From: Boris Brezillon Date: Tue, 14 Jun 2016 09:13:18 +0000 (+0200) Subject: regulator: pwm: Switch to the atomic PWM API X-Git-Url: https://git.karo-electronics.de/?a=commitdiff_plain;h=3f4eb39be9b1402ea01a5c67441d0b0bcb74b4b2;p=linux-beck.git regulator: pwm: Switch to the atomic PWM API Use the atomic API wherever appropriate and get rid of pwm_apply_args() call (the reference period and polarity are now explicitly set when calling pwm_apply_state()). We also make use of the pwm_set_relative_duty_cycle() helper to ease relative to absolute duty_cycle conversion. Note that changes introduced by commit fd786fb0276a ("regulator: pwm: Try to avoid voltage error in duty cycle calculation") are no longer needed because pwm_set_relative_duty_cycle() takes care of all rounding approximation for us. Signed-off-by: Boris Brezillon Reviewed-by: Brian Norris Tested-by: Brian Norris Acked-by: Laxman Dewangan Tested-by: Heiko Stuebner Acked-by: Mark Brown Signed-off-by: Thierry Reding --- diff --git a/drivers/regulator/pwm-regulator.c b/drivers/regulator/pwm-regulator.c index cb2f22c02469..7920411057af 100644 --- a/drivers/regulator/pwm-regulator.c +++ b/drivers/regulator/pwm-regulator.c @@ -63,16 +63,14 @@ static int pwm_regulator_set_voltage_sel(struct regulator_dev *rdev, unsigned selector) { struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev); - struct pwm_args pargs; - int dutycycle; + struct pwm_state pstate; int ret; - pwm_get_args(drvdata->pwm, &pargs); + pwm_init_state(drvdata->pwm, &pstate); + pwm_set_relative_duty_cycle(&pstate, + drvdata->duty_cycle_table[selector].dutycycle, 100); - dutycycle = (pargs.period * - drvdata->duty_cycle_table[selector].dutycycle) / 100; - - ret = pwm_config(drvdata->pwm, dutycycle, pargs.period); + ret = pwm_apply_state(drvdata->pwm, &pstate); if (ret) { dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret); return ret; @@ -139,35 +137,19 @@ static int pwm_regulator_set_voltage(struct regulator_dev *rdev, { struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev); unsigned int ramp_delay = rdev->constraints->ramp_delay; - struct pwm_args pargs; unsigned int req_diff = min_uV - rdev->constraints->min_uV; + struct pwm_state pstate; unsigned int diff; - unsigned int duty_pulse; - u64 req_period; - u32 rem; int old_uV = pwm_regulator_get_voltage(rdev); int ret; - pwm_get_args(drvdata->pwm, &pargs); + pwm_init_state(drvdata->pwm, &pstate); diff = rdev->constraints->max_uV - rdev->constraints->min_uV; - /* First try to find out if we get the iduty cycle time which is - * factor of PWM period time. If (request_diff_to_min * pwm_period) - * is perfect divided by voltage_range_diff then it is possible to - * get duty cycle time which is factor of PWM period. This will help - * to get output voltage nearer to requested value as there is no - * calculation loss. - */ - req_period = req_diff * pargs.period; - div_u64_rem(req_period, diff, &rem); - if (!rem) { - do_div(req_period, diff); - duty_pulse = (unsigned int)req_period; - } else { - duty_pulse = (pargs.period / 100) * ((req_diff * 100) / diff); - } + /* We pass diff as the scale to get a uV precision. */ + pwm_set_relative_duty_cycle(&pstate, req_diff, diff); - ret = pwm_config(drvdata->pwm, duty_pulse, pargs.period); + ret = pwm_apply_state(drvdata->pwm, &pstate); if (ret) { dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret); return ret;