]> git.karo-electronics.de Git - mv-sheeva.git/blob
95a55ea
[mv-sheeva.git] /
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47
48 #include <sys/prctl.h>
49 #include <math.h>
50
51 static struct perf_event_attr default_attrs[] = {
52
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
57
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
62   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS},
63   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES   },
64
65 };
66
67 static int                      system_wide                     =  0;
68 static unsigned int             nr_cpus                         =  0;
69 static int                      run_idx                         =  0;
70
71 static int                      run_count                       =  1;
72 static int                      inherit                         =  1;
73 static int                      scale                           =  1;
74 static pid_t                    target_pid                      = -1;
75 static pid_t                    child_pid                       = -1;
76 static int                      null_run                        =  0;
77
78 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
79
80 static int                      event_scaled[MAX_COUNTERS];
81
82 struct stats
83 {
84         double n, mean, M2;
85 };
86
87 static void update_stats(struct stats *stats, u64 val)
88 {
89         double delta;
90
91         stats->n++;
92         delta = val - stats->mean;
93         stats->mean += delta / stats->n;
94         stats->M2 += delta*(val - stats->mean);
95 }
96
97 static double avg_stats(struct stats *stats)
98 {
99         return stats->mean;
100 }
101
102 /*
103  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
104  *
105  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
106  * s^2 = -------------------------------
107  *                  n - 1
108  *
109  * http://en.wikipedia.org/wiki/Stddev
110  *
111  * The std dev of the mean is related to the std dev by:
112  *
113  *             s
114  * s_mean = -------
115  *          sqrt(n)
116  *
117  */
118 static double stddev_stats(struct stats *stats)
119 {
120         double variance = stats->M2 / (stats->n - 1);
121         double variance_mean = variance / stats->n;
122
123         return sqrt(variance_mean);
124 }
125
126 struct stats                    event_res_stats[MAX_COUNTERS][3];
127 struct stats                    runtime_nsecs_stats;
128 struct stats                    walltime_nsecs_stats;
129 struct stats                    runtime_cycles_stats;
130 struct stats                    runtime_branches_stats;
131
132 #define MATCH_EVENT(t, c, counter)                      \
133         (attrs[counter].type == PERF_TYPE_##t &&        \
134          attrs[counter].config == PERF_COUNT_##c)
135
136 #define ERR_PERF_OPEN \
137 "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
138
139 static void create_perf_stat_counter(int counter, int pid)
140 {
141         struct perf_event_attr *attr = attrs + counter;
142
143         if (scale)
144                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
145                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
146
147         if (system_wide) {
148                 unsigned int cpu;
149
150                 for (cpu = 0; cpu < nr_cpus; cpu++) {
151                         fd[cpu][counter] = sys_perf_event_open(attr, -1, cpu, -1, 0);
152                         if (fd[cpu][counter] < 0 && verbose)
153                                 fprintf(stderr, ERR_PERF_OPEN, counter,
154                                         fd[cpu][counter], strerror(errno));
155                 }
156         } else {
157                 attr->inherit        = inherit;
158                 attr->disabled       = 1;
159                 attr->enable_on_exec = 1;
160
161                 fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
162                 if (fd[0][counter] < 0 && verbose)
163                         fprintf(stderr, ERR_PERF_OPEN, counter,
164                                 fd[0][counter], strerror(errno));
165         }
166 }
167
168 /*
169  * Does the counter have nsecs as a unit?
