From: Stewart Smith Date: Fri, 18 Jul 2014 04:18:43 +0000 (+1000) Subject: Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8 X-Git-Url: https://git.karo-electronics.de/?a=commitdiff_plain;h=9678cdaae93932473f696fdea5debf3eee1e1260;p=linux-beck.git Use the POWER8 Micro Partition Prefetch Engine in KVM HV on POWER8 The POWER8 processor has a Micro Partition Prefetch Engine, which is a fancy way of saying "has way to store and load contents of L2 or L2+MRU way of L3 cache". We initiate the storing of the log (list of addresses) using the logmpp instruction and start restore by writing to a SPR. The logmpp instruction takes parameters in a single 64bit register: - starting address of the table to store log of L2/L2+L3 cache contents - 32kb for L2 - 128kb for L2+L3 - Aligned relative to maximum size of the table (32kb or 128kb) - Log control (no-op, L2 only, L2 and L3, abort logout) We should abort any ongoing logging before initiating one. To initiate restore, we write to the MPPR SPR. The format of what to write to the SPR is similar to the logmpp instruction parameter: - starting address of the table to read from (same alignment requirements) - table size (no data, until end of table) - prefetch rate (from fastest possible to slower. about every 8, 16, 24 or 32 cycles) The idea behind loading and storing the contents of L2/L3 cache is to reduce memory latency in a system that is frequently swapping vcores on a physical CPU. The best case scenario for doing this is when some vcores are doing very cache heavy workloads. The worst case is when they have about 0 cache hits, so we just generate needless memory operations. This implementation just does L2 store/load. In my benchmarks this proves to be useful. Benchmark 1: - 16 core POWER8 - 3x Ubuntu 14.04LTS guests (LE) with 8 VCPUs each - No split core/SMT - two guests running sysbench memory test. sysbench --test=memory --num-threads=8 run - one guest running apache bench (of default HTML page) ab -n 490000 -c 400 http://localhost/ This benchmark aims to measure performance of real world application (apache) where other guests are cache hot with their own workloads. The sysbench memory benchmark does pointer sized writes to a (small) memory buffer in a loop. In this benchmark with this patch I can see an improvement both in requests per second (~5%) and in mean and median response times (again, about 5%). The spread of minimum and maximum response times were largely unchanged. benchmark 2: - Same VM config as benchmark 1 - all three guests running sysbench memory benchmark This benchmark aims to see if there is a positive or negative affect to this cache heavy benchmark. Although due to the nature of the benchmark (stores) we may not see a difference in performance, but rather hopefully an improvement in consistency of performance (when vcore switched in, don't have to wait many times for cachelines to be pulled in) The results of this benchmark are improvements in consistency of performance rather than performance itself. With this patch, the few outliers in duration go away and we get more consistent performance in each guest. benchmark 3: - same 3 guests and CPU configuration as benchmark 1 and 2. - two idle guests - 1 guest running STREAM benchmark This scenario also saw performance improvement with this patch. On Copy and Scale workloads from STREAM, I got 5-6% improvement with this patch. For Add and triad, it was around 10% (or more). benchmark 4: - same 3 guests as previous benchmarks - two guests running sysbench --memory, distinctly different cache heavy workload - one guest running STREAM benchmark. Similar improvements to benchmark 3. benchmark 5: - 1 guest, 8 VCPUs, Ubuntu 14.04 - Host configured with split core (SMT8, subcores-per-core=4) - STREAM benchmark In this benchmark, we see a 10-20% performance improvement across the board of STREAM benchmark results with this patch. Based on preliminary investigation and microbenchmarks by Prerna Saxena Signed-off-by: Stewart Smith Acked-by: Paul Mackerras Signed-off-by: Alexander Graf --- diff --git a/arch/powerpc/include/asm/cache.h b/arch/powerpc/include/asm/cache.h index ed0afc1e44a4..34a05a1a990b 100644 --- a/arch/powerpc/include/asm/cache.h +++ b/arch/powerpc/include/asm/cache.h @@ -3,6 +3,7 @@ #ifdef __KERNEL__ +#include /* bytes per L1 cache line */ #if defined(CONFIG_8xx) || defined(CONFIG_403GCX) @@ -39,6 +40,12 @@ struct ppc64_caches { }; extern struct ppc64_caches ppc64_caches; + +static inline void logmpp(u64 x) +{ + asm volatile(PPC_LOGMPP(R1) : : "r" (x)); +} + #endif /* __powerpc64__ && ! __ASSEMBLY__ */ #if defined(__ASSEMBLY__) diff --git a/arch/powerpc/include/asm/kvm_host.h b/arch/powerpc/include/asm/kvm_host.h index 5fe2b5d17bc0..11385bb46527 100644 --- a/arch/powerpc/include/asm/kvm_host.h +++ b/arch/powerpc/include/asm/kvm_host.h @@ -307,6 +307,8 @@ struct kvmppc_vcore { u32 arch_compat; ulong pcr; ulong dpdes; /* doorbell state (POWER8) */ + void *mpp_buffer; /* Micro Partition Prefetch buffer */ + bool mpp_buffer_is_valid; }; #define VCORE_ENTRY_COUNT(vc) ((vc)->entry_exit_count & 0xff) diff --git a/arch/powerpc/include/asm/ppc-opcode.h b/arch/powerpc/include/asm/ppc-opcode.h index 3132bb9365f3..c636841fc772 100644 --- a/arch/powerpc/include/asm/ppc-opcode.h +++ b/arch/powerpc/include/asm/ppc-opcode.h @@ -139,6 +139,7 @@ #define PPC_INST_ISEL 0x7c00001e #define PPC_INST_ISEL_MASK 0xfc00003e #define PPC_INST_LDARX 0x7c0000a8 +#define PPC_INST_LOGMPP 0x7c0007e4 #define PPC_INST_LSWI 0x7c0004aa #define PPC_INST_LSWX 0x7c00042a #define PPC_INST_LWARX 0x7c000028 @@ -275,6 +276,20 @@ #define __PPC_EH(eh) 0 #endif +/* POWER8 Micro Partition Prefetch (MPP) parameters */ +/* Address mask is common for LOGMPP instruction and MPPR SPR */ +#define PPC_MPPE_ADDRESS_MASK 0xffffffffc000 + +/* Bits 60 and 61 of MPP SPR should be set to one of the following */ +/* Aborting the fetch is indeed setting 00 in the table size bits */ +#define PPC_MPPR_FETCH_ABORT (0x0ULL << 60) +#define PPC_MPPR_FETCH_WHOLE_TABLE (0x2ULL << 60) + +/* Bits 54 and 55 of register for LOGMPP instruction should be set to: */ +#define PPC_LOGMPP_LOG_L2 (0x02ULL << 54) +#define PPC_LOGMPP_LOG_L2L3 (0x01ULL << 54) +#define PPC_LOGMPP_LOG_ABORT (0x03ULL << 54) + /* Deal with instructions that older assemblers aren't aware of */ #define PPC_DCBAL(a, b) stringify_in_c(.long PPC_INST_DCBAL | \ __PPC_RA(a) | __PPC_RB(b)) @@ -283,6 +298,8 @@ #define PPC_LDARX(t, a, b, eh) stringify_in_c(.long PPC_INST_LDARX | \ ___PPC_RT(t) | ___PPC_RA(a) | \ ___PPC_RB(b) | __PPC_EH(eh)) +#define PPC_LOGMPP(b) stringify_in_c(.long PPC_INST_LOGMPP | \ + __PPC_RB(b)) #define PPC_LWARX(t, a, b, eh) stringify_in_c(.long PPC_INST_LWARX | \ ___PPC_RT(t) | ___PPC_RA(a) | \ ___PPC_RB(b) | __PPC_EH(eh)) diff --git a/arch/powerpc/include/asm/reg.h b/arch/powerpc/include/asm/reg.h index 0ef17ade7730..c547b26371b8 100644 --- a/arch/powerpc/include/asm/reg.h +++ b/arch/powerpc/include/asm/reg.h @@ -225,6 +225,7 @@ #define CTRL_TE 0x00c00000 /* thread enable */ #define CTRL_RUNLATCH 0x1 #define SPRN_DAWR 0xB4 +#define SPRN_MPPR 0xB8 /* Micro Partition Prefetch Register */ #define SPRN_RPR 0xBA /* Relative Priority Register */ #define SPRN_CIABR 0xBB #define CIABR_PRIV 0x3 diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c index 5042cccd9fde..c470d55cffe1 100644 --- a/arch/powerpc/kvm/book3s_hv.c +++ b/arch/powerpc/kvm/book3s_hv.c @@ -35,6 +35,7 @@ #include #include +#include #include #include #include @@ -69,6 +70,13 @@ static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); +#if defined(CONFIG_PPC_64K_PAGES) +#define MPP_BUFFER_ORDER 0 +#elif defined(CONFIG_PPC_4K_PAGES) +#define MPP_BUFFER_ORDER 3 +#endif + + static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); @@ -1320,6 +1328,13 @@ static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) vcore->first_vcpuid = core * threads_per_subcore; vcore->kvm = kvm; + vcore->mpp_buffer_is_valid = false; + + if (cpu_has_feature(CPU_FTR_ARCH_207S)) + vcore->mpp_buffer = (void *)__get_free_pages( + GFP_KERNEL|__GFP_ZERO, + MPP_BUFFER_ORDER); + return vcore; } @@ -1586,6 +1601,33 @@ static int on_primary_thread(void) return 1; } +static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc) +{ + phys_addr_t phy_addr, mpp_addr; + + phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer); + mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; + + mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT); + logmpp(mpp_addr | PPC_LOGMPP_LOG_L2); + + vc->mpp_buffer_is_valid = true; +} + +static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc) +{ + phys_addr_t phy_addr, mpp_addr; + + phy_addr = virt_to_phys(vc->mpp_buffer); + mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; + + /* We must abort any in-progress save operations to ensure + * the table is valid so that prefetch engine knows when to + * stop prefetching. */ + logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT); + mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE); +} + /* * Run a set of guest threads on a physical core. * Called with vc->lock held. @@ -1663,9 +1705,16 @@ static void kvmppc_run_core(struct kvmppc_vcore *vc) srcu_idx = srcu_read_lock(&vc->kvm->srcu); + if (vc->mpp_buffer_is_valid) + kvmppc_start_restoring_l2_cache(vc); + __kvmppc_vcore_entry(); spin_lock(&vc->lock); + + if (vc->mpp_buffer) + kvmppc_start_saving_l2_cache(vc); + /* disable sending of IPIs on virtual external irqs */ list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) vcpu->cpu = -1; @@ -2413,8 +2462,14 @@ static void kvmppc_free_vcores(struct kvm *kvm) { long int i; - for (i = 0; i < KVM_MAX_VCORES; ++i) + for (i = 0; i < KVM_MAX_VCORES; ++i) { + if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) { + struct kvmppc_vcore *vc = kvm->arch.vcores[i]; + free_pages((unsigned long)vc->mpp_buffer, + MPP_BUFFER_ORDER); + } kfree(kvm->arch.vcores[i]); + } kvm->arch.online_vcores = 0; }