From: Glauber Costa Date: Wed, 20 Feb 2013 02:14:44 +0000 (+1100) Subject: memcg: reduce the size of struct memcg 244-fold. X-Git-Tag: next-20130220~1^2~449 X-Git-Url: https://git.karo-electronics.de/?a=commitdiff_plain;h=f99bf54cc8b18f286ebb2f0ade7644d912bf77e6;p=karo-tx-linux.git memcg: reduce the size of struct memcg 244-fold. In order to maintain all the memcg bookkeeping, we need per-node descriptors, which will in turn contain a per-zone descriptor. Because we want to statically allocate those, this array ends up being very big. Part of the reason is that we allocate something large enough to hold MAX_NUMNODES, the compile time constant that holds the maximum number of nodes we would ever consider. However, we can do better in some cases if the firmware help us. This is true for modern x86 machines; coincidentally one of the architectures in which MAX_NUMNODES tends to be very big. By using the firmware-provided maximum number of nodes instead of MAX_NUMNODES, we can reduce the memory footprint of struct memcg considerably. In the extreme case in which we have only one node, this reduces the size of the structure from ~ 64k to ~2k. This is particularly important because it means that we will no longer resort to the vmalloc area for the struct memcg on defconfigs. We also have enough room for an extra node and still be outside vmalloc. One also has to keep in mind that with the industry's ability to fit more processors in a die as fast as the FED prints money, a nodes = 2 configuration is already respectably big. Signed-off-by: Glauber Costa Acked-by: Michal Hocko Cc: Kamezawa Hiroyuki Cc: Johannes Weiner Reviewed-by: Greg Thelen Cc: Hugh Dickins Cc: Ying Han Cc: Mel Gorman Cc: Rik van Riel Signed-off-by: Andrew Morton --- diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 972f822b142b..7e760c65425a 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -180,7 +180,7 @@ struct mem_cgroup_per_node { }; struct mem_cgroup_lru_info { - struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; + struct mem_cgroup_per_node *nodeinfo[0]; }; /* @@ -283,17 +283,6 @@ struct mem_cgroup { * the counter to account for kernel memory usage. */ struct res_counter kmem; - /* - * Per cgroup active and inactive list, similar to the - * per zone LRU lists. - */ - struct mem_cgroup_lru_info info; - int last_scanned_node; -#if MAX_NUMNODES > 1 - nodemask_t scan_nodes; - atomic_t numainfo_events; - atomic_t numainfo_updating; -#endif /* * Should the accounting and control be hierarchical, per subtree? */ @@ -357,8 +346,29 @@ struct mem_cgroup { /* Index in the kmem_cache->memcg_params->memcg_caches array */ int kmemcg_id; #endif + + int last_scanned_node; +#if MAX_NUMNODES > 1 + nodemask_t scan_nodes; + atomic_t numainfo_events; + atomic_t numainfo_updating; +#endif + /* + * Per cgroup active and inactive list, similar to the + * per zone LRU lists. + * + * WARNING: This has to be the last element of the struct. Don't + * add new fields after this point. + */ + struct mem_cgroup_lru_info info; }; +static inline size_t memcg_size(void) +{ + return sizeof(struct mem_cgroup) + + nr_node_ids * sizeof(struct mem_cgroup_per_node); +} + /* internal only representation about the status of kmem accounting. */ enum { KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ @@ -5925,9 +5935,9 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) static struct mem_cgroup *mem_cgroup_alloc(void) { struct mem_cgroup *memcg; - int size = sizeof(struct mem_cgroup); + size_t size = memcg_size(); - /* Can be very big if MAX_NUMNODES is very big */ + /* Can be very big if nr_node_ids is very big */ if (size < PAGE_SIZE) memcg = kzalloc(size, GFP_KERNEL); else @@ -5964,7 +5974,7 @@ out_free: static void __mem_cgroup_free(struct mem_cgroup *memcg) { int node; - int size = sizeof(struct mem_cgroup); + size_t size = memcg_size(); mem_cgroup_remove_from_trees(memcg); free_css_id(&mem_cgroup_subsys, &memcg->css);