170  */
171 static inline int nsec_counter(int counter)
172 {
173         if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
174             MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
175                 return 1;
176
177         return 0;
178 }
179
180 /*
181  * Read out the results of a single counter:
182  */
183 static void read_counter(int counter)
184 {
185         u64 count[3], single_count[3];
186         unsigned int cpu;
187         size_t res, nv;
188         int scaled;
189         int i;
190
191         count[0] = count[1] = count[2] = 0;
192
193         nv = scale ? 3 : 1;
194         for (cpu = 0; cpu < nr_cpus; cpu++) {
195                 if (fd[cpu][counter] < 0)
196                         continue;
197
198                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
199                 assert(res == nv * sizeof(u64));
200
201                 close(fd[cpu][counter]);
202                 fd[cpu][counter] = -1;
203
204                 count[0] += single_count[0];
205                 if (scale) {
206                         count[1] += single_count[1];
207                         count[2] += single_count[2];
208                 }
209         }
210
211         scaled = 0;
212         if (scale) {
213                 if (count[2] == 0) {
214                         event_scaled[counter] = -1;
215                         count[0] = 0;
216                         return;
217                 }
218
219                 if (count[2] < count[1]) {
220                         event_scaled[counter] = 1;
221                         count[0] = (unsigned long long)
222                                 ((double)count[0] * count[1] / count[2] + 0.5);
223                 }
224         }
225
226         for (i = 0; i < 3; i++)
227                 update_stats(&event_res_stats[counter][i], count[i]);
228
229         if (verbose) {
230                 fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
231                                 count[0], count[1], count[2]);
232         }
233
234         /*
235          * Save the full runtime - to allow normalization during printout:
236          */
237         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
238                 update_stats(&runtime_nsecs_stats, count[0]);
239         if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
240                 update_stats(&runtime_cycles_stats, count[0]);
241         if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
242                 update_stats(&runtime_branches_stats, count[0]);
243 }
244
245 static int run_perf_stat(int argc __used, const char **argv)
246 {
247         unsigned long long t0, t1;
248         int status = 0;
249         int counter;
250         int pid;
251         int child_ready_pipe[2], go_pipe[2];
252         char buf;
253
254         if (!system_wide)
255                 nr_cpus = 1;
256
257         if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
258                 perror("failed to create pipes");
259                 exit(1);
260         }
261
262         if ((pid = fork()) < 0)
263                 perror("failed to fork");
264
265         if (!pid) {
266                 close(child_ready_pipe[0]);
267                 close(go_pipe[1]);
268                 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
269
270                 /*
271                  * Do a dummy execvp to get the PLT entry resolved,
272                  * so we avoid the resolver overhead on the real
273                  * execvp call.
274                  */
275                 execvp("", (char **)argv);
276
277                 /*
278                  * Tell the parent we're ready to go
279                  */
280                 close(child_ready_pipe[1]);
281
282                 /*
283                  * Wait until the parent tells us to go.
284                  */
285                 if (read(go_pipe[0], &buf, 1) == -1)
286                         perror("unable to read pipe");
287
288                 execvp(argv[0], (char **)argv);
289
290                 perror(argv[0]);
291                 exit(-1);
292         }
293
294         child_pid = pid;
295
296         /*
297          * Wait for the child to be ready to exec.
298          */
299         close(child_ready_pipe[1]);
300         close(go_pipe[0]);
301         if (read(child_ready_pipe[0], &buf, 1) == -1)
302                 perror("unable to read pipe");
303         close(child_ready_pipe[0]);
304
305         for (counter = 0; counter < nr_counters; counter++)
306                 create_perf_stat_counter(counter, pid);
307
308         /*
309          * Enable counters and exec the command:
310          */
311         t0 = rdclock();
312
313         close(go_pipe[1]);
314         wait(&status);
315
316         t1 = rdclock();
317
318         update_stats(&walltime_nsecs_stats, t1 - t0);
319
320         for (counter = 0; counter < nr_counters; counter++)
321                 read_counter(counter);
322
323         return WEXITSTATUS(status);
324 }
325
326 static void print_noise(int counter, double avg)
327 {
328         if (run_count == 1)
329                 return;
330
331         fprintf(stderr, "   ( +- %7.3f%% )",
332                         100 * stddev_stats(&event_res_stats[counter][0]) / avg);
333 }
334
335 static void nsec_printout(int counter, double avg)
336 {
337         double msecs = avg / 1e6;
338
339         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
340
341         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
342                 fprintf(stderr, " # %10.3f CPUs ",
343                                 avg / avg_stats(&walltime_nsecs_stats));
344         }
345 }
346
347 static void abs_printout(int counter, double avg)
348 {
349         double total, ratio = 0.0;
350
351         fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
352
353         if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
354                 total = avg_stats(&runtime_cycles_stats);
355
356                 if (total)
