From: Andrew Morton Date: Wed, 5 Sep 2007 03:51:53 +0000 (-0400) Subject: Input: iforce - de-dosify iforce-protocol.txt X-Git-Url: https://git.karo-electronics.de/?a=commitdiff_plain;h=08b7c464460eaf9846ee963e1d3291b96a652941;p=linux-beck.git Input: iforce - de-dosify iforce-protocol.txt This file used DOS line endings. Signed-off-by: Andrew Morton Signed-off-by: Dmitry Torokhov --- diff --git a/Documentation/input/iforce-protocol.txt b/Documentation/input/iforce-protocol.txt index 95df4ca70e71..8777d2d321e3 100644 --- a/Documentation/input/iforce-protocol.txt +++ b/Documentation/input/iforce-protocol.txt @@ -1,254 +1,254 @@ -** Introduction -This document describes what I managed to discover about the protocol used to -specify force effects to I-Force 2.0 devices. None of this information comes -from Immerse. That's why you should not trust what is written in this -document. This document is intended to help understanding the protocol. -This is not a reference. Comments and corrections are welcome. To contact me, -send an email to: deneux@ifrance.com - -** WARNING ** -I may not be held responsible for any dammage or harm caused if you try to -send data to your I-Force device based on what you read in this document. - -** Preliminary Notes: -All values are hexadecimal with big-endian encoding (msb on the left). Beware, -values inside packets are encoded using little-endian. Bytes whose roles are -unknown are marked ??? Information that needs deeper inspection is marked (?) - -** General form of a packet ** -This is how packets look when the device uses the rs232 to communicate. -2B OP LEN DATA CS -CS is the checksum. It is equal to the exclusive or of all bytes. - -When using USB: -OP DATA -The 2B, LEN and CS fields have disappeared, probably because USB handles frames and -data corruption is handled or unsignificant. - -First, I describe effects that are sent by the device to the computer - -** Device input state -This packet is used to indicate the state of each button and the value of each -axis -OP= 01 for a joystick, 03 for a wheel -LEN= Varies from device to device -00 X-Axis lsb -01 X-Axis msb -02 Y-Axis lsb, or gas pedal for a wheel -03 Y-Axis msb, or brake pedal for a wheel -04 Throttle -05 Buttons -06 Lower 4 bits: Buttons - Upper 4 bits: Hat -07 Rudder - -** Device effects states -OP= 02 -LEN= Varies -00 ? Bit 1 (Value 2) is the value of the deadman switch -01 Bit 8 is set if the effect is playing. Bits 0 to 7 are the effect id. -02 ?? -03 Address of parameter block changed (lsb) -04 Address of parameter block changed (msb) -05 Address of second parameter block changed (lsb) -... depending on the number of parameter blocks updated - -** Force effect ** -OP= 01 -LEN= 0e -00 Channel (when playing several effects at the same time, each must be assigned a channel) -01 Wave form - Val 00 Constant - Val 20 Square - Val 21 Triangle - Val 22 Sine - Val 23 Sawtooth up - Val 24 Sawtooth down - Val 40 Spring (Force = f(pos)) - Val 41 Friction (Force = f(velocity)) and Inertia (Force = f(acceleration)) - - -02 Axes affected and trigger - Bits 4-7: Val 2 = effect along one axis. Byte 05 indicates direction - Val 4 = X axis only. Byte 05 must contain 5a - Val 8 = Y axis only. Byte 05 must contain b4 - Val c = X and Y axes. Bytes 05 must contain 60 - Bits 0-3: Val 0 = No trigger - Val x+1 = Button x triggers the effect - When the whole byte is 0, cancel the previously set trigger - -03-04 Duration of effect (little endian encoding, in ms) - -05 Direction of effect, if applicable. Else, see 02 for value to assign. - -06-07 Minimum time between triggering. - -08-09 Address of periodicity or magnitude parameters -0a-0b Address of attack and fade parameters, or ffff if none. -*or* -08-09 Address of interactive parameters for X-axis, or ffff if not applicable -0a-0b Address of interactive parameters for Y-axis, or ffff if not applicable - -0c-0d Delay before execution of effect (little endian encoding, in ms) - - -** Time based parameters ** - -*** Attack and fade *** -OP= 02 -LEN= 08 -00-01 