=0; */ -#define Skein_Start_New_Type(ctx_ptr, BLK_TYPE) { \ - Skein_Set_T0_T1(ctx_ptr, 0, SKEIN_T1_FLAG_FIRST | \ +#define skein_start_new_type(ctx_ptr, BLK_TYPE) { \ + skein_set_T0_T1(ctx_ptr, 0, SKEIN_T1_FLAG_FIRST | \ SKEIN_T1_BLK_TYPE_##BLK_TYPE); \ (ctx_ptr)->h.b_cnt = 0; \ } -#define Skein_Clear_First_Flag(hdr) { \ +#define skein_clear_first_flag(hdr) { \ (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; \ } -#define Skein_Set_Bit_Pad_Flag(hdr) { \ +#define skein_set_bit_pad_flag(hdr) { \ (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; \ } -#define Skein_Set_Tree_Level(hdr, height) { \ +#define skein_set_tree_level(hdr, height) { \ (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height); \ } @@ -279,15 +279,16 @@ int skein_1024_output(struct skein_1024_ctx *ctx, u8 *hash_val); #ifdef SKEIN_DEBUG /* examine/display intermediate values? */ #include "skein_debug.h" #else /* default is no callouts */ -#define Skein_Show_Block(bits, ctx, X, blk_ptr, w_ptr, ks_event_ptr, ks_odd_ptr) -#define Skein_Show_Round(bits, ctx, r, X) -#define Skein_Show_R_Ptr(bits, ctx, r, X_ptr) -#define Skein_Show_Final(bits, ctx, cnt, out_ptr) -#define Skein_Show_Key(bits, ctx, key, key_bytes) +#define skein_show_block(bits, ctx, X, blk_ptr, w_ptr, ks_event_ptr, ks_odd_ptr) +#define skein_show_round(bits, ctx, r, X) +#define skein_show_r_ptr(bits, ctx, r, X_ptr) +#define skein_show_final(bits, ctx, cnt, out_ptr) +#define skein_show_key(bits, ctx, key, key_bytes) #endif -#define Skein_Assert(x, ret_code)/* ignore all Asserts, for performance */ -#define Skein_assert(x) +/* ignore all asserts, for performance */ +#define skein_assert_ret(x, ret_code) +#define skein_assert(x) /***************************************************************** ** Skein block function constants (shared across Ref and Opt code) @@ -335,11 +336,11 @@ enum { #ifndef SKEIN_ROUNDS #define SKEIN_256_ROUNDS_TOTAL (72) /* # rounds for diff block sizes */ #define SKEIN_512_ROUNDS_TOTAL (72) -#define SKEIN1024_ROUNDS_TOTAL (80) +#define SKEIN_1024_ROUNDS_TOTAL (80) #else /* allow command-line define in range 8*(5..14) */ #define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5)) #define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/10) + 5) % 10) + 5)) -#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS) + 5) % 10) + 5)) +#define SKEIN_1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS) + 5) % 10) + 5)) #endif #endif /* ifndef _SKEIN_H_ */ diff --git a/drivers/staging/skein/include/skein_iv.h b/drivers/staging/skein/include/skein_iv.h index 8dd5e4d88a1d..7ff93dfd912f 100644 --- a/drivers/staging/skein/include/skein_iv.h +++ b/drivers/staging/skein/include/skein_iv.h @@ -124,7 +124,7 @@ const u64 SKEIN_512_IV_512[] = { }; /* blkSize = 1024 bits. hashSize = 384 bits */ -const u64 SKEIN1024_IV_384[] = { +const u64 SKEIN_1024_IV_384[] = { MK_64(0x5102B6B8, 0xC1894A35), MK_64(0xFEEBC9E3, 0xFE8AF11A), MK_64(0x0C807F06, 0xE32BED71), @@ -144,7 +144,7 @@ const u64 SKEIN1024_IV_384[] = { }; /* blkSize = 1024 bits. hashSize = 512 bits */ -const u64 SKEIN1024_IV_512[] = { +const u64 SKEIN_1024_IV_512[] = { MK_64(0xCAEC0E5D, 0x7C1B1B18), MK_64(0xA01B0E04, 0x5F03E802), MK_64(0x33840451, 0xED912885), @@ -164,7 +164,7 @@ const u64 SKEIN1024_IV_512[] = { }; /* blkSize = 1024 bits. hashSize = 1024 bits */ -const u64 SKEIN1024_IV_1024[] = { +const u64 SKEIN_1024_IV_1024[] = { MK_64(0xD593DA07, 0x41E72355), MK_64(0x15B5E511, 0xAC73E00C), MK_64(0x5180E5AE, 0xBAF2C4F0), diff --git a/drivers/staging/skein/include/threefishApi.h b/drivers/staging/skein/include/threefishApi.h index 63030e52b9a0..96cc0e868f43 100644 --- a/drivers/staging/skein/include/threefishApi.h +++ b/drivers/staging/skein/include/threefishApi.h @@ -31,7 +31,7 @@ #include #include -#define KeyScheduleConst 0x1BD11BDAA9FC1A22L +#define KEY_SCHEDULE_CONST 0x1BD11BDAA9FC1A22L /** * Which Threefish size to use diff --git a/drivers/staging/skein/skein.c b/drivers/staging/skein/skein.c index 43e7757872fa..2a2da983a1cc 100644 --- a/drivers/staging/skein/skein.c +++ b/drivers/staging/skein/skein.c @@ -28,7 +28,7 @@ int skein_256_init(struct skein_256_ctx *ctx, size_t hash_bit_len) u64 w[SKEIN_256_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */ switch (hash_bit_len) { /* use pre-computed values, where available */ @@ -51,13 +51,13 @@ int skein_256_init(struct skein_256_ctx *ctx, size_t hash_bit_len) * precomputed) */ /* set tweaks: T0=0; T1=CFG | FINAL */ - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* set the schema, version */ - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); - cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); + cfg.w[1] = skein_swap64(hash_bit_len); + cfg.w[2] = skein_swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); /* zero pad config block */ memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); @@ -69,7 +69,7 @@ int skein_256_init(struct skein_256_ctx *ctx, size_t hash_bit_len) } /* The chaining vars ctx->X are now initialized for hash_bit_len. */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */ + skein_start_new_type(ctx, MSG); /* T0=0, T1= MSG type */ return SKEIN_SUCCESS; } @@ -86,20 +86,20 @@ int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hash_bit_len, u64 w[SKEIN_256_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); - Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(key_bytes == 0 || key != NULL, SKEIN_FAIL); /* compute the initial chaining values ctx->X[], based on key */ if (key_bytes == 0) { /* is there a key? */ /* no key: use all zeroes as key for config block */ memset(ctx->X, 0, sizeof(ctx->X)); } else { /* here to pre-process a key */ - Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); + skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); /* do a mini-Init right here */ /* set output hash bit count = state size */ ctx->h.hash_bit_len = 8*sizeof(ctx->X); /* set tweaks: T0 = 0; T1 = KEY type */ - Skein_Start_New_Type(ctx, KEY); + skein_start_new_type(ctx, KEY); /* zero the initial chaining variables */ memset(ctx->X, 0, sizeof(ctx->X)); /* hash the key */ @@ -115,24 +115,24 @@ int skein_256_init_ext(struct skein_256_ctx *ctx, size_t hash_bit_len, */ /* output hash bit count */ ctx->h.hash_bit_len = hash_bit_len; - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* pre-pad cfg.w[] with zeroes */ memset(&cfg.w, 0, sizeof(cfg.w)); - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); + cfg.w[1] = skein_swap64(hash_bit_len); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */ - cfg.w[2] = Skein_Swap64(tree_info); + cfg.w[2] = skein_swap64(tree_info); - Skein_Show_Key(256, &ctx->h, key, key_bytes); + skein_show_key(256, &ctx->h, key, key_bytes); /* compute the initial chaining values from config block */ skein_256_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN); /* The chaining vars ctx->X are now initialized */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); + skein_start_new_type(ctx, MSG); return SKEIN_SUCCESS; } @@ -145,7 +145,7 @@ int skein_256_update(struct skein_256_ctx *ctx, const u8 *msg, size_t n; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* process full blocks, if any */ if (msg_byte_cnt + ctx->h.b_cnt > SKEIN_256_BLOCK_BYTES) { @@ -155,13 +155,13 @@ int skein_256_update(struct skein_256_ctx *ctx, const u8 *msg, n = SKEIN_256_BLOCK_BYTES - ctx->h.b_cnt; if (n) { /* check on our logic here */ - Skein_assert(n < msg_byte_cnt); + skein_assert(n < msg_byte_cnt); memcpy(&ctx->b[ctx->h.b_cnt], msg, n); msg_byte_cnt -= n; msg += n; ctx->h.b_cnt += n; } - Skein_assert(ctx->h.b_cnt == SKEIN_256_BLOCK_BYTES); + skein_assert(ctx->h.b_cnt == SKEIN_256_BLOCK_BYTES); skein_256_process_block(ctx, ctx->b, 1, SKEIN_256_BLOCK_BYTES); ctx->h.b_cnt = 0; @@ -178,12 +178,12 @@ int skein_256_update(struct skein_256_ctx *ctx, const u8 *msg, msg_byte_cnt -= n * SKEIN_256_BLOCK_BYTES; msg += n * SKEIN_256_BLOCK_BYTES; } - Skein_assert(ctx->h.b_cnt == 0); + skein_assert(ctx->h.b_cnt == 0); } /* copy any remaining source message data bytes into b[] */ if (msg_byte_cnt) { - Skein_assert(msg_byte_cnt + ctx->h.b_cnt <= + skein_assert(msg_byte_cnt + ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES); memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt); ctx->h.b_cnt += msg_byte_cnt; @@ -199,7 +199,7 @@ int skein_256_final(struct skein_256_ctx *ctx, u8 *hash_val) size_t i, n, byte_cnt; u64 X[SKEIN_256_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; @@ -222,8 +222,8 @@ int skein_256_final(struct skein_256_ctx *ctx, u8 *hash_val) memcpy(X, ctx->X, sizeof(X)); for (i = 0; i*SKEIN_256_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_256_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ @@ -231,9 +231,9 @@ int skein_256_final(struct skein_256_ctx *ctx, u8 *hash_val) if (n >= SKEIN_256_BLOCK_BYTES) n = SKEIN_256_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(256, &ctx->h, n, + skein_show_final(256, &ctx->h, n, hash_val+i*SKEIN_256_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); @@ -254,7 +254,7 @@ int skein_512_init(struct skein_512_ctx *ctx, size_t hash_bit_len) u64 w[SKEIN_512_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */ switch (hash_bit_len) { /* use pre-computed values, where available */ @@ -277,13 +277,13 @@ int skein_512_init(struct skein_512_ctx *ctx, size_t hash_bit_len) * precomputed) */ /* set tweaks: T0=0; T1=CFG | FINAL */ - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* set the schema, version */ - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); - cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); + cfg.w[1] = skein_swap64(hash_bit_len); + cfg.w[2] = skein_swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); /* zero pad config block */ memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); @@ -299,7 +299,7 @@ int skein_512_init(struct skein_512_ctx *ctx, size_t hash_bit_len) * hash_bit_len. */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */ + skein_start_new_type(ctx, MSG); /* T0=0, T1= MSG type */ return SKEIN_SUCCESS; } @@ -316,20 +316,20 @@ int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hash_bit_len, u64 w[SKEIN_512_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); - Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(key_bytes == 0 || key != NULL, SKEIN_FAIL); /* compute the initial chaining values ctx->X[], based on key */ if (key_bytes == 0) { /* is there a key? */ /* no key: use all zeroes as key for config block */ memset(ctx->X, 0, sizeof(ctx->X)); } else { /* here to pre-process a key */ - Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); + skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); /* do a mini-Init right here */ /* set output hash bit count = state size */ ctx->h.hash_bit_len = 8*sizeof(ctx->X); /* set tweaks: T0 = 0; T1 = KEY type */ - Skein_Start_New_Type(ctx, KEY); + skein_start_new_type(ctx, KEY); /* zero the initial chaining variables */ memset(ctx->X, 0, sizeof(ctx->X)); /* hash the key */ @@ -344,24 +344,24 @@ int skein_512_init_ext(struct skein_512_ctx *ctx, size_t hash_bit_len, * precomputed for each key) */ ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */ - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* pre-pad cfg.w[] with zeroes */ memset(&cfg.w, 0, sizeof(cfg.w)); - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); + cfg.w[1] = skein_swap64(hash_bit_len); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */ - cfg.w[2] = Skein_Swap64(tree_info); + cfg.w[2] = skein_swap64(tree_info); - Skein_Show_Key(512, &ctx->h, key, key_bytes); + skein_show_key(512, &ctx->h, key, key_bytes); /* compute the initial chaining values from config block */ skein_512_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN); /* The chaining vars ctx->X are now initialized */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); + skein_start_new_type(ctx, MSG); return SKEIN_SUCCESS; } @@ -374,7 +374,7 @@ int skein_512_update(struct skein_512_ctx *ctx, const u8 *msg, size_t n; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* process full blocks, if any */ if (msg_byte_cnt + ctx->h.b_cnt > SKEIN_512_BLOCK_BYTES) { @@ -384,13 +384,13 @@ int skein_512_update(struct skein_512_ctx *ctx, const u8 *msg, n = SKEIN_512_BLOCK_BYTES - ctx->h.b_cnt; if (n) { /* check on our logic here */ - Skein_assert(n < msg_byte_cnt); + skein_assert(n < msg_byte_cnt); memcpy(&ctx->b[ctx->h.b_cnt], msg, n); msg_byte_cnt -= n; msg += n; ctx->h.b_cnt += n; } - Skein_assert(ctx->h.b_cnt == SKEIN_512_BLOCK_BYTES); + skein_assert(ctx->h.b_cnt == SKEIN_512_BLOCK_BYTES); skein_512_process_block(ctx, ctx->b, 1, SKEIN_512_BLOCK_BYTES); ctx->h.b_cnt = 0; @@ -407,12 +407,12 @@ int skein_512_update(struct skein_512_ctx *ctx, const u8 *msg, msg_byte_cnt -= n * SKEIN_512_BLOCK_BYTES; msg += n * SKEIN_512_BLOCK_BYTES; } - Skein_assert(ctx->h.b_cnt == 0); + skein_assert(ctx->h.b_cnt == 0); } /* copy any remaining source message data bytes into b[] */ if (msg_byte_cnt) { - Skein_assert(msg_byte_cnt + ctx->h.b_cnt <= + skein_assert(msg_byte_cnt + ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES); memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt); ctx->h.b_cnt += msg_byte_cnt; @@ -428,7 +428,7 @@ int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val) size_t i, n, byte_cnt; u64 X[SKEIN_512_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; @@ -451,8 +451,8 @@ int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val) memcpy(X, ctx->X, sizeof(X)); for (i = 0; i*SKEIN_512_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_512_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ @@ -460,9 +460,9 @@ int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val) if (n >= SKEIN_512_BLOCK_BYTES) n = SKEIN_512_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(512, &ctx->h, n, + skein_show_final(512, &ctx->h, n, hash_val+i*SKEIN_512_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); @@ -479,22 +479,22 @@ int skein_512_final(struct skein_512_ctx *ctx, u8 *hash_val) int skein_1024_init(struct skein_1024_ctx *ctx, size_t hash_bit_len) { union { - u8 b[SKEIN1024_STATE_BYTES]; - u64 w[SKEIN1024_STATE_WORDS]; + u8 b[SKEIN_1024_STATE_BYTES]; + u64 w[SKEIN_1024_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); ctx->h.hash_bit_len = hash_bit_len; /* output hash bit count */ switch (hash_bit_len) { /* use pre-computed values, where available */ case 512: - memcpy(ctx->X, SKEIN1024_IV_512, sizeof(ctx->X)); + memcpy(ctx->X, SKEIN_1024_IV_512, sizeof(ctx->X)); break; case 384: - memcpy(ctx->X, SKEIN1024_IV_384, sizeof(ctx->X)); + memcpy(ctx->X, SKEIN_1024_IV_384, sizeof(ctx->X)); break; case 1024: - memcpy(ctx->X, SKEIN1024_IV_1024, sizeof(ctx->X)); + memcpy(ctx->X, SKEIN_1024_IV_1024, sizeof(ctx->X)); break; default: /* here if there is no precomputed IV value available */ @@ -503,13 +503,13 @@ int skein_1024_init(struct skein_1024_ctx *ctx, size_t hash_bit_len) * (could be precomputed) */ /* set tweaks: T0=0; T1=CFG | FINAL */ - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* set the schema, version */ - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); - cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); + cfg.w[1] = skein_swap64(hash_bit_len); + cfg.w[2] = skein_swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL); /* zero pad config block */ memset(&cfg.w[3], 0, sizeof(cfg) - 3*sizeof(cfg.w[0])); @@ -522,7 +522,7 @@ int skein_1024_init(struct skein_1024_ctx *ctx, size_t hash_bit_len) /* The chaining vars ctx->X are now initialized for the hash_bit_len. */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */ + skein_start_new_type(ctx, MSG); /* T0=0, T1= MSG type */ return SKEIN_SUCCESS; } @@ -535,24 +535,24 @@ int skein_1024_init_ext(struct skein_1024_ctx *ctx, size_t hash_bit_len, u64 tree_info, const u8 *key, size_t key_bytes) { union { - u8 b[SKEIN1024_STATE_BYTES]; - u64 w[SKEIN1024_STATE_WORDS]; + u8 b[SKEIN_1024_STATE_BYTES]; + u64 w[SKEIN_1024_STATE_WORDS]; } cfg; /* config block */ - Skein_Assert(hash_bit_len > 0, SKEIN_BAD_HASHLEN); - Skein_Assert(key_bytes == 0 || key != NULL, SKEIN_FAIL); + skein_assert_ret(hash_bit_len > 0, SKEIN_BAD_HASHLEN); + skein_assert_ret(key_bytes == 0 || key != NULL, SKEIN_FAIL); /* compute the initial chaining values ctx->X[], based on key */ if (key_bytes == 0) { /* is there a key? */ /* no key: use all zeroes as key for config block */ memset(ctx->X, 0, sizeof(ctx->X)); } else { /* here to pre-process a key */ - Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); + skein_assert(sizeof(cfg.b) >= sizeof(ctx->X)); /* do a mini-Init right here */ /* set output hash bit count = state size */ ctx->h.hash_bit_len = 8*sizeof(ctx->X); /* set tweaks: T0 = 0; T1 = KEY type */ - Skein_Start_New_Type(ctx, KEY); + skein_start_new_type(ctx, KEY); /* zero the initial chaining variables */ memset(ctx->X, 0, sizeof(ctx->X)); /* hash the key */ @@ -568,24 +568,24 @@ int skein_1024_init_ext(struct skein_1024_ctx *ctx, size_t hash_bit_len, */ /* output hash bit count */ ctx->h.hash_bit_len = hash_bit_len; - Skein_Start_New_Type(ctx, CFG_FINAL); + skein_start_new_type(ctx, CFG_FINAL); /* pre-pad cfg.w[] with zeroes */ memset(&cfg.w, 0, sizeof(cfg.w)); - cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); + cfg.w[0] = skein_swap64(SKEIN_SCHEMA_VER); /* hash result length in bits */ - cfg.w[1] = Skein_Swap64(hash_bit_len); + cfg.w[1] = skein_swap64(hash_bit_len); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */ - cfg.w[2] = Skein_Swap64(tree_info); + cfg.w[2] = skein_swap64(tree_info); - Skein_Show_Key(1024, &ctx->h, key, key_bytes); + skein_show_key(1024, &ctx->h, key, key_bytes); /* compute the initial chaining values from config block */ skein_1024_process_block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN); /* The chaining vars ctx->X are now initialized */ /* Set up to process the data message portion of the hash (default) */ - Skein_Start_New_Type(ctx, MSG); + skein_start_new_type(ctx, MSG); return SKEIN_SUCCESS; } @@ -598,46 +598,46 @@ int skein_1024_update(struct skein_1024_ctx *ctx, const u8 *msg, size_t n; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_1024_BLOCK_BYTES, SKEIN_FAIL); /* process full blocks, if any */ - if (msg_byte_cnt + ctx->h.b_cnt > SKEIN1024_BLOCK_BYTES) { + if (msg_byte_cnt + ctx->h.b_cnt > SKEIN_1024_BLOCK_BYTES) { /* finish up any buffered message data */ if (ctx->h.b_cnt) { /* # bytes free in buffer b[] */ - n = SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt; + n = SKEIN_1024_BLOCK_BYTES - ctx->h.b_cnt; if (n) { /* check on our logic here */ - Skein_assert(n < msg_byte_cnt); + skein_assert(n < msg_byte_cnt); memcpy(&ctx->b[ctx->h.b_cnt], msg, n); msg_byte_cnt -= n; msg += n; ctx->h.b_cnt += n; } - Skein_assert(ctx->h.b_cnt == SKEIN1024_BLOCK_BYTES); + skein_assert(ctx->h.b_cnt == SKEIN_1024_BLOCK_BYTES); skein_1024_process_block(ctx, ctx->b, 1, - SKEIN1024_BLOCK_BYTES); + SKEIN_1024_BLOCK_BYTES); ctx->h.b_cnt = 0; } /* * now process any remaining full blocks, directly from input * message data */ - if (msg_byte_cnt > SKEIN1024_BLOCK_BYTES) { + if (msg_byte_cnt > SKEIN_1024_BLOCK_BYTES) { /* number of full blocks to process */ - n = (msg_byte_cnt-1) / SKEIN1024_BLOCK_BYTES; + n = (msg_byte_cnt-1) / SKEIN_1024_BLOCK_BYTES; skein_1024_process_block(ctx, msg, n, - SKEIN1024_BLOCK_BYTES); - msg_byte_cnt -= n * SKEIN1024_BLOCK_BYTES; - msg += n * SKEIN1024_BLOCK_BYTES; + SKEIN_1024_BLOCK_BYTES); + msg_byte_cnt -= n * SKEIN_1024_BLOCK_BYTES; + msg += n * SKEIN_1024_BLOCK_BYTES; } - Skein_assert(ctx->h.b_cnt == 0); + skein_assert(ctx->h.b_cnt == 0); } /* copy any remaining source message data bytes into b[] */ if (msg_byte_cnt) { - Skein_assert(msg_byte_cnt + ctx->h.b_cnt <= - SKEIN1024_BLOCK_BYTES); + skein_assert(msg_byte_cnt + ctx->h.b_cnt <= + SKEIN_1024_BLOCK_BYTES); memcpy(&ctx->b[ctx->h.b_cnt], msg, msg_byte_cnt); ctx->h.b_cnt += msg_byte_cnt; } @@ -650,16 +650,16 @@ int skein_1024_update(struct skein_1024_ctx *ctx, const u8 *msg, int skein_1024_final(struct skein_1024_ctx *ctx, u8 *hash_val) { size_t i, n, byte_cnt; - u64 X[SKEIN1024_STATE_WORDS]; + u64 X[SKEIN_1024_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_1024_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* zero pad b[] if necessary */ - if (ctx->h.b_cnt < SKEIN1024_BLOCK_BYTES) + if (ctx->h.b_cnt < SKEIN_1024_BLOCK_BYTES) memset(&ctx->b[ctx->h.b_cnt], 0, - SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt); + SKEIN_1024_BLOCK_BYTES - ctx->h.b_cnt); /* process the final block */ skein_1024_process_block(ctx, ctx->b, 1, ctx->h.b_cnt); @@ -673,21 +673,21 @@ int skein_1024_final(struct skein_1024_ctx *ctx, u8 *hash_val) memset(ctx->b, 0, sizeof(ctx->b)); /* keep a local copy of counter mode "key" */ memcpy(X, ctx->X, sizeof(X)); - for (i = 0; i*SKEIN1024_BLOCK_BYTES < byte_cnt; i++) { + for (i = 0; i*SKEIN_1024_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_1024_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ - n = byte_cnt - i*SKEIN1024_BLOCK_BYTES; - if (n >= SKEIN1024_BLOCK_BYTES) - n = SKEIN1024_BLOCK_BYTES; + n = byte_cnt - i*SKEIN_1024_BLOCK_BYTES; + if (n >= SKEIN_1024_BLOCK_BYTES) + n = SKEIN_1024_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN1024_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_1024_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(1024, &ctx->h, n, - hash_val+i*SKEIN1024_BLOCK_BYTES); + skein_show_final(1024, &ctx->h, n, + hash_val+i*SKEIN_1024_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); } @@ -702,7 +702,7 @@ int skein_1024_final(struct skein_1024_ctx *ctx, u8 *hash_val) int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hash_val) { /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; @@ -714,7 +714,7 @@ int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hash_val) skein_256_process_block(ctx, ctx->b, 1, ctx->h.b_cnt); /* "output" the state bytes */ - Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN_256_BLOCK_BYTES); + skein_put64_lsb_first(hash_val, ctx->X, SKEIN_256_BLOCK_BYTES); return SKEIN_SUCCESS; } @@ -724,7 +724,7 @@ int skein_256_final_pad(struct skein_256_ctx *ctx, u8 *hash_val) int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hash_val) { /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; @@ -736,7 +736,7 @@ int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hash_val) skein_512_process_block(ctx, ctx->b, 1, ctx->h.b_cnt); /* "output" the state bytes */ - Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN_512_BLOCK_BYTES); + skein_put64_lsb_first(hash_val, ctx->X, SKEIN_512_BLOCK_BYTES); return SKEIN_SUCCESS; } @@ -746,19 +746,19 @@ int skein_512_final_pad(struct skein_512_ctx *ctx, u8 *hash_val) int skein_1024_final_pad(struct skein_1024_ctx *ctx, u8 *hash_val) { /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_1024_BLOCK_BYTES, SKEIN_FAIL); /* tag as the final block */ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* zero pad b[] if necessary */ - if (ctx->h.b_cnt < SKEIN1024_BLOCK_BYTES) + if (ctx->h.b_cnt < SKEIN_1024_BLOCK_BYTES) memset(&ctx->b[ctx->h.b_cnt], 0, - SKEIN1024_BLOCK_BYTES - ctx->h.b_cnt); + SKEIN_1024_BLOCK_BYTES - ctx->h.b_cnt); /* process the final block */ skein_1024_process_block(ctx, ctx->b, 1, ctx->h.b_cnt); /* "output" the state bytes */ - Skein_Put64_LSB_First(hash_val, ctx->X, SKEIN1024_BLOCK_BYTES); + skein_put64_lsb_first(hash_val, ctx->X, SKEIN_1024_BLOCK_BYTES); return SKEIN_SUCCESS; } @@ -771,7 +771,7 @@ int skein_256_output(struct skein_256_ctx *ctx, u8 *hash_val) size_t i, n, byte_cnt; u64 X[SKEIN_256_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL); /* now output the result */ /* total number of output bytes */ @@ -784,8 +784,8 @@ int skein_256_output(struct skein_256_ctx *ctx, u8 *hash_val) memcpy(X, ctx->X, sizeof(X)); for (i = 0; i*SKEIN_256_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_256_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ @@ -793,9 +793,9 @@ int skein_256_output(struct skein_256_ctx *ctx, u8 *hash_val) if (n >= SKEIN_256_BLOCK_BYTES) n = SKEIN_256_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_256_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(256, &ctx->h, n, + skein_show_final(256, &ctx->h, n, hash_val+i*SKEIN_256_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); @@ -810,7 +810,7 @@ int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val) size_t i, n, byte_cnt; u64 X[SKEIN_512_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL); /* now output the result */ /* total number of output bytes */ @@ -823,8 +823,8 @@ int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val) memcpy(X, ctx->X, sizeof(X)); for (i = 0; i*SKEIN_512_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_512_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ @@ -832,9 +832,9 @@ int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val) if (n >= SKEIN_512_BLOCK_BYTES) n = SKEIN_512_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_512_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(256, &ctx->h, n, + skein_show_final(256, &ctx->h, n, hash_val+i*SKEIN_512_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); @@ -847,9 +847,9 @@ int skein_512_output(struct skein_512_ctx *ctx, u8 *hash_val) int skein_1024_output(struct skein_1024_ctx *ctx, u8 *hash_val) { size_t i, n, byte_cnt; - u64 X[SKEIN1024_STATE_WORDS]; + u64 X[SKEIN_1024_STATE_WORDS]; /* catch uninitialized context */ - Skein_Assert(ctx->h.b_cnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL); + skein_assert_ret(ctx->h.b_cnt <= SKEIN_1024_BLOCK_BYTES, SKEIN_FAIL); /* now output the result */ /* total number of output bytes */ @@ -860,21 +860,21 @@ int skein_1024_output(struct skein_1024_ctx *ctx, u8 *hash_val) memset(ctx->b, 0, sizeof(ctx->b)); /* keep a local copy of counter mode "key" */ memcpy(X, ctx->X, sizeof(X)); - for (i = 0; i*SKEIN1024_BLOCK_BYTES < byte_cnt; i++) { + for (i = 0; i*SKEIN_1024_BLOCK_BYTES < byte_cnt; i++) { /* build the counter block */ - ((u64 *)ctx->b)[0] = Skein_Swap64((u64) i); - Skein_Start_New_Type(ctx, OUT_FINAL); + ((u64 *)ctx->b)[0] = skein_swap64((u64) i); + skein_start_new_type(ctx, OUT_FINAL); /* run "counter mode" */ skein_1024_process_block(ctx, ctx->b, 1, sizeof(u64)); /* number of output bytes left to go */ - n = byte_cnt - i*SKEIN1024_BLOCK_BYTES; - if (n >= SKEIN1024_BLOCK_BYTES) - n = SKEIN1024_BLOCK_BYTES; + n = byte_cnt - i*SKEIN_1024_BLOCK_BYTES; + if (n >= SKEIN_1024_BLOCK_BYTES) + n = SKEIN_1024_BLOCK_BYTES; /* "output" the ctr mode bytes */ - Skein_Put64_LSB_First(hash_val+i*SKEIN1024_BLOCK_BYTES, ctx->X, + skein_put64_lsb_first(hash_val+i*SKEIN_1024_BLOCK_BYTES, ctx->X, n); - Skein_Show_Final(256, &ctx->h, n, - hash_val+i*SKEIN1024_BLOCK_BYTES); + skein_show_final(256, &ctx->h, n, + hash_val+i*SKEIN_1024_BLOCK_BYTES); /* restore the counter mode key for next time */ memcpy(ctx->X, X, sizeof(X)); } diff --git a/drivers/staging/skein/skeinApi.c b/drivers/staging/skein/skeinApi.c index 87b3ff23b49c..16d596b45317 100644 --- a/drivers/staging/skein/skeinApi.c +++ b/drivers/staging/skein/skeinApi.c @@ -29,7 +29,7 @@ OTHER DEALINGS IN THE SOFTWARE. int skein_ctx_prepare(struct skein_ctx *ctx, enum skein_size size) { - Skein_Assert(ctx && size, SKEIN_FAIL); + skein_assert_ret(ctx && size, SKEIN_FAIL); memset(ctx , 0, sizeof(struct skein_ctx)); ctx->skein_size = size; @@ -44,7 +44,7 @@ int skein_init(struct skein_ctx *ctx, size_t hash_bit_len) u64 *X = NULL; u64 tree_info = SKEIN_CFG_TREE_INFO_SEQUENTIAL; - Skein_Assert(ctx, SKEIN_FAIL); + skein_assert_ret(ctx, SKEIN_FAIL); /* * The following two lines rely of the fact that the real Skein * contexts are a union in out context and thus have tha maximum @@ -89,12 +89,12 @@ int skein_mac_init(struct skein_ctx *ctx, const u8 *key, size_t key_len, size_t X_len = 0; u64 tree_info = SKEIN_CFG_TREE_INFO_SEQUENTIAL; - Skein_Assert(ctx, SKEIN_FAIL); + skein_assert_ret(ctx, SKEIN_FAIL); X = ctx->m.s256.X; X_len = ctx->skein_size/8; - Skein_Assert(hash_bit_len, SKEIN_BAD_HASHLEN); + skein_assert_ret(hash_bit_len, SKEIN_BAD_HASHLEN); switch (ctx->skein_size) { case SKEIN_256: @@ -141,7 +141,7 @@ void skein_reset(struct skein_ctx *ctx) memcpy(X, ctx->X_save, X_len); /* Setup context to process the message */ - Skein_Start_New_Type(&ctx->m, MSG); + skein_start_new_type(&ctx->m, MSG); } int skein_update(struct skein_ctx *ctx, const u8 *msg, @@ -149,7 +149,7 @@ int skein_update(struct skein_ctx *ctx, const u8 *msg, { int ret = SKEIN_FAIL; - Skein_Assert(ctx, SKEIN_FAIL); + skein_assert_ret(ctx, SKEIN_FAIL); switch (ctx->skein_size) { case SKEIN_256: @@ -185,8 +185,8 @@ int skein_update_bits(struct skein_ctx *ctx, const u8 *msg, * only the final Update() call is allowed do partial bytes, else * assert an error */ - Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || - msg_bit_cnt == 0, SKEIN_FAIL); + skein_assert_ret((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || + msg_bit_cnt == 0, SKEIN_FAIL); /* if number of bits is a multiple of bytes - that's easy */ if ((msg_bit_cnt & 0x7) == 0) @@ -203,13 +203,13 @@ int skein_update_bits(struct skein_ctx *ctx, const u8 *msg, up = (u8 *)ctx->m.s256.X + ctx->skein_size / 8; /* set tweak flag for the skein_final call */ - Skein_Set_Bit_Pad_Flag(ctx->m.h); + skein_set_bit_pad_flag(ctx->m.h); /* now "pad" the final partial byte the way NIST likes */ /* get the b_cnt value (same location for all block sizes) */ length = ctx->m.h.b_cnt; /* internal sanity check: there IS a partial byte in the buffer! */ - Skein_assert(length != 0); + skein_assert(length != 0); /* partial byte bit mask */ mask = (u8) (1u << (7 - (msg_bit_cnt & 7))); /* apply bit padding on final byte (in the buffer) */ @@ -222,7 +222,7 @@ int skein_final(struct skein_ctx *ctx, u8 *hash) { int ret = SKEIN_FAIL; - Skein_Assert(ctx, SKEIN_FAIL); + skein_assert_ret(ctx, SKEIN_FAIL); switch (ctx->skein_size) { case SKEIN_256: diff --git a/drivers/staging/skein/skeinBlockNo3F.c b/drivers/staging/skein/skeinBlockNo3F.c index 716b78e6f83f..4ee7f9fb4365 100644 --- a/drivers/staging/skein/skeinBlockNo3F.c +++ b/drivers/staging/skein/skeinBlockNo3F.c @@ -11,10 +11,10 @@ void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, struct threefish_key key; u64 tweak[2]; int i; - u64 w[SKEIN_256_STATE_WORDS]; /* local copy of input block */ + u64 w[SKEIN_256_STATE_WORDS]; /* local copy of input block */ u64 words[3]; - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ tweak[0] = ctx->h.T[0]; tweak[1] = ctx->h.T[1]; @@ -37,7 +37,7 @@ void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, threefish_set_key(&key, THREEFISH_256, ctx->X, tweak); /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, SKEIN_256_STATE_WORDS); + skein_get64_lsb_first(w, blk_ptr, SKEIN_256_STATE_WORDS); threefish_encrypt_block_words(&key, w, ctx->X); @@ -63,9 +63,9 @@ void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, u64 tweak[2]; int i; u64 words[3]; - u64 w[SKEIN_512_STATE_WORDS]; /* local copy of input block */ + u64 w[SKEIN_512_STATE_WORDS]; /* local copy of input block */ - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ tweak[0] = ctx->h.T[0]; tweak[1] = ctx->h.T[1]; @@ -88,7 +88,7 @@ void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, threefish_set_key(&key, THREEFISH_512, ctx->X, tweak); /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, SKEIN_512_STATE_WORDS); + skein_get64_lsb_first(w, blk_ptr, SKEIN_512_STATE_WORDS); threefish_encrypt_block_words(&key, w, ctx->X); @@ -118,9 +118,9 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, u64 tweak[2]; int i; u64 words[3]; - u64 w[SKEIN1024_STATE_WORDS]; /* local copy of input block */ + u64 w[SKEIN_1024_STATE_WORDS]; /* local copy of input block */ - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ tweak[0] = ctx->h.T[0]; tweak[1] = ctx->h.T[1]; @@ -143,11 +143,11 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, threefish_set_key(&key, THREEFISH_1024, ctx->X, tweak); /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, SKEIN1024_STATE_WORDS); + skein_get64_lsb_first(w, blk_ptr, SKEIN_1024_STATE_WORDS); threefish_encrypt_block_words(&key, w, ctx->X); - blk_ptr += SKEIN1024_BLOCK_BYTES; + blk_ptr += SKEIN_1024_BLOCK_BYTES; /* do the final "feedforward" xor, update ctx chaining vars */ ctx->X[0] = ctx->X[0] ^ w[0]; diff --git a/drivers/staging/skein/skein_block.c b/drivers/staging/skein/skein_block.c index ebd4af1aaae5..7b66ec529422 100644 --- a/drivers/staging/skein/skein_block.c +++ b/drivers/staging/skein/skein_block.c @@ -32,9 +32,9 @@ #define ts (kw + KW_TWK_BASE) #ifdef SKEIN_DEBUG -#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; } +#define debug_save_tweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; } #else -#define DebugSaveTweak(ctx) +#define debug_save_tweak(ctx) #endif /***************************** SKEIN_256 ******************************/ @@ -70,7 +70,7 @@ void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, X_ptr[0] = &X0; X_ptr[1] = &X1; X_ptr[2] = &X2; X_ptr[3] = &X3; #endif - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.T[0]; ts[1] = ctx->h.T[1]; do { @@ -90,9 +90,9 @@ void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, WCNT); - DebugSaveTweak(ctx); - Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); + skein_get64_lsb_first(w, blk_ptr, WCNT); + debug_save_tweak(ctx); + skein_show_block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); X0 = w[0] + ks[0]; /* do the first full key injection */ X1 = w[1] + ks[1] + ts[0]; @@ -100,24 +100,24 @@ void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr, X3 = w[3] + ks[3]; /* show starting state values */ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, X_ptr); blk_ptr += SKEIN_256_BLOCK_BYTES; /* run the rounds */ -#define Round256(p0, p1, p2, p3, ROT, r_num) \ +#define ROUND256(p0, p1, p2, p3, ROT, r_num) \ do { \ - X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ - X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ + X##p0 += X##p1; X##p1 = rotl_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ + X##p2 += X##p3; X##p3 = rotl_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ } while (0) #if SKEIN_UNROLL_256 == 0 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \ do { \ - Round256(p0, p1, p2, p3, ROT, r_num); \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \ + ROUND256(p0, p1, p2, p3, ROT, r_num); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \ } while (0) #define I256(R) \ @@ -127,13 +127,13 @@ do { \ X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \ X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \ X3 += ks[((R)+4) % 5] + (R)+1; \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) #else /* looping version */ #define R256(p0, p1, p2, p3, ROT, r_num) \ do { \ - Round256(p0, p1, p2, p3, ROT, r_num); \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \ + ROUND256(p0, p1, p2, p3, ROT, r_num); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \ } while (0) #define I256(R) \ @@ -146,13 +146,13 @@ do { \ /* rotate key schedule */ \ ks[r + (R) + 4] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256) #endif { -#define R256_8_rounds(R) \ +#define R256_8_ROUNDS(R) \ do { \ R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \ R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \ @@ -166,54 +166,54 @@ do { \ I256(2 * (R) + 1); \ } while (0) - R256_8_rounds(0); + R256_8_ROUNDS(0); -#define R256_Unroll_R(NN) \ +#define R256_UNROLL_R(NN) \ ((SKEIN_UNROLL_256 == 0 && \ SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || \ (SKEIN_UNROLL_256 > (NN))) - #if R256_Unroll_R(1) - R256_8_rounds(1); + #if R256_UNROLL_R(1) + R256_8_ROUNDS(1); #endif - #if R256_Unroll_R(2) - R256_8_rounds(2); + #if R256_UNROLL_R(2) + R256_8_ROUNDS(2); #endif - #if R256_Unroll_R(3) - R256_8_rounds(3); + #if R256_UNROLL_R(3) + R256_8_ROUNDS(3); #endif - #if R256_Unroll_R(4) - R256_8_rounds(4); + #if R256_UNROLL_R(4) + R256_8_ROUNDS(4); #endif - #if R256_Unroll_R(5) - R256_8_rounds(5); + #if R256_UNROLL_R(5) + R256_8_ROUNDS(5); #endif - #if R256_Unroll_R(6) - R256_8_rounds(6); + #if R256_UNROLL_R(6) + R256_8_ROUNDS(6); #endif - #if R256_Unroll_R(7) - R256_8_rounds(7); + #if R256_UNROLL_R(7) + R256_8_ROUNDS(7); #endif - #if R256_Unroll_R(8) - R256_8_rounds(8); + #if R256_UNROLL_R(8) + R256_8_ROUNDS(8); #endif - #if R256_Unroll_R(9) - R256_8_rounds(9); + #if R256_UNROLL_R(9) + R256_8_ROUNDS(9); #endif - #if R256_Unroll_R(10) - R256_8_rounds(10); + #if R256_UNROLL_R(10) + R256_8_ROUNDS(10); #endif - #if R256_Unroll_R(11) - R256_8_rounds(11); + #if R256_UNROLL_R(11) + R256_8_ROUNDS(11); #endif - #if R256_Unroll_R(12) - R256_8_rounds(12); + #if R256_UNROLL_R(12) + R256_8_ROUNDS(12); #endif - #if R256_Unroll_R(13) - R256_8_rounds(13); + #if R256_UNROLL_R(13) + R256_8_ROUNDS(13); #endif - #if R256_Unroll_R(14) - R256_8_rounds(14); + #if R256_UNROLL_R(14) + R256_8_ROUNDS(14); #endif #if (SKEIN_UNROLL_256 > 14) #error "need more unrolling in skein_256_process_block" @@ -225,7 +225,7 @@ do { \ ctx->X[2] = X2 ^ w[2]; ctx->X[3] = X3 ^ w[3]; - Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); + skein_show_round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); @@ -281,7 +281,7 @@ void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, X_ptr[4] = &X4; X_ptr[5] = &X5; X_ptr[6] = &X6; X_ptr[7] = &X7; #endif - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.T[0]; ts[1] = ctx->h.T[1]; do { @@ -306,9 +306,9 @@ void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, WCNT); - DebugSaveTweak(ctx); - Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); + skein_get64_lsb_first(w, blk_ptr, WCNT); + debug_save_tweak(ctx); + skein_show_block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); X0 = w[0] + ks[0]; /* do the first full key injection */ X1 = w[1] + ks[1]; @@ -321,22 +321,22 @@ void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr, blk_ptr += SKEIN_512_BLOCK_BYTES; - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, X_ptr); /* run the rounds */ -#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ +#define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ do { \ - X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ - X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ - X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \ - X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \ + X##p0 += X##p1; X##p1 = rotl_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ + X##p2 += X##p3; X##p3 = rotl_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ + X##p4 += X##p5; X##p5 = rotl_64(X##p5, ROT##_2); X##p5 ^= X##p4; \ + X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3); X##p7 ^= X##p6; \ } while (0) #if SKEIN_UNROLL_512 == 0 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \ do { \ - Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \ + ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ + skein_show_r_ptr(BLK_BITS, &ctx->h, r_num, X_ptr); \ } while (0) #define I512(R) \ @@ -350,13 +350,13 @@ do { \ X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \ X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \ X7 += ks[((R) + 8) % 9] + (R) + 1; \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) #else /* looping version */ #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \ do { \ - Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num); \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \ + ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + r_num, X_ptr); \ } while (0) #define I512(R) \ @@ -373,13 +373,13 @@ do { \ /* rotate key schedule */ \ ks[r + (R) + 8] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512) #endif /* end of looped code definitions */ { -#define R512_8_rounds(R) /* do 8 full rounds */ \ +#define R512_8_ROUNDS(R) /* do 8 full rounds */ \ do { \ R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \ R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \ @@ -393,54 +393,54 @@ do { \ I512(2 * (R) + 1); /* and key injection */ \ } while (0) - R512_8_rounds(0); + R512_8_ROUNDS(0); -#define R512_Unroll_R(NN) \ +#define R512_UNROLL_R(NN) \ ((SKEIN_UNROLL_512 == 0 && \ SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \ (SKEIN_UNROLL_512 > (NN))) - #if R512_Unroll_R(1) - R512_8_rounds(1); + #if R512_UNROLL_R(1) + R512_8_ROUNDS(1); #endif - #if R512_Unroll_R(2) - R512_8_rounds(2); + #if R512_UNROLL_R(2) + R512_8_ROUNDS(2); #endif - #if R512_Unroll_R(3) - R512_8_rounds(3); + #if R512_UNROLL_R(3) + R512_8_ROUNDS(3); #endif - #if R512_Unroll_R(4) - R512_8_rounds(4); + #if R512_UNROLL_R(4) + R512_8_ROUNDS(4); #endif - #if R512_Unroll_R(5) - R512_8_rounds(5); + #if R512_UNROLL_R(5) + R512_8_ROUNDS(5); #endif - #if R512_Unroll_R(6) - R512_8_rounds(6); + #if R512_UNROLL_R(6) + R512_8_ROUNDS(6); #endif - #if R512_Unroll_R(7) - R512_8_rounds(7); + #if R512_UNROLL_R(7) + R512_8_ROUNDS(7); #endif - #if R512_Unroll_R(8) - R512_8_rounds(8); + #if R512_UNROLL_R(8) + R512_8_ROUNDS(8); #endif - #if R512_Unroll_R(9) - R512_8_rounds(9); + #if R512_UNROLL_R(9) + R512_8_ROUNDS(9); #endif - #if R512_Unroll_R(10) - R512_8_rounds(10); + #if R512_UNROLL_R(10) + R512_8_ROUNDS(10); #endif - #if R512_Unroll_R(11) - R512_8_rounds(11); + #if R512_UNROLL_R(11) + R512_8_ROUNDS(11); #endif - #if R512_Unroll_R(12) - R512_8_rounds(12); + #if R512_UNROLL_R(12) + R512_8_ROUNDS(12); #endif - #if R512_Unroll_R(13) - R512_8_rounds(13); + #if R512_UNROLL_R(13) + R512_8_ROUNDS(13); #endif - #if R512_Unroll_R(14) - R512_8_rounds(14); + #if R512_UNROLL_R(14) + R512_8_ROUNDS(14); #endif #if (SKEIN_UNROLL_512 > 14) #error "need more unrolling in skein_512_process_block" @@ -456,7 +456,7 @@ do { \ ctx->X[5] = X5 ^ w[5]; ctx->X[6] = X6 ^ w[6]; ctx->X[7] = X7 ^ w[7]; - Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); + skein_show_round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); ts[1] &= ~SKEIN_T1_FLAG_FIRST; } while (--blk_cnt); @@ -483,10 +483,10 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, size_t blk_cnt, size_t byte_cnt_add) { /* do it in C, always looping (unrolled is bigger AND slower!) */ enum { - WCNT = SKEIN1024_STATE_WORDS + WCNT = SKEIN_1024_STATE_WORDS }; #undef RCNT -#define RCNT (SKEIN1024_ROUNDS_TOTAL/8) +#define RCNT (SKEIN_1024_ROUNDS_TOTAL/8) #ifdef SKEIN_LOOP /* configure how much to unroll the loop */ #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10) @@ -519,7 +519,7 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, X_ptr[15] = &X15; #endif - Skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ + skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */ ts[0] = ctx->h.T[0]; ts[1] = ctx->h.T[1]; do { @@ -554,9 +554,9 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, ts[2] = ts[0] ^ ts[1]; /* get input block in little-endian format */ - Skein_Get64_LSB_First(w, blk_ptr, WCNT); - DebugSaveTweak(ctx); - Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); + skein_get64_lsb_first(w, blk_ptr, WCNT); + debug_save_tweak(ctx); + skein_show_block(BLK_BITS, &ctx->h, ctx->X, blk_ptr, w, ks, ts); X00 = w[0] + ks[0]; /* do the first full key injection */ X01 = w[1] + ks[1]; @@ -575,29 +575,29 @@ void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr, X14 = w[14] + ks[14] + ts[1]; X15 = w[15] + ks[15]; - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL, X_ptr); -#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ +#define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ pF, ROT, r_num) \ do { \ - X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ - X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ - X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4; \ - X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6; \ - X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8; \ - X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA; \ - X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC; \ - X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE; \ + X##p0 += X##p1; X##p1 = rotl_64(X##p1, ROT##_0); X##p1 ^= X##p0; \ + X##p2 += X##p3; X##p3 = rotl_64(X##p3, ROT##_1); X##p3 ^= X##p2; \ + X##p4 += X##p5; X##p5 = rotl_64(X##p5, ROT##_2); X##p5 ^= X##p4; \ + X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3); X##p7 ^= X##p6; \ + X##p8 += X##p9; X##p9 = rotl_64(X##p9, ROT##_4); X##p9 ^= X##p8; \ + X##pA += X##pB; X##pB = rotl_64(X##pB, ROT##_5); X##pB ^= X##pA; \ + X##pC += X##pD; X##pD = rotl_64(X##pD, ROT##_6); X##pD ^= X##pC; \ + X##pE += X##pF; X##pF = rotl_64(X##pF, ROT##_7); X##pF ^= X##pE; \ } while (0) #if SKEIN_UNROLL_1024 == 0 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \ ROT, rn) \ do { \ - Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ - pF, ROT, rn) \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, X_ptr); \ + ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ + pF, ROT, rn); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, rn, X_ptr); \ } while (0) #define I1024(R) \ @@ -619,15 +619,15 @@ do { \ X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \ X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \ X15 += ks[((R) + 16) % 17] + (R) + 1; \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) #else /* looping version */ #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \ ROT, rn) \ do { \ - Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ - pF, ROT, rn) \ - Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, X_ptr); \ + ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \ + pF, ROT, rn); \ + skein_show_r_ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, X_ptr); \ } while (0) #define I1024(R) \ @@ -652,13 +652,13 @@ do { \ /* rotate key schedule */ \ ks[r + (R) + 16] = ks[r + (R) - 1]; \ ts[r + (R) + 2] = ts[r + (R) - 1]; \ - Skein_Show_R_Ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ + skein_show_r_ptr(BLK_BITSi, &ctx->h, SKEIN_RND_KEY_INJECT, X_ptr); \ } while (0) for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024) #endif { -#define R1024_8_rounds(R) \ +#define R1024_8_ROUNDS(R) \ do { \ R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \ R1024_0, 8*(R) + 1); \ @@ -680,54 +680,54 @@ do { \ I1024(2*(R)+1); \ } while (0) - R1024_8_rounds(0); + R1024_8_ROUNDS(0); -#define R1024_Unroll_R(NN) \ +#define R1024_UNROLL_R(NN) \ ((SKEIN_UNROLL_1024 == 0 && \ - SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \ + SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) || \ (SKEIN_UNROLL_1024 > (NN))) - #if R1024_Unroll_R(1) - R1024_8_rounds(1); + #if R1024_UNROLL_R(1) + R1024_8_ROUNDS(1); #endif - #if R1024_Unroll_R(2) - R1024_8_rounds(2); + #if R1024_UNROLL_R(2) + R1024_8_ROUNDS(2); #endif - #if R1024_Unroll_R(3) - R1024_8_rounds(3); + #if R1024_UNROLL_R(3) + R1024_8_ROUNDS(3); #endif - #if R1024_Unroll_R(4) - R1024_8_rounds(4); + #if R1024_UNROLL_R(4) + R1024_8_ROUNDS(4); #endif - #if R1024_Unroll_R(5) - R1024_8_rounds(5); + #if R1024_UNROLL_R(5) + R1024_8_ROUNDS(5); #endif - #if R1024_Unroll_R(6) - R1024_8_rounds(6); + #if R1024_UNROLL_R(6) + R1024_8_ROUNDS(6); #endif - #if R1024_Unroll_R(7) - R1024_8_rounds(7); + #if R1024_UNROLL_R(7) + R1024_8_ROUNDS(7); #endif - #if R1024_Unroll_R(8) - R1024_8_rounds(8); + #if R1024_UNROLL_R(8) + R1024_8_ROUNDS(8); #endif - #if R1024_Unroll_R(9) - R1024_8_rounds(9); + #if R1024_UNROLL_R(9) + R1024_8_ROUNDS(9); #endif - #if R1024_Unroll_R(10) - R1024_8_rounds(10); + #if R1024_UNROLL_R(10) + R1024_8_ROUNDS(10); #endif - #if R1024_Unroll_R(11) - R1024_8_rounds(11); + #if R1024_UNROLL_R(11) + R1024_8_ROUNDS(11); #endif - #if R1024_Unroll_R(12) - R1024_8_rounds(12); + #if R1024_UNROLL_R(12) + R1024_8_ROUNDS(12); #endif - #if R1024_Unroll_R(13) - R1024_8_rounds(13); + #if R1024_UNROLL_R(13) + R1024_8_ROUNDS(13); #endif - #if R1024_Unroll_R(14) - R1024_8_rounds(14); + #if R1024_UNROLL_R(14) + R1024_8_ROUNDS(14); #endif #if (SKEIN_UNROLL_1024 > 14) #error "need more unrolling in Skein_1024_Process_Block" @@ -752,10 +752,10 @@ do { \ ctx->X[14] = X14 ^ w[14]; ctx->X[15] = X15 ^ w[15]; - Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); + skein_show_round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X); ts[1] &= ~SKEIN_T1_FLAG_FIRST; - blk_ptr += SKEIN1024_BLOCK_BYTES; + blk_ptr += SKEIN_1024_BLOCK_BYTES; } while (--blk_cnt); ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; diff --git a/drivers/staging/skein/threefishApi.c b/drivers/staging/skein/threefishApi.c index 17a314b8d65a..0ba42fac2f88 100644 --- a/drivers/staging/skein/threefishApi.c +++ b/drivers/staging/skein/threefishApi.c @@ -9,7 +9,7 @@ void threefish_set_key(struct threefish_key *key_ctx, { int key_words = state_size / 64; int i; - u64 parity = KeyScheduleConst; + u64 parity = KEY_SCHEDULE_CONST; key_ctx->tweak[0] = tweak[0]; key_ctx->tweak[1] = tweak[1]; @@ -29,9 +29,9 @@ void threefish_encrypt_block_bytes(struct threefish_key *key_ctx, u8 *in, u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/ u64 cipher[SKEIN_MAX_STATE_WORDS]; - Skein_Get64_LSB_First(plain, in, key_ctx->state_size / 64); + skein_get64_lsb_first(plain, in, key_ctx->state_size / 64); threefish_encrypt_block_words(key_ctx, plain, cipher); - Skein_Put64_LSB_First(out, cipher, key_ctx->state_size / 8); + skein_put64_lsb_first(out, cipher, key_ctx->state_size / 8); } void threefish_encrypt_block_words(struct threefish_key *key_ctx, u64 *in, @@ -56,9 +56,9 @@ void threefish_decrypt_block_bytes(struct threefish_key *key_ctx, u8 *in, u64 plain[SKEIN_MAX_STATE_WORDS]; /* max number of words*/ u64 cipher[SKEIN_MAX_STATE_WORDS]; - Skein_Get64_LSB_First(cipher, in, key_ctx->state_size / 64); + skein_get64_lsb_first(cipher, in, key_ctx->state_size / 64); threefish_decrypt_block_words(key_ctx, cipher, plain); - Skein_Put64_LSB_First(out, plain, key_ctx->state_size / 8); + skein_put64_lsb_first(out, plain, key_ctx->state_size / 8); } void threefish_decrypt_block_words(struct threefish_key *key_ctx, u64 *in,