357                         ratio = avg / total;
358
359                 fprintf(stderr, " # %10.3f IPC  ", ratio);
360         } else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter)) {
361                 total = avg_stats(&runtime_branches_stats);
362
363                 if (total)
364                         ratio = avg * 100 / total;
365
366                 fprintf(stderr, " # %10.3f %%  ", ratio);
367
368         } else {
369                 total = avg_stats(&runtime_nsecs_stats);
370
371                 if (total)
372                         ratio = 1000.0 * avg / total;
373
374                 fprintf(stderr, " # %10.3f M/sec", ratio);
375         }
376 }
377
378 /*
379  * Print out the results of a single counter:
380  */
381 static void print_counter(int counter)
382 {
383         double avg = avg_stats(&event_res_stats[counter][0]);
384         int scaled = event_scaled[counter];
385
386         if (scaled == -1) {
387                 fprintf(stderr, " %14s  %-24s\n",
388                         "<not counted>", event_name(counter));
389                 return;
390         }
391
392         if (nsec_counter(counter))
393                 nsec_printout(counter, avg);
394         else
395                 abs_printout(counter, avg);
396
397         print_noise(counter, avg);
398
399         if (scaled) {
400                 double avg_enabled, avg_running;
401
402                 avg_enabled = avg_stats(&event_res_stats[counter][1]);
403                 avg_running = avg_stats(&event_res_stats[counter][2]);
404
405                 fprintf(stderr, "  (scaled from %.2f%%)",
406                                 100 * avg_running / avg_enabled);
407         }
408
409         fprintf(stderr, "\n");
410 }
411
412 static void print_stat(int argc, const char **argv)
413 {
414         int i, counter;
415
416         fflush(stdout);
417
418         fprintf(stderr, "\n");
419         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
420
421         for (i = 1; i < argc; i++)
422                 fprintf(stderr, " %s", argv[i]);
423
424         fprintf(stderr, "\'");
425         if (run_count > 1)
426                 fprintf(stderr, " (%d runs)", run_count);
427         fprintf(stderr, ":\n\n");
428
429         for (counter = 0; counter < nr_counters; counter++)
430                 print_counter(counter);
431
432         fprintf(stderr, "\n");
433         fprintf(stderr, " %14.9f  seconds time elapsed",
434                         avg_stats(&walltime_nsecs_stats)/1e9);
435         if (run_count > 1) {
436                 fprintf(stderr, "   ( +- %7.3f%% )",
437                                 100*stddev_stats(&walltime_nsecs_stats) /
438                                 avg_stats(&walltime_nsecs_stats));
439         }
440         fprintf(stderr, "\n\n");
441 }
442
443 static volatile int signr = -1;
444
445 static void skip_signal(int signo)
446 {
447         signr = signo;
448 }
449
450 static void sig_atexit(void)
451 {
452         if (child_pid != -1)
453                 kill(child_pid, SIGTERM);
454
455         if (signr == -1)
456                 return;
457
458         signal(signr, SIG_DFL);
459         kill(getpid(), signr);
460 }
461
462 static const char * const stat_usage[] = {
463         "perf stat [<options>] <command>",
464         NULL
465 };
466
467 static const struct option options[] = {
468         OPT_CALLBACK('e', "event", NULL, "event",
469                      "event selector. use 'perf list' to list available events",
470                      parse_events),
471         OPT_BOOLEAN('i', "inherit", &inherit,
472                     "child tasks inherit counters"),
473         OPT_INTEGER('p', "pid", &target_pid,
474                     "stat events on existing pid"),
475         OPT_BOOLEAN('a', "all-cpus", &system_wide,
476                     "system-wide collection from all CPUs"),
477         OPT_BOOLEAN('c', "scale", &scale,
478                     "scale/normalize counters"),
479         OPT_BOOLEAN('v', "verbose", &verbose,
480                     "be more verbose (show counter open errors, etc)"),
481         OPT_INTEGER('r', "repeat", &run_count,
482                     "repeat command and print average + stddev (max: 100)"),
483         OPT_BOOLEAN('n', "null", &null_run,
484                     "null run - dont start any counters"),
485         OPT_END()
486 };
487
488 int cmd_stat(int argc, const char **argv, const char *prefix __used)
489 {
490         int status;
491
492         argc = parse_options(argc, argv, options, stat_usage,
493                 PARSE_OPT_STOP_AT_NON_OPTION);
494         if (!argc)
495                 usage_with_options(stat_usage, options);
496         if (run_count <= 0)
497                 usage_with_options(stat_usage, options);
498
499         /* Set attrs and nr_counters if no event is selected and !null_run */
500         if (!null_run && !nr_counters) {
501                 memcpy(attrs, default_attrs, sizeof(default_attrs));
502                 nr_counters = ARRAY_SIZE(default_attrs);
503         }
504
505         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
506         assert(nr_cpus <= MAX_NR_CPUS);
507         assert((int)nr_cpus >= 0);
508
509         /*
510          * We dont want to block the signals - that would cause
511          * child tasks to inherit that and Ctrl-C would not work.
512          * What we want is for Ctrl-C to work in the exec()-ed
513          * task, but being ignored by perf stat itself:
514          */
515         atexit(sig_atexit);
516         signal(SIGINT,  skip_signal);
517         signal(SIGALRM, skip_signal);
518         signal(SIGABRT, skip_signal);
519
520         status = 0;
521         for (run_idx = 0; run_idx < run_count; run_idx++) {
522                 if (run_count != 1 && verbose)
523                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
524                 status = run_perf_stat(argc, argv);
525         }
526
527         print_stat(argc, argv);
528
529         return status;
530 }