Address where to store the parameteres -02-03 Duration of attack (little endian encoding, in ms) -04 Level at end of attack. Signed byte. -05-06 Duration of fade. -07 Level at end of fade. - -*** Magnitude *** -OP= 03 -LEN= 03 -00-01 Address -02 Level. Signed byte. - -*** Periodicity *** -OP= 04 -LEN= 07 -00-01 Address -02 Magnitude. Signed byte. -03 Offset. Signed byte. -04 Phase. Val 00 = 0 deg, Val 40 = 90 degs. -05-06 Period (little endian encoding, in ms) - -** Interactive parameters ** -OP= 05 -LEN= 0a -00-01 Address -02 Positive Coeff -03 Negative Coeff -04+05 Offset (center) -06+07 Dead band (Val 01F4 = 5000 (decimal)) -08 Positive saturation (Val 0a = 1000 (decimal) Val 64 = 10000 (decimal)) -09 Negative saturation - -The encoding is a bit funny here: For coeffs, these are signed values. The -maximum value is 64 (100 decimal), the min is 9c. -For the offset, the minimum value is FE0C, the maximum value is 01F4. -For the deadband, the minimum value is 0, the max is 03E8. - -** Controls ** -OP= 41 -LEN= 03 -00 Channel -01 Start/Stop - Val 00: Stop - Val 01: Start and play once. - Val 41: Start and play n times (See byte 02 below) -02 Number of iterations n. - -** Init ** - -*** Querying features *** -OP= ff -Query command. Length varies according to the query type. -The general format of this packet is: -ff 01 QUERY [INDEX] CHECKSUM -reponses are of the same form: -FF LEN QUERY VALUE_QUERIED CHECKSUM2 -where LEN = 1 + length(VALUE_QUERIED) - -**** Query ram size **** -QUERY = 42 ('B'uffer size) -The device should reply with the same packet plus two additionnal bytes -containing the size of the memory: -ff 03 42 03 e8 CS would mean that the device has 1000 bytes of ram available. - -**** Query number of effects **** -QUERY = 4e ('N'umber of effects) -The device should respond by sending the number of effects that can be played -at the same time (one byte) -ff 02 4e 14 CS would stand for 20 effects. - -**** Vendor's id **** -QUERY = 4d ('M'anufacturer) -Query the vendors'id (2 bytes) - -**** Product id ***** -QUERY = 50 ('P'roduct) -Query the product id (2 bytes) - -**** Open device **** -QUERY = 4f ('O'pen) -No data returned. - -**** Close device ***** -QUERY = 43 ('C')lose -No data returned. - -**** Query effect **** -QUERY = 45 ('E') -Send effect type. -Returns nonzero if supported (2 bytes) - -**** Firmware Version **** -QUERY = 56 ('V'ersion) -Sends back 3 bytes - major, minor, subminor - -*** Initialisation of the device *** - -**** Set Control **** -!!! Device dependent, can be different on different models !!! -OP= 40 [] -LEN= 2 or 3 -00 Idx - Idx 00 Set dead zone (0..2048) - Idx 01 Ignore Deadman sensor (0..1) - Idx 02 Enable comm watchdog (0..1) - Idx 03 Set the strength of the spring (0..100) - Idx 04 Enable or disable the spring (0/1) - Idx 05 Set axis saturation threshold (0..2048) - -**** Set Effect State **** -OP= 42 -LEN= 1 -00 State - Bit 3 Pause force feedback - Bit 2 Enable force feedback - Bit 0 Stop all effects - -**** Set overall gain **** -OP= 43 -LEN= 1 -00 Gain - Val 00 = 0% - Val 40 = 50% - Val 80 = 100% - -** Parameter memory ** - -Each device has a certain amount of memory to store parameters of effects. -The amount of RAM may vary, I encountered values from 200 to 1000 bytes. Below -is the amount of memory apparently needed for every set of parameters: - - period : 0c - - magnitude : 02 - - attack and fade : 0e - - interactive : 08 - -** Appendix: How to study the protocol ? ** - -1. Generate effects using the force editor provided with the DirectX SDK, or use Immersion Studio (freely available at their web site in the developer section: www.immersion.com) -2. Start a soft spying RS232 or USB (depending on where you connected your joystick/wheel). I used ComPortSpy from fCoder (alpha version!) -3. Play the effect, and watch what happens on the spy screen. - -A few words about ComPortSpy: -At first glance, this soft seems, hum, well... buggy. In fact, data appear with a few seconds latency. Personnaly, I restart it every time I play an effect. -Remember it's free (as in free beer) and alpha! - -** URLS ** -Check www.immerse.com for Immersion Studio, and www.fcoder.com for ComPortSpy. - -** Author of this document ** -Johann Deneux -Home page at http://www.esil.univ-mrs.fr/~jdeneux/projects/ff/ - -Additions by Vojtech Pavlik. - -I-Force is trademark of Immersion Corp. +** Introduction +This document describes what I managed to discover about the protocol used to +specify force effects to I-Force 2.0 devices. None of this information comes +from Immerse. That's why you should not trust what is written in this +document. This document is intended to help understanding the protocol. +This is not a reference. Comments and corrections are welcome. To contact me, +send an email to: deneux@ifrance.com + +** WARNING ** +I may not be held responsible for any dammage or harm caused if you try to +send data to your I-Force device based on what you read in this document. + +** Preliminary Notes: +All values are hexadecimal with big-endian encoding (msb on the left). Beware, +values inside packets are encoded using little-endian. Bytes whose roles are +unknown are marked ??? Information that needs deeper inspection is marked (?) + +** General form of a packet ** +This is how packets look when the device uses the rs232 to communicate. +2B OP LEN DATA CS +CS is the checksum. It is equal to the exclusive or of all bytes. + +When using USB: +OP DATA +The 2B, LEN and CS fields have disappeared, probably because USB handles frames and +data corruption is handled or unsignificant. + +First, I describe effects that are sent by the device to the computer + +** Device input state +This packet is used to indicate the state of each button and the value of each +axis +OP= 01 for a joystick, 03 for a wheel +LEN= Varies from device to device +00 X-Axis lsb +01 X-Axis msb +02 Y-Axis lsb, or gas pedal for a wheel +03 Y-Axis msb, or brake pedal for a wheel +04 Throttle +05 Buttons +06 Lower 4 bits: Buttons + Upper 4 bits: Hat +07 Rudder + +** Device effects states +OP= 02 +LEN= Varies +00 ? Bit 1 (Value 2) is the value of the deadman switch +01 Bit 8 is set if the effect is playing. Bits 0 to 7 are the effect id. +02 ?? +03 Address of parameter block changed (lsb) +04 Address of parameter block changed (msb) +05 Address of second parameter block changed (lsb) +... depending on the number of parameter blocks updated + +** Force effect ** +OP= 01 +LEN= 0e +00 Channel (when playing several effects at the same time, each must be assigned a channel) +01 Wave form + Val 00 Constant + Val 20 Square + Val 21 Triangle + Val 22 Sine + Val 23 Sawtooth up + Val 24 Sawtooth down + Val 40 Spring (Force = f(pos)) + Val 41 Friction (Force = f(velocity)) and Inertia (Force = f(acceleration)) + + +02 Axes affected and trigger + Bits 4-7: Val 2 = effect along one axis. Byte 05 indicates direction + Val 4 = X axis only. Byte 05 must contain 5a + Val 8 = Y axis only. Byte 05 must contain b4 + Val c = X and Y axes. Bytes 05 must contain 60 + Bits 0-3: Val 0 = No trigger + Val x+1 = Button x triggers the effect + When the whole byte is 0, cancel the previously set trigger + +03-04 Duration of effect (little endian encoding, in ms) + +05 Direction of effect, if applicable. Else, see 02 for value to assign. + +06-07 Minimum time between triggering. + +08-09 Address of periodicity or magnitude parameters +0a-0b Address of attack and fade parameters, or ffff if none. +*or* +08-09 Address of interactive parameters for X-axis, or ffff if not applicable +0a-0b Address of interactive parameters for Y-axis, or ffff if not applicable + +0c-0d Delay before execution of effect (little endian encoding, in ms) + + +** Time based parameters ** + +*** Attack and fade *** +OP= 02 +LEN= 08 +00-01 Address where to store the parameteres +02-03 Duration of attack (little endian encoding, in ms) +04 Level at end of attack. Signed byte. +05-06 Duration of fade. +07 Level at end of fade. + +*** Magnitude *** +OP= 03 +LEN= 03 +00-01 Address +02 Level. Signed byte. + +*** Periodicity *** +OP= 04 +LEN= 07 +00-01 Address +02 Magnitude. Signed byte. +03 Offset. Signed byte. +04 Phase. Val 00 = 0 deg, Val 40 = 90 degs. +05-06 Period (little endian encoding, in ms) + +** Interactive parameters ** +OP= 05 +LEN= 0a +00-01 Address +02 Positive Coeff +03 Negative Coeff +04+05 Offset (center) +06+07 Dead band (Val 01F4 = 5000 (decimal)) +08 Positive saturation (Val 0a = 1000 (decimal) Val 64 = 10000 (decimal)) +09 Negative saturation + +The encoding is a bit funny here: For coeffs, these are signed values. The +maximum value is 64 (100 decimal), the min is 9c. +For the offset, the minimum value is FE0C, the maximum value is 01F4. +For the deadband, the minimum value is 0, the max is 03E8. + +** Controls ** +OP= 41 +LEN= 03 +00 Channel +01 Start/Stop + Val 00: Stop + Val 01: Start and play once. + Val 41: Start and play n times (See byte 02 below) +02 Number of iterations n. + +** Init ** + +*** Querying features *** +OP= ff +Query command. Length varies according to the query type. +The general format of this packet is: +ff 01 QUERY [INDEX] CHECKSUM +reponses are of the same form: +FF LEN QUERY VALUE_QUERIED CHECKSUM2 +where LEN = 1 + length(VALUE_QUERIED) + +**** Query ram size **** +QUERY = 42 ('B'uffer size) +The device should reply with the same packet plus two additionnal bytes +containing the size of the memory: +ff 03 42 03 e8 CS would mean that the device has 1000 bytes of ram available. + +**** Query number of effects **** +QUERY = 4e ('N'umber of effects) +The device should respond by sending the number of effects that can be played +at the same time (one byte) +ff 02 4e 14 CS would stand for 20 effects. + +**** Vendor's id **** +QUERY = 4d ('M'anufacturer) +Query the vendors'id (2 bytes) + +**** Product id ***** +QUERY = 50 ('P'roduct) +Query the product id (2 bytes) + +**** Open device **** +QUERY = 4f ('O'pen) +No data returned. + +**** Close device ***** +QUERY = 43 ('C')lose +No data returned. + +**** Query effect **** +QUERY = 45 ('E') +Send effect type. +Returns nonzero if supported (2 bytes) + +**** Firmware Version **** +QUERY = 56 ('V'ersion) +Sends back 3 bytes - major, minor, subminor + +*** Initialisation of the device *** + +**** Set Control **** +!!! Device dependent, can be different on different models !!! +OP= 40 [] +LEN= 2 or 3 +00 Idx + Idx 00 Set dead zone (0..2048) + Idx 01 Ignore Deadman sensor (0..1) + Idx 02 Enable comm watchdog (0..1) + Idx 03 Set the strength of the spring (0..100) + Idx 04 Enable or disable the spring (0/1) + Idx 05 Set axis saturation threshold (0..2048) + +**** Set Effect State **** +OP= 42 +LEN= 1 +00 State + Bit 3 Pause force feedback + Bit 2 Enable force feedback + Bit 0 Stop all effects + +**** Set overall gain **** +OP= 43 +LEN= 1 +00 Gain + Val 00 = 0% + Val 40 = 50% + Val 80 = 100% + +** Parameter memory ** + +Each device has a certain amount of memory to store parameters of effects. +The amount of RAM may vary, I encountered values from 200 to 1000 bytes. Below +is the amount of memory apparently needed for every set of parameters: + - period : 0c + - magnitude : 02 + - attack and fade : 0e + - interactive : 08 + +** Appendix: How to study the protocol ? ** + +1. Generate effects using the force editor provided with the DirectX SDK, or use Immersion Studio (freely available at their web site in the developer section: www.immersion.com) +2. Start a soft spying RS232 or USB (depending on where you connected your joystick/wheel). I used ComPortSpy from fCoder (alpha version!) +3. Play the effect, and watch what happens on the spy screen. + +A few words about ComPortSpy: +At first glance, this soft seems, hum, well... buggy. In fact, data appear with a few seconds latency. Personnaly, I restart it every time I play an effect. +Remember it's free (as in free beer) and alpha! + +** URLS ** +Check www.immerse.com for Immersion Studio, and www.fcoder.com for ComPortSpy. + +** Author of this document ** +Johann Deneux +Home page at http://www.esil.univ-mrs.fr/~jdeneux/projects/ff/ + +Additions by Vojtech Pavlik. + +I-Force is trademark of Immersion Corp.